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SUMMARY

Drug-drug interactions (DDIs) can produce unpredictable pharmacological effects and lead to adverse
events that have the potential to cause irreversible damage to the organism. Traditional methods to
detect DDIs through biological or pharmacological analysis are time-consuming and expensive, therefore,
there is an urgent need to develop computational methods to effectively predict drug-drug interactions.
Currently, deep learning and knowledge graph techniques which can effectively extract features of en-
tities have been widely utilized to develop DDI prediction methods. In this research, we aim to systemat-
ically review DDI prediction researches applying deep learning and graph knowledge. The available
biomedical data and public databases related to drugs are firstly summarized in this review. Then, we
discuss the existing drug-drug interactions prediction methods which have utilized deep learning and
knowledge graph techniques and group them into three main classes: deep learning-based methods,
knowledge graph-based methods, and methods that combine deep learning with knowledge graph.
We comprehensively analyze the commonly used drug related data and various DDI prediction methods,
and compare these prediction methods on benchmark datasets. Finally, we briefly discuss the challenges
related to drug-drug interactions prediction, including asymmetric DDIs prediction and high-order DDI
prediction.

INTRODUCTION

The use of drug combinations is common and necessary to treat patients with complex diseases.1,2 However, when drugs are concomitantly

administered to a patient, the effects of the drugs may be enhanced or weakened, which may also cause side effects, these kinds of interac-

tions are called drug-drug interactions (DDIs).3 For example, the serum concentration of dofetilide decreases when it is taken with dabrafenib

together, whereas its serum concentration increases when taken with dalfopristin.4 Better knowledge of the incidence of DDIs and the drugs

most frequently involved, can be helpful in a more accurate assessment of their overall clinical importance.5 Although a large number of DDIs

are found during the clinical trials, there are still manyDDIs on themarket.6 UnknownDDIs can lead to unsafe treatments and evenmedication

errors in those patients who are receiving polypharmacy.7 According to the US Centers for Disease Control and Prevention, more than 10% of

people take five or more drugs at the same time, and even worse, 20% of older adults take at least 10 drugs,8 this phenomenon makes DDIs

more likely to occur.Moreover, DDIs were estimated to be responsible for 4.8%of hospitalization in the elderly, an 8.4-fold increase compared

to the general population.9 According to relevant statistics, DDIs cause a large number of deaths every year, and cause DDI-related costs of

177 billion US dollars.10 Therefore, it is very important to discover more potential DDIs.

Predicting potential DDI helps reduce unanticipated drug interactions and drug development costs and optimizes the drug design pro-

cess.11 However, traditional experimental methods for DDIs identification and prediction, such as testing cytochrome P450 or transporter-

related interaction, face challenges such as high cost and long duration.4 In some cases, researchers may suffer from limitations.12 Therefore,

machine learning13 and deep learning14 based computational methods are proposed to solve these problems in traditional DDIs identifica-

tion. The workflow of DDIs prediction using computational methods is shown in Figure 1. First, researchers need to collect available data from

publicly available biomedical data sources such as databases or relevant literatures, including DDIs, targets, genes, proteins, etc. These data

can provide valuable information for identifying potential DDIs. In the second step, advanced models utilizing machine learning and deep

learning techniques are developed to identify DDIs. Then, in order to evaluate and validate the predictive performance of these proposed

methods, it is necessary to compare them with state-of-the-art methods, perform prediction tasks on different gold standard datasets, and

analyze them. Finally, these predicted interactions are validated in vitro and in vivo. Most methods generally classified DDI prediction tasks

into binary classification task, multi-class task and multi-label task. The binary-class task is to predict whether there is an interaction between
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Figure 1. The workflow of drug-drug interactions prediction
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two drugs, multi-class task is to predict the type of DDI between drug pairs, andmulti-label task is to predict the interaction types when there

are two or more interactions between drug pairs.

Machine learning is used to teach machines how to handle data more effectively and relies on various algorithms to address data-related

problems.15 Machine learning methods, including support vector machine (SVM), random forest, decision tree, naive Bayes, and K-nearest

neighbors, have been widely applied in various fields such as computer vision, prediction, semantic analysis, natural language processing,

and information retrieval.16 Traditional machine learning-based methods have made significant contributions to the field of DDIs prediction.

Cheng et al.17 calculated four types of similarities of drugs as the features of drug pairs, including drug phenotypic similarity, therapeutic sim-

ilarity, chemical structure similarity and genomic similarity, and finally applied naive Bayes, decision tree, K-nearest neighbors, logistic regres-

sion and support vector machine to predict DDIs. Li et al.18 have developed a probability ensemble approach (PEA) to build DDIs prediction

model using drug molecules and pharmacological characteristics. Mei et al.19 developed a logistic regression model with L2 regularization,

which used a simple f drug target profile representation to depict drugs and drug pairs to predict DDIs. Song et al.20 integrated the 2D mo-

lecular structure similarity, 3D pharmacophoric similarity, interaction profile fingerprint (IPF) similarity, target similarity and adverse drug effect

(ADE) similarity to obtain the feature representation of drugs, and utilized SVM to predict candidate DDIs.

Deep learning techniques have been widely developed and applied due to their excellent performance on large-scale and high-dimen-

sional datasets.21 Deep learning allows computational models that are composed of multiple processing layers to learn representations of

data with multiple levels of abstraction,22 which can effectively find complex structures in high-dimensional data, and is more flexible than

traditional methods based on Bayesian, random walk, support vector machine, and so on. Therefore, deep learning has been well applied

in image recognition,23 computer vision,24 NLP,25 and speech recognition.26 Furthermore, deep learning has also gained extensive usage

in the field of drug discovery including drug molecular activity prediction,27 molecular property prediction,28 target identification29 and

DTI (drug-target interaction) prediction.30

In addition, there has been increasing interest in extending deep learningmethods to graph data,31 the use of graph has also brought new

breakthroughs in deep learning. Knowledge graph (KG) has been widely used in various business and scientific fields.32 Knowledge graph is a

multi-relationship graph containing multiple types of entities and edges, in which nodes correspond to entities, and edges correspond to

relations between the two connected entities.33 KG is mainly composed of triples, generally represented as G = ðE;R;T Þ, where E denotes

the set of entities,R denotes the relations, T denotes the set of edges, the edge ðs; r;oÞ denotes the existence of a relation r between entities
s to o, where r˛R, s is the head entity and o is the tail entity. The rich information provided by KG, containing structured and unstructured

knowledge, can be input into deep learning models to find hidden connections between entities.

The use of drug related biomedical data is critical for developing high-performance DDI prediction models. Although many public data-

bases have provided various drug-related information, there is still lacking of comprehensive summary of drug related entities and their in-

teractions in current popular data sources, and the required data cannot be accurately and quickly obtained when developing computational

prediction methods. In addition, many effective DDI prediction methods have been proposed, but there are still many issues that need to be

considered. Certain models are unable to effectively utilize DDIs data, and the imbalance between positive and negative samples also needs

to be resolved. Finally, the datasets and experiments used to analyze and evaluate the proposedpredictionmethods are generally not unified

in many studies.
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The advances in DDI prediction have been reviewed in detail from different aspects in recent years.8,34–38 For example, Zhang et al.35 re-

viewed deep learning-based methods for extracting DDIs from biomedical literatures. Han et al.8 reviewed DDI prediction models based on

machine learning and organized into: traditional similarity, traditional classification, network diffusion, matrix factorization, ensemble-based

approach and based on literature approach. This review can provide useful guidance for interested researchers to further promote bioinfor-

matics algorithms to predict DDI. Compared with previous reviews, our study provides a more comprehensive and integrative analysis of

deep learning-based and knowledge graph-based prediction methods and related biomedical data used in DDI prediction. Firstly, we sum-

marize various sources of biomedical data used in DDI prediction methods. Secondly, the popular DDI prediction methods based on deep

learning and knowledge graph are analyzed. Then, these computational methods are compared on the same datasets briefly. Finally, we

discuss the limitations and challenges for developing DDI prediction methods.

In the recent review by Lin et al.,37 chemical structure based, network based, NLP based and hybridmethods for DDI prediction have been

summarized, and provided an updated and accessible guide to the broad researchers and development community with different domain

knowledge. In our review, we focus on analyzing and classifying existing computational methods for potential DDI prediction using deep

learning and knowledge graph, respectively. Although the methods covered in our survey have certain overlaps with Lin et al.,37 we comple-

ment it with computational methods based on KG, which have recently demonstrated attractive prediction precision enhancement in DDI

prediction. We further discuss the advantages and disadvantages of various prediction models. Furthermore, we have organized some

benchmark datasets from the literatures that commonly used in DDI prediction tasks. The common validation strategies and evaluation met-

rics used in DDI prediction studies are also included to guide researchers to efficiently evaluate and verify the predictive ability of their devel-

oped methods in future studies.

DRUG-RELATED DATA

The explosive growth of large-scale genomic and phenotypic data, as well as data of small molecular compounds with granted regulatory

approval,39 has enabled new developments for DDIs prediction. In addition to DDIs information, drug features are often utilized in DDI

prediction, including chemical substructures, targets, enzymes, pathways, genes, transporters, side effects, indications, etc. The effective

use of these drug features enables themodel to learn comprehensively and improve performance. This study briefly summarizes the common

public available databases and datasets involved in current researches on DDI prediction.

Drug-related public databases

Predicting DDIs often requires the use of multiple characteristics of drugs as well as known DDIs. The most commonly used databases

include DrugBank,40 Drug Repurposing Knowledge Graph(DRKG),41 Kyoto Encyclopedia of Genes and Genomes(KEGG),42 Bio2RDF,43

TWOSIDES,44 SIDER,45 PubChem46 and DrugCentral.47 A detailed description of these public databases has been presented in Table 1.

These public databases can be classified based on the content and function into drug omics data, drug adverse effects and drug knowledge

graph databases.

Drug omics databases mainly include DrugBank,40 KEGG,42 PubChem46 and DrugCentral.47

(1) DrugBank40 is an open-access DB, which collects data from various sources, including journal articles, electronic databases, and text-

books.48 DrugBank (version 5.1.10) contains 16,565 drug entries including 2,761 approved small molecule drugs, 1,610 approved bi-

ologics, 135 nutraceuticals and over 6,723 experimental (discovery-phase) drugs. Moreover, 5,302 non-redundant protein (i.e., drug

target, enzyme, transporter and carrier) sequences are linked to these drug entries. The data have been validated by DrugBank cura-

torial staff, multiple automateddata consistency checks have also been performed to ensure a uniformly high level of data integrity.49 It

can provide rich and high-quality data that enables significant advances in the bioinformatics field. Moreover, DrugBank team has

constantly optimized the interface of the database and enriched the search functions to make it more convenient for researchers to

access and use.

(2) KEGG42 is a daily updated, free database resource to help understand the high-level functions and utilities of the biological system,

which contains fifteen manually curated databases and a computationally generated database,42 and the PATHWAY database is the

most important component. KEGGhas powerful graphical functions to provide a comprehensive understanding of the interaction net-

works of genes, proteins and compounds, based on graphical representation of biological objects and graphical computation tech-

nologies.50

(3) PubChem46 is key open chemical information resource at the US National Institutes of Health (NIH), which has collected information of

drugs from hundreds of data sources, including university labs, patent documents, government agencies, pharmaceutical companies,

chemical vendors, publishers and a number of chemical biology resources. PubChem contains small molecules, chemical structures,

identifiers, chemical and physical properties, and many others. In addition, it also offers rich query and analysis functions that allows

chemical compounds to be searched by name and structural formula.

(4) DrugCentral47 is a well-rounded drug information resource that integrates a wide range of drugs, chemical substructures and indica-

tions information. Themajority of the data are collected and aggregated from online public resources, combinedwithmanual curation

of literature and drug label information.51 DrugCentral is updated every 2–3 years, and its team regularly monitors new drug approval

from FDA, EMA, and PMDA to provide accurate and high-quality data for related researches.

DRKG41 and Bio2RDF43 are two comprehensive drug knowledge graph databases.
iScience 27, 109148, March 15, 2024 3



Table 1. The available databases

Category Database

Available data

URL APIEntities Drug properties Drug-related interactions

Drug omics data DrugBank40 Drug, Target, Enzyme,

Transporter, Protein, Disease,

Gene, Carrier,

Metabolite, Pathway,

Compound, ATC, Adverse

response

Type, Chemical structure,

Category, Approval status,

Chemical identifiers,

Indication, Function, Action

Drug-drug interaction,

Drug-food interaction, Drug-

metabolite interaction,

Drug-protein interaction,

Drug-transcript

interaction, Drug-target

interaction

https://go.drugbank.com/ https://docs.drugbank.

com/v1/

KEGG42 Pathway, Gene, Genome,

Protein, Compound, Glycan,

Enzyme, Variant, Disease,

Drug, ATC, Target,

Metabolism

Structure, Drug class,

Chemical reaction, Chemical

structure similarity

Drug-drug interaction, Drug-

gene interaction, Drug-

disease interaction

https://www.kegg.jp/ https://www.kegg.jp/kegg/

rest/keggapi.html

PubChem46 Taxonomy, Compound,

Protein, Gene, Pathway, Cell

line, Substance, Side effect,

Bioactivity, Target

Structure, Indication Chemical-chemical

interaction, Chemical-gene

interaction, Chemical-disease

interaction

https://pubchem.ncbi.nlm.

nih.gov/

https://pubchem.ncbi.nlm.

nih.gov/rest/pug

DrugCentral47 Drug, Target, Disease,

Protein

Substructure, Adverse event,

Similarity, Active ingredient,

Indication, Drug mode of

action, Pharmacologic action,

Pharmacokinetic properties,

Bioactivity

Drug-drug interaction, Drug-

disease interaction, Drug-

target interaction

https://drugcentral.org/ https://drugcentral.org/

OpenAPI

Drug knowledge graph DRKG41 Anatomy, Biological process,

Cellular component,

Compound, Disease, Gene,

Molecular function, Pathway,

Pharmacologic class, Side

effect, Symptom, ATC, Tax

SMILES Compound-Compound

interaction, Compound-side

effect interaction,

Compound-ATC

classification interaction,

Compound-pharmacologic

class interaction, Compound-

disease interaction,

Compound-gene interaction

https://github.com/gnn4dr/

DRKG

–

Bio2RDF43 Drug, Gene, Protein,

Compound, Disease, Cell

Chemical structure,

Pharmacological property

Drug-adverse event

interaction

http://bio2rdf.org/ https://github.com/bio2rdf/

bio2rdf-api

Drug adverse effects TWOSIDES44 Drug, Side effect Indication Drug-side effect interaction https://www.tatonettilab.

org/resources/tatonetti-

stm.html

–

SIDER45 Drug, Side effect, ATC,

Target

Chemical structure,

Indication

Drug-side effect interaction http://sideeffects.embl.de –

Note: ’-’ indicates that the database does not provide API.
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(1) DRKG41 is a comprehensive biological knowledge graph, which contains genes, compounds, diseases and side effects, ATC, biolog-

ical process, etc. It integrates data from six existing biological databases and publications to ensure integrity and usefulness of data,

which includes 97,238 entities belonging to 13 entity-types, and 5,874,261 triplets belonging to 107 edge-types.

(2) Bio2RDF43 is an open knowledge graph that uses SemanticWeb technologies to build and provide the largest network of Linked Data

for the Life Sciences, which contains �11 billion triples across 35 biomedical databases. Bio2RDF can create RDFs compatible Linked

Data from a diverse set of heterogeneously formatted sources to support complex biomedical researches.

Both TWOSIDES44 and SIDER45 are drug adverse effects databases.

(1) TWOSIDES44 is a multi-drug side effect resource that contains significant associations between drugs and adverse events, this data-

base contains 868,221 significant associations between 59,220 pairs of drugs and 1,301 adverse events. But these associations are

limited to only those that cannot be clearly attributed to either drug alone.44

(2) SIDER45 (version 4.1) contains 1430 drugs, 5,868 side effects (SEs) and 139,756 drug-SE pairs, the information about marketed drugs

and their recorded side effects is extracted from public documents and package inserts. The available information also includes fre-

quency of side effect and side effect classifications, etc., can provide high-quality and valuable data for related studies. Moreover, the

high quality of the extracted entities has also been ensured by manually annotating names, adding synonymous names and using an

additional Natural Language Processing step.45
Standard datasets collected from the literatures

With the development of DDIs prediction research, the existing studies have providedmany benchmark datasets to facilitate the evaluation of

prediction methods. Tables 2 and 3 show some benchmark datasets collected from the existing literatures, which are applied on three

different tasks.

In this review, we evaluate the performance of themodels using different datasets in Tables 2 and 3. For the binary classification prediction

task, six benchmark datasets including Dm_l4,80 Db_2,53 Db_3,54 Db_4,55 Db_556 and Db_657 are chosen for model performance evaluation.

The multi-class prediction task is performed on three benchmark datasets including Dm_c1,79 Dm_c252 and Dm_c3.81 For themulti-label pre-

diction task, three benchmark datasets including Dm_l1,52 Dm_l285 and Dm_l381 are selected for model evaluation.

DDIs PREDICTION METHODS

We group the existing DDI prediction methods into three classes: methods based on deep learning, methods based on knowledge graph,

and methods that combine deep learning with knowledge graph. Table 4 lists the methods corresponding to each class. The graphical sum-

mary of the overall methods is shown in Figure 2.

DL and KG techniques

Deep learning uses large amounts of unsupervised data to automatically extract complex representations.111 It has been demonstrated that

that deep learning is effective in discovering complex structures in high-dimensional data and is therefore applicable to many areas of sci-

ence, business, and government.22 In this section, we review the various deep learning and KG techniques.

DNN

DNN can learn more complex and abstract high-level features than shallow neural networks.112 Given an input sample fixed at the input layer,

the other units of the network compute their values based on the activity of the units that they are connected to in the next layer.113 Further-

more, whether it is a linear or nonlinear relationship, DNN has the ability to discover suitable parameters to convert inputs into corresponding

outputs. In the DDI prediction field, DNNs are widely used to develop prediction frameworks. Figure 3 provides a specific example of DDI

predictionmethod using DNN. DNN can be processed through twomain phases: Forward Propagation (FP) and Backward Propagation (BP).

(1) FP: The input data are propagated from the input layer to the output layer. Each layer utilizes the outputs of the previous layer as inputs,

and the predicted outputs for given inputs are obtained by fully connected between layers.

(2) BP: Backward propagation is the process of calculating the gradients of the loss function with respect to the weights and biases of the

neural network. It allows the network to learn and adjust its parameters during the training process. BP also involves Weight Gradient

Calculation (WG) and Weight Update (WU). WG refers to the computation of the gradients of the loss function with respect to the

weights of the neural network andWU focuses on adjusting the weights of the neural network based on the calculatedweight gradient.
GNN

Graphical representation is a useful tool to represent potential relationships among entities in the field of science and engineering, such as

computer vision, pattern recognition, data mining.114–118 Graph Neural Networks (GNNs) are deep learning-based methods that operate on

graphs domain, due to its convincing performance, GNNs have been widely used in recent years.119 Figure 4 reviews popular GNN models

include GCN, GAT. For DDI prediction, drugs are regarded as nodes in the graph, these nodes are connected to form a network, an edge
iScience 27, 109148, March 15, 2024 5



Table 2. Benchmark datasets collected from existing literatures for binary classification prediction task

Dataset name Drugs DDIs Drug-related information Data resource

Db_152 – 1,178,210 SMILES DRKG

Db_253 548 48,584 Substructure: 881

Target: 780

Enzyme: 129

Transporter: 78

Pathway: 253

Indication: 4,897

Side effect: 4,897

Off side effect: 9,496

TWOSIDES, SIDER, OFFSIDES, PubChem,

DrugBank, KEGG

Db_354 1,537 34,282 SMILES DrugBank

Db_455 2,578 612,388 – DrugBank

Db_556 – 48,548 SMILES DrugBank,53

Db_657 1,752 504,468 Morgan fingerprint DrugBank

Db_758 1,562 180,576 Chemical structures, ATC, DBP (899 drug

targets and 222 non-target proteins)

DrugBank,59,60

Db_858 1,934 230,887

Db_961 2,367 209,494 Target: 2,411

Enzyme: 285

Pathway: 314

Substructure: 699

DrugBank, KEGG, PubChem

Db_1055 1,925 56,983 – KEGG

Db_1162 613 80,702 Enzyme: 454

Pathway: 533

Side effect: 4,859

Substructure: 811

Target: 2,670

Node2vec: 613

PRL: 978

DrugBank, CTD,63 KEGG, SIDER,

LINCS64,65,66,67

Db_1268 841 82,620 Target: 1,333

Enzyme: 214

Pathway: 307

Substructure: 619

DrugBank, KEGG, PubChem

Db_1369 1,850 443,046 SMILES Drugbank

Db_1469 1,322 83,040 BIOSNAP70

Db_1571 – 2,898,937 – DrugBank, KEGG, TWOSIDES, MEDLINE,72

OFFSIDES, PharmGKB53,73–76

Db_1677 10,533 1,195,972 SMILES DrugBank, OGB-biokg78

Db_1777 1,925 56,983 DrugBank, KEGG

Note: ‘Drugs’ represents the number of drugs in the dataset, ‘DDIs’ represents the numbers of drug-drug interactions, ‘Drug-related information’ represents

other drug-related features in the dataset, ‘Data resource’ represents the source of the data, ‘-’ represents no clear explanation in the original literature.
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denotes an interaction between drugs. GNN can effectively capture the relationships among nodes and edges in DDI graphs, thereby

enhancing the accuracy of DDI prediction through comprehensive training and modeling.

GCN. Graph convolutional neural network (GCN) is one of the most commonly used methods in GNN. GCN can effectively leverage the

graph structure and aggregate node information from neighboring nodes in a convolutional manner. It has significant expressive power to

learn graph representations and achieve superior performance in various tasks and applications.120 Figure 4B) shows a simple example of

GCN. After constructing a DDI graph, the node representations are updated by aggregating the features of neighbor nodes, and the

commonly used aggregation methods include Sum and Average. Then, the obtained node representations are input into the activation

function for nonlinear transformation, which can help the model learn more complex feature representations. The new node representa-

tions finally obtained are utilized as the inputs of the next layer, the local and global information of nodes are gradually fused through

several iterations.
6 iScience 27, 109148, March 15, 2024



Table 3. Benchmark datasets collected from existing literatures for DDI events prediction tasks

Task Dataset name Drugs DDIs Types Drug-related information Data resource

Multi-class Dm_c179 572 74,528 65 Chemical substructure, Target, Pathway,

Enzyme

DrugBank, KEGG

Dm_c252 – 172,426 81 SMILES Ryu et al.80

Dm_c381 1,697 190,728 86 Chemical structure Ryu et al.80

Dm_c482 1,704 191,400 86 SMILES DrugBank

Dm_c583 1,258 323,539 100 Substructure, Target, Enzyme DrugBank

Dm_c684 1,935 589,827 2 Chemical structure DrugBank

Dm_c781 1,013 114,204 71 Chemical structure Ryu et al.80, Lin et al.83

Multi-label Dm_l152 – 99,002 200 SMILES TWOSIDES

Dm_l285 10,533 1,195,972 39 – OGB-biokg78

Dm_l381 751 53,888 200 Chemical structure TWOSIDES,83

Dm_l480 1,861 192,284 86 SMILES DrugBank

Dm_l585 3,797 1,236,361 2 – DrugBank

Dm_l685 1,925 56,983 2 – KEGG

Dm_l786 1,918 30,979 100 – TWOSIDES

Dm_l887 1,597 188,258 106 SMILES, Gene: 22,032

GO terms: 29,692

DrugBank, BioGrid88–90

Dm_l981 1,314 103,938 200 Chemical structure TWOSIDES

Dm_l1091 1,317 198,697 86 Protein, Substructure

Fingerprint

DrugBank, PubChem

Note: ‘Task’ represents prediction task, ‘Drugs’ represents the number of drugs in the dataset, ‘DDIs’ represents the numbers of drug-drug interactions, and

‘Types’ indicates the number of DDI types, ‘Drug-related information’ represents other types of data, ‘Data resource’ represents the source of the data, ‘-’ rep-

resents no clear explanation in the original literature. There are a total of 2,322 drugs in 52.
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GAT. Graph AttentionNetwork (GAT) introduces an attentionmechanism into the process of computing weights between nodes. By stack-

ing layers in which nodes are able to attend over their neighborhoods’ features, GAT enables (implicitly) specifying different weights to

different nodes in a neighborhood, without requiring any kind of computationally intensive matrix operation (such as inversion) or depending

on knowing the graph structure upfront.121 Figure 4C) shows a single graph attentional layer, which inputs a set of node features and applies a

weight matrix to every node, then uses a shared self-attention for each node to compute attentional coefficients. The softmax function is uti-

lized to normalize the neighbor nodes and to compute linear combination of node features.

AE

AE122 is a nonlinear unsupervised neural network model, which consists of encoder and decoder. The encoder maps the input to the repre-

sentation space, while the decoder reconstructs the original input from the representation.123 Due to its advantages in data dimensionality

reduction and feature extraction,124 autoencoder has been applied to DDI prediction with favorable results. By setting appropriate dimen-

sions for the encoder, the most important features can be learned. Figure 5 demonstrates the reconstruction of the input data using an AE

model. There are two phases in the training process of the autoencoder: the encoder phase and the decoder phase.

(1) Encoder phase: The Encoder consists of a series of hidden layers that receive the input data and gradually compress the data. The pa-

rameters of encoder are learned by minimizing the reconstruction error, which ensures to capture the main features of the input data.

(2) Decoder phase: In this phase, the representations of hidden layers are mapped back to the original input space through the decoder.

The parameters of decoder are also learned by minimizing the reconstruction error to recover the original data as possible.

KG

Knowledge graph (KG) is a multi-relational semantic network, which exhibits robust expressive capabilities and modeling flexibility. Figure 6

illustrates an example of a node embedding and its updating process on knowledge graph, which obtains the node’s multi-hop neighbor-

hood features by propagating and aggregating information, and utilizes these features to update the node’s embedding vector.

However, when using KGs to calculate semantic relations between entities, it is often necessary to design special graph algorithms to

achieve this, but such graph algorithms have high computational complexity and poor scalability.125 Therefore, some knowledge graph

embedding methods have been proposed. KGEmodels ingest graph data in triplets form where they learn global graph low-rank latent fea-

tures, which preserve the graph’s coherent structure, the common KGE models include TransE, DistMult, HolE, etc.126
iScience 27, 109148, March 15, 2024 7



Table 4. Methods related to deep learning and knowledge graph

Technology Method Descriptions Advantages Limitations Validate Links

DNN DeepDDI80 The model predicts potential DDIs

using only the drug name and

structure, and can also be utilized to

predict drug-food interactions.

It breaks the limitation of not being

able to obtain detailed information

about drugs.

DNN used in the model needs to be

upgraded based on the training with

more data on drug pair interactions.

N https://bitbucket.org/

kaistsystemsbiology/deepddi

DDIMDL79 Four sub-models are constructed by

using each drug feature and a joint

DNN framework is used to combine

the sub-models to learn cross-

modality representations of drug-

drug pairs.

DDIMDL has taken advantage of

deep learning and diverse drug-

related features to predict DDI

events.

Ignoring the problem of unbalanced

datasets, and the fewer number of

some event interactions may lead to

underfitting of the model.

N https://github.com/YifanDengWHU/

DDIMDL

DANN-DDI68 An attention neural network is

designed to learn the

representations of drug-drug pairs,

which considers the different

contributions of different features

and their dimensions.

DANN-DDI can combine multiple

drug information to predict novel

drug-drug interactions and DDI-

associated events.

The imbalanced data and the noise

bring challenges, and for some

events without detailed descriptions

and proved interactions, the model

need the interpretability.

Y https://github.com/naodandandan/

DANN-DDI

BioChemDDI92 A computational method that

integrates multi-level information by

applying the self-attention

mechanism to efficiently integrates

biochemical and network features.

Graph collapse is innovatively

introduced to extract network

structure, and biochemical

information is utilized during the pre-

training process.

The more reasonable way of

selecting negative samples needs to

be considered to reduce the noise

from the imbalance in the original

dataset.

N http://120.77.11.78/BioChemDDI/

GNN BI-GNN93 The model treats the data as a bi-

level graph, which the highest level

represents the interactions between

biological entities, and each entity

itself is further expanded to its

intrinsic graph representation.

The transductive setting of drug

repurposing is considered and can

also be extended to other biological

link prediction tasks with different

interaction biological entities.

The introduction of extra features

may improve the performance of this

model.

N –

SSI-DDI82 The task of DDI prediction between

two drugs is decomposed into

identifying pairwise interactions

between their respective

substructures, and directly operating

on the raw molecular graph

representations of the drugs.

The model can learn substructures

directly from drug molecular graphs,

and can improve the ability of both

expert and non-expert users to

interpret the results of the prediction.

When the order of drugs of DDIs are

changed, the performance is

affected even during the training

phase; there is some noisy

information leaked in during the

substructure extraction phase, which

might have affected performance in

inductive setting.

N https://github.com/kanz76/SSI-DDI

(Continued on next page)
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Table 4. Continued

Technology Method Descriptions Advantages Limitations Validate Links

DSN-DDI94 The model iteratively learns modules

using local and global

representations, while learning drug

substructures from intra-view and

inter-view.

DSN-DDI shows the usefulness for

real-world DDI applications and can

also serve as a generalized

framework in the drug discovery

field.

The model’s ability to generalize to

new drugs in the inductive learning

setting needs to be further improved.

Y https://github.com/microsoft/Drug-

Interaction-Research/tree/DSN-DDI-

for-DDI-Prediction

Chen et al.95 Only the compressed structural

information extracted from

molecular graphs is utilized to

predict the DDI.

It achieves higher performance on

both small-scale and large-scale

datasets, and is more robust to the

extremely low pairwise similarity

information.

The graph convolution operator can

only operate on flat 2D molecular

graphs, which may lose some vital

information conveyed by 3D

structure.

N –

GCNMK62 Two DDI graph kernels are used for

the graph convolutional layers,

namely, increased DDI graph

consisting of ‘increased’-related

DDIs and a decreased DDI graph

consisting of ‘decreased’-related

DDIs.

Benefiting from the two graph

kernels, GCNMK model can be used

to predict DDIs effectively.

This model can’t identify DDIs

among isolated drugs.

Y –

RS-GCN86 It is a new relation-dependent

sampling model. The core of this

approach is to assign a learnable

probability to each relation type and

update it.

RS-GCN specifically provides an

advantage in scalability. It is also

shown that learning edge type

probabilities is indeed beneficial.

There is still room for further

improvement in predicting on graph

with complex relationships and less

dense.

N –

MIRACLE96 A novel unsupervised contrastive

learning component is proposed to

balance and integrate multi-view

information. It can capture inter-view

molecule structure and intra-view

interactions between molecules

simultaneously.

It is superior on small-scale, medium-

scale, and large-scale datasets.

The performance of the model

becomes gradually worse as the size

of the dataset gets larger and larger.

N https://github.com/isjakewong/

MIRACLE

MFFGNN97 A new feature extraction module is

proposed to capture the global

features for the molecular graph and

the local features for each atom of

the molecular graph.

MFFGNN can effectively fuse the

topological information in molecular

graphs, the interaction information

between drugs and the local

chemical context in SMILES

sequences.

The model cannot be extended to

multi-type DDI prediction tasks.

N https://github.com/

kaola111/mff

(Continued on next page)
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Table 4. Continued

Technology Method Descriptions Advantages Limitations Validate Links

AE Purkayastha

et al.98
The model incorporates different

combinations of feature embeddings

from the drug-target interaction

network and chemical structure.

The model uses a GAE to effectively

predict missing DDI links.

Lack of the exploration of other

representations of drugs, such as

textual description of the drugs and

side effect-based interaction network

representation of the drugs.

N –

Lee et al.87 Target similarity profiles (TSP), Gene

Ontology (GO) term similarity

profiles (GSP), as well as structural

similarity profiles (SSP) are

constructed and combined.

GSP and TSP increase the prediction

accuracy when using SSP alone, and

the proposed model identified a

number of novel DDIs that are

supported by medical databases or

existing researches.

The DDIs predicted by this model

and their clinical consequences are

mostly unvalidated in DrugBank, and

the experimental results can be

changed for different settings

including different dataset version or

experimental environment.

N –

DDI-MDAE61 A drug representation learning

method, which can learn unified drug

representations from multiple drug

feature networks simultaneously.

DDI-MDAE can predict potential

interactions for drugs with

incomplete features even faced with

large-scale, noisy and sparse data.

Only considering the structural

topologies of drug feature networks

is not enough to learn the more

comprehensive drug

representations.

N –

Ensemble NMDADNN99 NMDADNN extracts the unified drug

mapping features by integrating five

drug-related heterogeneous

information sources.

Five drug-related heterogeneous

information sources are effectively

integrated.

The quality of drug similarity matrix

may be improved by utilizing more

drug-related sources and suitable

similarity measures, this is one of its

limitations.

Y –

DPDDI58 GCN is utilized to extract the network

structure features of drugs from DDI

network, and DNN as a predictor.

This is an effective and robust

method proposed to predict

potential DDIs by utilizing the DDI

network information without

considering the drug properties.

Interactions with the new drugs

cannot be predicted.

N https://github.com/NWPU-903PR/

DPDDI

R2-DDI100 The framework encodes drugs and

relationship embeddings, and builds

the relation-aware refined features.

It significantly improves the DDI

prediction performance over

multiple real-world datasets and

settings, and shows better

generalization ability.

This model ignores the atom level of

the pair interaction between drugs,

the modeling of relation and the

relation-aware module is relatively

simple, the imbalanced data issue is

also not solved.

Y https://github.com/

linjc16/R2-DDI

MDF-SA-DDI83 The model combines two drugs in

four different ways and can predict

unobserved interactions between

new drugs.

Multi-source drug fusion is used to

obtain better prediction of DDIs.

There is room for further

improvement in the prediction of

interactions between new drugs.

N https://github.com/ShenggengLin/

MDF-SA-DDI

(Continued on next page)
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Table 4. Continued

Technology Method Descriptions Advantages Limitations Validate Links

AMDE54 AMDE encodes drug features from

multiple dimensions, including

information from both Simplified

Molecular-Input Line-Entry System

sequence and atomic graph of the

drug.

AMDE integrates drug features from

multiple dimensions to enhance the

effectiveness of downstream

prediction tasks.

The model can be further optimized

to incorporate more drug features.

Y https://github.com/wan-Ying-Z/

AMDE-master

SGRL-DDI84 SGRL-DDI model captures the task-

joint information by integrating

relation graph convolutional

networks with Balance and Status

patterns and predicts directed DDIs.

It utilizes the Balance theory and

Status theory to reveal

pharmacological interaction patterns

in the directed DDI network.

Only enhancive/depressive DDIs and

directed DDIs can be predicted, and

there is limitation in predicting

specific events.

Y https://github.com/NWPU-903PR/

SGRL-DDI

Interpretable CASTER69 A sequential pattern mining module

is developed by using labeled and

unlabeled chemical structure data.

The model improves generalizability

and interpretable prediction.

The model can be further improved

by extending it to chemical sub-

graph embedding and incorporating

metric learning.

N https://github.com/

kexinhuang12345/CASTER

STNN-DDI101 Mapping drugs into SSI space based

on a list of predefined substructures

with specific chemical meanings,

which allows STNN-DDI to perform

multiple types of DDI predictions in

both transductive and inductive

scenarios in a unified form with an

explicable manner.

The interpretability of the model is

improved, and it can also predict

interactions between new drugs.

The introduction of more features of

drugs may be helpful in improving

the performance.

N https://github.com/zsy-9/STNN-DDI

DeSIDE-DDI102 The model uses drug-induced gene

expression signatures followed by

gating and translating embedding.

It can increase DDI prediction

accuracy and provide model

interpretability.

The datasets are very sparse in terms

of side effect type, and the

identification of the side effect

mechanism remains challenging.

Y https://github.com/GIST-CSBL/

DeSIDE-DDI

DSIL-DDI103 Treat the substructure interactions as

domain-invariant representations of

DDIs. Moreover, a pluggable

substructure interaction module and

a practical loss function are

proposed.

DSIL-DDI improves the

generalization and interpretability of

DDI prediction models.

Effective predictions between new

drugs need to be considered.

N –

GGI-DDI104 A method that employs granular

computing to identify key

substructures, drugs are granulated

into a set of coarser granules.

It enhances the interpretability of DDI

predictions, and offers a consistent

framework for DDI prediction in both

transductive and inductive scenarios.

The rich knowledge contained in the

different biomedical entities

associated with drugs (e.g., proteins,

genes, and targets) is ignored.

N https://codeocean.com/

(Continued on next page)
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Table 4. Continued

Technology Method Descriptions Advantages Limitations Validate Links

KG Celebi et al.11 A simple disjoint cross-validation

scheme is proposed to evaluate DDI

predictions in the absence of known

DDIs for drugs.

Different KGE methods for DDIs

prediction are compared.

Because the embedding predictors

are constructed using the black-box

model, they are unable to provide

the mechanistic explanations for

predicted potential DDIs.

N https://github.com/rcelebi/

GraphEmbedding4DDI/

DDI-BLKG105 A method for discovering potential

DDIs through the generation of the

KG from disease-specific literatures.

It uses semantic relations connecting

different drugs in the literatures, as

features of DDI.

A qualitative analysis of the resulting

KG should be conducted, to gain

insights on errors generated by the

automatic extraction tools.

N https://github.com/kbogas/

DDIBLKG

BERTKG-DDI106 BERTKG-DDI combines drug

embeddings obtained from DDIs

and other biomedical entities with an

RC architecture based on domain-

specific BioBERT embeddings.

This method is in line with the new

direction of research of fusing various

information to DDI prediction.

It is also essential to explore other

external drug representation such as

chemical structure, textual

description in predicting DDI from

textual corpus.

N –

DL and KG Conv-LSTM71 Using KG integrates 12,000 drug

features from DrugBank,

PharmaGKB, and KEGG drugs,

embedding the nodes in the graph

using various embedding

approaches.

It can integrate multiple sources of

drugs and related data for

comprehensive information.

There is no interpretation for the

predicted DDIs.

N –

MDNN107 A two-pathway framework including

DKG-based pathway and

heterogeneous feature (HF)-based

pathway, which is designed to obtain

the multimodal representations of

drugs.

MDNN learns the representations

from multimodal data and mines the

inter-modality similarities from

multiple sources, also exploits the

topological structure information

and semantic relations with DKG.

The dataset imbalance problem is

ignored.

N –

KGNN55 KGNN is an end-to-end framework

that explores drugs’ topological

structures in knowledge graph.

KGNN aggregates all topological

neighborhood information received

locally to extract both high-order

structures and semantic relations.

The introduction of other drug

features might be helpful to improve

the prediction performance.

N https://github.com/xzenglab/KGNN

RANEDDI91 This is a relation-aware network

embedding model, which can

embed multi-relational graph.

By considering the multi-relational

information and relation-aware

network structure information

together, RANEDDI can learn the

more representative entity

embeddings.

It cannot predict DDIs effectively

when training sets are very sparse or

the drug has no neighbors, and

performs poorly on some low-

frequency DDI types.

N https://github.com/DongWenMin/

RANEDDI

(Continued on next page)
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Technology Method Descriptions Advantages Limitations Validate Links

AAE-FOR-KG108 A new knowledge graph embedding

framework is proposed by

introducing adversarial autoencoder

(AAE) based on Wasserstein

distances and Gumbel-Softmax

relaxation.

AAE can generate high-quality

negative samples, the Gumbel-

Softmax relaxation and the

Wasserstein distance help train the

embedding model steadily.

Compared to small dataset, it is not

suitable for large dataset which

contains complex relationship types.

N https://github.com/dyf0631/

AAE_FOR_KG

KG2ECapsule85 This model integrates a probability-

based negative sampling strategy to

generate high-quality negative

samples, and also utilizes a capsule

network for non-linear

transformation to enrich the

representations of entities under

specified relational space.

High-quality negative samples are

generated, which refrains from the

danger of introducing false negative.

Multi-hop is not considered, so the

receptive field of each entity cannot

be globally determine for accurate

learning. This is one of its limitations.

N https://github.com/Blair1213/

KG2ECapsule

MUFFIN52 A bi-level cross strategy is proposed

that includes cross- and scalar-level

components to fuse multi-modal

features well.

MUFFIN can jointly learn the drug

representations based on both the

drug-self structure information and

the KG with rich bio-medical

information.

The model lacks interpretability and

the problem of data redundancy is

also to be resolved.

N https://github.com/xzenglab/

MUFFIN

DDKG77 DDKG fully utilizes the information of

biomedical KGs, and can learn the

initial embeddings of drug nodes

from their attributes in the KG, while

considering both neighboring node

embeddings and triple facts.

Drug attributes are integrated into

the representation learning process

to improve performance of DDI

prediction.

It is difficult for DDKG to obtain the

global optimal solution.

N https://github.com/Blair1213/DDKG

BioDKG-DDI109 BioDKG-DDI integrates multi-feature

with biochemical information, and

predicts potential DDIs through an

attention machine with superior

performance.

It is a robust, yet simple method and

can be used as a benefic supplement

to the experimental process.

Transportability can be further

improved by changing the way of

extracting the feature of drug

functional similarity.

N –

DeepLGF110 DeepLGF is an inductive model that

predicts DDIs through aggregating

local-global multi-information based

on the BKG.

This model is proposed to fully

exploit biomedical knowledge graph

(BKG) fusing local-global

information, which improves the

performance of DDIs prediction.

Random selection of negative

samples can bring certain noise.

Moreover, drug sequences as CS

information are too simple and may

only provide limited one-

dimensional information.

N https://github.com/MrPhil/

DeepLGF
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3WDDI56 A method based on three-way

decision, which combines

knowledge graph embedding as

supplementary features to enhance

DDI prediction.

Delay decision is made for objects in

the boundary region by integrating

KG embedding feature, and

improves the accuracy of decision-

making.

Not considering diverse drug

features and multi-omics data may

introduce some limitations to the

model.

N –

DGAT-DDI57 A directed graph attention network

to predict asymmetric DDIs, which

learns embeddings of the source

roles, the target roles and the self-

roles of drugs.

DGAT-DDI is the first approach for

predicting asymmetric interactions

among drugs.

It cannot accommodate multitype

asymmetric interactions, which is one

of its limitations.

Y https://github.com/F-windyy/

DGATDDI

MCFF-MTDDI81 This model integrates the extra label

information into KG-based multi-

typed DDI prediction, and

innovatively proposes a novel KG

feature learning method and a State

Encoder.

By using multi-channel feature

fusion, biomedical KG-based

features, extra label information and

drug chemical structures are fused

more effectively.

Extremely unbalanced data may lead

to bad prediction outcomes.

N https://github.com/ChendiHan111/

MCFF-MTDDI

Note: ‘Validate’ represents whether the method has been externally validated on independent dataset or in real clinical settings, ‘Y’ represents yes, and ‘N’ represents no, ‘-’ represents no clear explanation in

the original literature.
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Figure 2. The computationalmethods for predicting DDIs are classified into threemain groups: deep learning-basedmodels, KG-basedmodels, models

which combine deep learning and KG

In particular, DL-based methods are categorized based on their underlying deep learning models.
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DL-based methods

DNN-based methods

In the real world, it is generally not possible to obtain all the detailed drug information. In order to ease these limitations, Ryu et al.80 proposed

DeepDDI which only used drug names and structure information as inputs. DeepDDI generated a structure similarity profile (SSP) for each

drug, obtained the structurel features of the drug, and then merged two SSPs of a drug pair, input them to DNN for prediction. DeepDDI

could provide important information about drug prescriptions and even dietary recommendations when taking certain drugs, as well as

guidelines during drug development. Although these studies have made significant contributions to DDI prediction, considering more fea-

tures is necessary for comprehensive study and better performances.

To effectively integrate different features of drugs, Deng et al.79 proposed a multi-modal deep learning framework named

DDIMDL. Four drug features including chemical substructure, target, enzyme and pathway, were effectively utilized and each type

of these features was fed into a sub-model with a multilayer neural network, and then were combined using a joint DNN framework

to learn cross-modal representations of drug pairs for DDI events prediction. Liu et al.68 proposed DANN-DDI that utilized SDNE for

learning drug nodes embeddings from five drug-related feature networks, connected the learned drug embeddings and neural

network to represent drug pairs, and then used DNN to predict DDI. However, it is difficult for these methods to preserve

higher-order structure, and they might tend to obtain local optimal solutions. Moreover, integrating drug features without the atten-

tion machine may lead to limited prediction performance. Attention mechanism can be used as a resource allocation scheme, which

is the main means to solve the problem of information overload.127 Ren et al.92 used attention mechanism to integrate drug features,

and proposed BioChemDDI computational method to construct highly representative integrated feature descriptors, which were

input to the DNN for DDI prediction. The experimental results showed the effectiveness of the attention mechanism and also utilized

the deep network structure information.

GNN-based methods

To overcome the current limitations of using single drug compound structures or using only DDI data, Bai et al.93 proposed BI-GNN which

constructed a bi-level graph based on DDIs, in which the highest level contained the interaction graph of DDIs and the representation graphs

of entities. The lower level representation graph neural network generated vector representations for each representation graph. The higher

level interaction graph neural network further propagated information from the lower level graph embeddings to neighboring nodes in the

interaction graph, then provided the final graph representations to a fully connected network to obtain a final link prediction score. This

design of features captured the whole molecular structure of drugs. In fact, DDI usually only depend on a few substructures. Nyamabo

et al.82 have proposed a DDI prediction method named SSI-DDI based on the assumption that DDI is actually caused by chemical substruc-

ture-substructure interactions. SSI-DDI used the GAT layer with shared weights to extract the raw molecular graph representations of drugs

and extract substructure information. The task of DDI prediction was decomposed into substructure-substructure interactions prediction. Li

et al.94 proposed DSN-DDI based on GNN, which iteratively learned drug substructures from the single drug(intra-view) and the drug
iScience 27, 109148, March 15, 2024 15



Figure 3. The process of using DNN for DDI prediction

The feature vectors of drug a and b are first combined and then fed into the DNN to predict DDI.
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pair(inter-view). Each GNN had its own unique receptive field, each one aggregated information from neighboring nodes, which resulted in

updating the nodes and extracting the substructures.

Chen et al.95 utilized GCN to convert the molecular data with irregular structure into the correspondingmolecular data in low dimensional

vector spaces. Then, the learned embedding vectors were used to predict whether there has DDI between two drugs or DDI type. Wang

et al.62 proposed a multi-kernel graph convolutional network (GCNMK). GCNMK used two graph cores as the graph convolution layers, in

which an increased DDI graph and a decreased DDI graph were constructed from the ‘increase’-related and ‘decrease’-related DDIs. The

two graphs and the drug feature matrices were fed into the first GCN layer composed of two GCN blocks, then the low-dimensional repre-

sentation vectors of drugs were generated using the second layer composed of one GCN block. Finally, the two drug feature vectors were

concatenated to form a DDI vector, which were then inputted into a block with three fully connected layers to predict potential DDIs. Feeney

et al.86 proposed RS-GCN to model the importance of neighborhood sampling relationship types in the network, in which each relationship
Figure 4. The widely used GNN frameworks

(A) GNN; (B) GCN; (C) GAT.
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Figure 5. Reconstructing SMILES of a drug using AE

AE involves two processes: encoder and decoder. The encoder compresses the input high-dimensional data into low-dimensional data, while the decoder

returns the low-dimensional data into high-dimensional data, and the goal is sample reconstruction.
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type was assigned a learning probability and updated through a reinforcing-basedmethod. The results showed that this model can learn the

right balance: relation-type probabilities that reflect both frequency and importance, and also offered some kind of explanation. However,

these graph-based studies only focus on a single view of the drug, the combination of multi-view information inside the DDI network is often

ignored.

GCN is also a promising way to handle multiple views, Wang et al.96 proposed MIRACLE to simultaneously capture the relationships be-

tween molecular structures across views and the molecular-molecular interactions within views. MIRACLE regarded the DDI network as a

multi-view graph in which each node represented an instance of a drug molecule graph. In the learning stage, GCN was utilized to encode

DDIs, while the key aware attention information propagationmethodwas used to capture the drugmolecular structure information. Although

the models mentioned above have taken into account the structure, sequence or interaction information of the drugs, while they neglect the

synergistic effects between them. He et al.97 proposed MFFGNN to efficiently integrate topological information in molecular graphs, DDIs

information and local chemical contexts in SMILES sequences. In MFFGNN, the bi-directional gate recurrent unit extracted local chemical

context information from SMILES sequences, while the graph interactions network with graph wrap unit extracted the topological structure

features of the drugs from the given molecular graphs. Finally, GCN fused the intra-drug features and external DDI features to update the

drug representations.

AE-based methods

Purkayastha et al.98 proposed an effective method to fuse multiple drug features to predict DDIs. The proposed model leveraged the drug-

target interaction (DTI) network to learn drug embeddings. In order to obtain drug representations from rich chemical structures, a variational

autoencoder was also constructed. Finally, the obtained different combinations of feature embeddings of the drugs were incorporated and

input into a Graph Auto Encoder to predict missing DDI links in the network. Lee et al.87 proposed a DDI prediction method based on con-

structed Target Similarity Profile (TSP), Gene Ontology (GO), Term Similarity Profile (GSP) as well as the SSP. An autoencoder was trained to

minimize the difference between inputs and outputs, while training it to minimize the prediction error of DDI labels. However, the relation-

ships between these biomedical events are usually non-linear across all types of drug features. Additionally, some datasets may lack labels or

contain noise, which can potentially have adverse effects on prediction models.
Figure 6. Updating embedding of node D1 in KG

After initializing the embedding of D1, the first-order neighborhood information is recursively propagated and aggregated, the same operation to aggregate the

second-order neighborhood information, and then to update the embedding of node D1.
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Figure 7. An example of a model that utilizes both GCN and DNN
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In order to predict DDIs from large-scale, noisy and sparse data, Zhang et al.61 proposed a multi-modal deep AE-based method named

DDI-MDAE to learn drug representations. This computational method first utilized an AE to learn uniform drug representations frommultiple

drug feature networks simultaneously. Next, four operators were applied to the learned drug embeddings to represent drug-drug pairs.

Finally, a random forest model was trained using the representations to predict DDIs.

Multi-neural network ensemble-based methods

The above proposed prediction methods have achieved excellent performance when using one type of neural network alone. To utilize the

advantages of various deep learning models, researchers have begun to combine different neural networks to predict potential DDIs, thus

developingmany high-performance and high-robust computingmethods. Figure 7 shows an example of using bothGCNandDNN, theGCN

extracts the features from the DDI network and inputs them into the DNN network for prediction.

Yan et al.99 proposed NMDADNN, which constructed similarity networks by integrating five heterogeneous sources of drug-related in-

formation, after unifying these similarities with AE, a DNN was constructed to predict DDI. Feng et al.58 proposed DPDDI to obtain

network structure features of drugs. In DPDDI, GCN was utilized to capture the topological relationships among drugs in the DDI network

and extract their network structural features. DNN acted as a predictor to associate the potential feature vectors with the feature vectors of

the corresponding drug pairs to predict DDIs. Lin et al.100 proposed a novel DDI prediction framework(R2-DDI). After encoding drugs

through DeeperGCN,128 the feature refinement module was constructed to obtain mutually aware drugs. Furthermore, the relation em-

beddings could be updated by incorporating the drug information. In this way, the DDI prediction can be improved with more informative

and distinguishable features. Finally, these refined features for drugs and relation were utilized to train and predict the possibility of DDI.

However, the feature fusion methods utilized in these models are simple, and more effective fusion methods can be designed to improve

the performance.

Latent feature fusion via Siamese network is a useful method, Lin et al.83 proposed MDF-SA-DDI computational method, which based on

multi-source drug fusion and multi-source feature fusion with self-attentive mechanism in order to predict interaction events between two

drugs. After combining two drugs in four different ways, the combined drug feature representations were fed into four different drug fusion

networks (Siamese network, convolutional neural network, and two autoencoders) to obtain the potential feature vectors of the drug pairs,

then fused with potential features using a transformation block with self-attentive mechanism. The multi-source drug fusion can provide

diverse information from different views to deep learning models, and accurately predict DDI events. In addition to this method of encoding

drug features, there have also been somemodels that directly encode SMILES of drugs. Pang et al.54 proposed attention-based multidimen-

sional feature encoder method (AMDE) that effectively utilized this information to enhance the accuracy of DDI prediction. AMDE utilized the

MPAN model as the graphic encoder to process the atomic graphs of drugs and generate 2D atomic graph feature vectors. Meanwhile, a

sequence encoder was used to process the sequence data generated by the SMILES to generate 1D sequence feature vectors. Finally, all

feature vectors were fed into multidimensional decoder to predict whether there is an interaction between two drugs.

Although these methods have achieved inspiring results, they neglected the pharmacological changes that DDI could induce enhance-

ment and inhibition, as well as the different pharmacological roles of two drugs in an interaction. Therefore, Feng et al.84 proposed a new

graph representation learningmodel SGRL-DDI. This model leveraged Balance theory and Status theory from social networks to characterize

pharmacological patterns of DDI, and organizedDDI entries into a signed anddirected network that reflects the relational semantics between

drugs. Two-layer embedding and an extra enhancer based on social theory were utilized to represent drugs in DDIs network, which each

embedding layer was constructed by amulti-relation GNNand a two-layerMLP. Finally, the concatenation vectors of two drug latent features

are fed into two dense DNNs to achieve two tasks of predicting enhancive/depressive DDIs and predicting the directed DDIs.
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Deep learning models with interpretability

Although DL models have shown good performance for DDIs prediction, they usually need a large number of parameters, which are

difficult to interpret.129 DL prediction models with good interpretability can not only help researchers understand the trigger mecha-

nism of DDIs, but also ensure safer medication, so it is especially crucial to improve the interpretability of deep learning models. In

recent years, more and more models have begun to focus on this issue. In this section, we review models that consider the problem

of non-interpretability of deep learning.

Huang et al.69 proposed a computational method named CASTER which utilized a dictionary learning module to help researchers to un-

derstand how this model makes prediction and identify which sub-structures can possibly lead to the interaction. After generating frequent

sub-structures for the input drug SMILES sequences, CASTER generated a functional representation for each frequent sub-structure, then

exploited the encoder to generate a matrix of latent feature vectors, and projected the resulting potential vector into the subspace defined

by thematrix. The basis vector in the matrix was associated with a frequent molecular sub-graph, and its corresponding projection coefficient

revealed the statistical importance of having the sub-graph in themolecular graphs of the drug pairs so that they would interact, thus explain-

ing the rationality behind CASTER’s predictions. Yu et al.101 proposed a novel substructure-aware tensor neural network model STNN-DDI,

which mapped drugs into an SSI space based on a list of predefined substructures with specific chemical meanings, thereby improving the

interpretability of the model. STNN-DDI characterized the SSI space by using the learned substructure 3 substructure 3 interaction tensor

(ST), which was a 3-D tensor and expanded by a series of rank-one tensors. It represented the occurring probability of drug-drug pair as the

sum of the occurring probability of the substructures included in this drug pair, and the types of SSI were defined as the same as the corre-

sponding types of DDI. Potential DDIs were obtained by learning the probability of each SSI under a list of predefined chemical substructures.

This form improved interpretability of the model, because both known drugs and new drugs are mapped into a common SSI space nomatter

whether a drug has an interaction or not. Kim et al.102 proposed DeSIDE-DDI, which can provide the interpretable expression level for DDI

prediction with drug-induced gene expression signatures. Specifically speaking, the model engineered dynamic drug features using a gating

mechanism to mimic drug co-administration effects by imposing attention to important genes. The concept of translating embeddings was

also introduced, which considered a side effect as a relationship between two drugs and applied the margin-based loss function, implying

positive pairs of drug combinations are positioned closely on the given side effect space. Via using drug-induced gene expression signatures

followed by gating and translating embedding can provide model interpretability and increase the accuracy of the model.

Tang et al.103 proposed DSIL-DDI, a pluggable substructure interaction module, which not only considered the fine-grained properties of

substructures, but also introduced the attentionmechanism to recognize which substructure interaction representations contributed more to

the DDI representation. The substructure representations of the input drugs extracted by GNN were regarded as the property spectrum of

the substructure, which represented the extent to which chemical substructure responds to different properties. In the process of using Ha-

damard product tomodel the fine-grained attribute interactions, attention weights were introduced to help observe which substructure inter-

action representations contributesmore to the DDI representation. Furthermore, experiments were also performed to demonstrate the inter-

pretability of DSIL-DDI. Yu et al.104 proposed GGI-DDI, which utilized granular computing to extract key subgraphs between drug pairs and

enhance the interpretability of DDI predictionmodels, the key chemical substructures were defined as coarser granules. In detail, after aggre-

gating the node information in the atomic graphs of drugs using GINE, the attention mechanism and bond information were fused to obtain

the embedding of nodes and subgraphs for determining the importance of nodes. Then, a local and global score function were introduced to

evaluate the local significance and long-range dependencies the embedding of each subgraph, respectively, to help identify the key sub-

graphs related to drugs and were reconstructed to create new graphs. Coarser particles (key chemical substructures) were identified via mul-

tiple granulations on graphs of drug pairs, and a cross-attention mechanism was employed to compute the attention score for each coarser

granule, thereby obtaining their final representation. This interpretability provided by GGI-DDI can guide the advancement of novel drug

development and poly-drug therapy strategies.

KG-based methods

In recent years, biological data and knowledge bases have been increasingly built on Semantic Web technologies.130 Many bioinformatics

databases have started to use Semantic Web-related technologies and use these data as Linked Open Data (LOD).131 By using LOD data,

Celebi et al.11 proposed a model to evaluate DDI in the absence of a known DDI. Different knowledge graph embedding methods were

used to extract drug feature vectors from KG, such as RDF2Vec, TransE, and TransD. Finally, some common classifiers were utilized to predict

DDIs. Bougiatiotis et al.105 proposed DDI-BLKG, predicted DDIs by generating disease-specific KG from biomedical publications andmanu-

ally curated databases. The human-curated drug databasewas utilized to train a classifier that identifies patterns of interactions between drug

pairs. The predictive potential and usefulness of the method were demonstrated through a small-scale qualitative evaluation. Based on rep-

resentation learning, Mondal et al.106 proposed a DDI prediction method named BERTKG-DDI, which has used a knowledge graph that con-

tains target-target, drug-drug, drug-disease, disease-target, disease-target interactions, and enhanced entity representations to train the

relational classification model.

Combination of DL with KG

Recent studies have demonstrated the effectiveness of deep learning models in extracting node features from KG and achieved remarkable

results. When using deep learning for DDI prediction, it is common to make predictions based on the features of drug nodes. On the other

hand, KG focuses on prediction based on features of drug nodes, neighbor nodes and relations. As a result, mixing these approaches can
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compliment each other, and offer richer information. Additionally, the labels or feature information provided by KG can also enhance the

performance of deep learning models. Thus, the integration of DL and KG offers opportunities for improvement in DDI prediction tasks.

Karim et al.71 have proposed a novel DDI prediction method, Conv-LSTM, which based on a KG including drug-related information infor-

mation from KEGG, DrugBank, TWOSIDES and the literatures. The method utilized RDF2Vec, SimpleIE, TransE, KGloVe, CrossE and PBG for

the KG embeddings. Then input these embeddings into CNN-LSTM layer, where the CNN extracted local relationship values in the drug

features, and the LSTM captured the overall relationship from the features extracted by the CNN. Nevertheless, Conv-LSTM has limitations

on obtaining the rich features of drugs from structural information and semantic relations. Furthermore, it has not considered the drug multi-

modal data coherence and complementarity together. To effectively assist the joint representation learning of multi-modal data related to

DDI events, Lyu et al.107 proposed amulti-modal deep neural network (MDNN) for DDI events prediction. A dual-path framework containing a

drug knowledge graph (DKG)-based pathway and a heterogeneous feature (HF)-based pathway was proposed to extract structural informa-

tion and semantic relations from the DKG to learn drug representations. Moreover, a multi-modal fusion neural layer was utilized to explore

the complementarity among multi-modal representations of drugs.

But one neglected deficiency is that model DDI as an independent data sample and do not consider their multiple related correlations in

knowledge graph. Moreover, directly learning the latent embedding of nodes in KG could also bring some limitations. Therefore, Lin et al.55

proposed KGNN to obtain rich neighborhood information for each entity in KG. The central idea of KGNN was to consider both high-order

structures and semantic relations, by using GNN to encode the drugs and topological neighborhood information to distributed representa-

tions, which facilitated the prediction of DDI events. Nevertheless, Yu et al.91 found that both the multi-relational information and network

structure information can affect the learning of entity embeddings, thereby proposed a relation-aware network embedding model

(RANEDDI) to predict potential DDIs. After embedding entities and relations into the vector space using RotatE, a relation-aware information

propagation mechanism was utilized to extract the relation-aware network structure information of the entities by propagating their neigh-

bor’s information under different relations. Finally, DNN acted as the predictor to predict the probability of the certain interaction between

drug pairs. Experiments have also demonstrated its robust performance even in the case of a scarcity of labeled DDIs.

Several deep learning approaches have been proposed to embedDrug KnowledgeGraphs (DKGs) for predicting unknownDDIs. Training

a KGembeddingmodels requires negative samples, butmost embeddingmodels have been generating negative triplets via a uniform nega-

tive sampling strategy, and the obtained samples are too simple to train the model effectively. Thus Dai et al.108 proposed AAE-FOR-KG, a

knowledge graph embedding framework. AAE-FOR-KG utilized adversarial autoencoder to generate high-quality negative samples. Based

on positive and negative triples, discriminator could learn drugs and interaction embeddings effectively. Compared to other traditional

knowledge graph embedding methods, it has better performance. Su et al.85 also proposed KG2ECapsule, which generated high-quality

negative samples based on a probability negative sampling strategy. KG2ECapsule constructed a Graph-to-Embedding Layer, which could

recursively propagate embeddings from the neighbors of the entity as well as the relations between them. In addition, a two-layer capsule

network has been innovatively integrated to obtain entity representations in a non-linear form under specified relational space. Finally, these

entity representations were utilized to predict the DDI. Experiments also demonstrated the effectiveness of probability-based sampling strat-

egy and non-linear transformations.

It has been proved that the performance of DDI prediction can be improved by considering KGwith rich bio-medical information and drug

molecular structure information or SMILES sequence simultaneously. Chen et al.52 proposed amulti-scale feature fusion deep learningmodel

named MUFFIN. MUFFIN utilized MPNN to extract molecular structure features from SMILES, and TransE to extract semantic features from

KG. Then, crossed these features to learn local and global features using CNN and flattening operations. Meanwhile, the fine-grained inter-

action features between two different features were obtained using the element product method, the obtained features were stitched

together for prediction. Su et al.77 proposed DDKG, which learned the initial embeddings of drugs from the corresponding attributes of

the nodes in KG using an encoder-decoder layer. To learn accurate global representations of drug nodes, the model recursively propagated

and aggregated the first-order neighborhood information along the top-ranked network paths which determined by the embeddings of

neighbor nodes and triples. Finally, estimated the interaction probability for pairwise drugs with their respective representations.

Considering some unavailable information can lead to inaccuracy of drug features extraction, Ren et al.109 proposed BioDKG-DDI, which

used Mol2Context-vec to extract molecular features, combined ComplEx-DURA with DKG to obtain drug global features, and incorporated

drug functional similarity features as supplementary information. Such approach enabled the combination of drug molecular features, drug

global association information and drug functional similarity features, and then the features were integrated and input to DNN for prediction.

Moreover, Ren et al.110 proposed DeepLGF, which utilized the BFGNN model to construct a heterogeneous network of drugs to obtain the

bio-local information, learned the global feature information of BKG by the KGE method of ComplEx, finally obtained a stable and effective

model to predict potential DDI after integration. Nevertheless, this model relies on obtaining detailed and complete information about the

drug at once. In fact, only the SMILES sequences of the drugs are easy to obtain, while others information needed further experiments to

discover. The uncertainty and incompleteness brought about by drug information might hinder the accuracy of DDI prediction. Three-way

decision-making can solve this problem. Thus Hao et al.56 proposed 3WDDI based on the computational method of three-way decisionmak-

ing.132 After embedding KG using ComplEx, CNNwas utilized as the decision function to classify the drug pairs into positive region, negative

region and boundary region based on the chemical structure features of the drugs using SCNN. By combining the knowledge graph embed-

ding features, the robustness of the decision could be improved by delay decision for objects in the boundary region.

Many biological experiments have proved pharmacological asymmetry betweenDDIs, but most of the abovemodels did not consider this

situation. Feng et al.57 designed DGAT-DDI model for asymmetric DDIs prediction by learning the embeddings of source-role, target-role,
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Table 5. Confusion matrix
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Predict

Positive Negative

Positive TP FN

Negative FP TN
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and self-role of drugs. The method viewed the knowledge graph as directed graph and used GAT to aggregate information of entities and

neighboring nodes to generate source and target embeddings, while using MLP to obtain self-role embeddings. After aligning these em-

beddings, asymmetric DDIs were predicted. However, extra label information has not yet been applied to the task of multi-label DDI predic-

tion. To overcome the problem,Han et al.81 proposed amulti-channel feature fusionmodelMCFF-MTDDI, which utilized drug chemical struc-

ture features, drug pairs’ extra label features, and KG features of drugs. For the target drug pair, after extracting the structural feature vector,

the three types of KG representations and the extra label vector,MCFF-MTDDI utilized a state encoder to fuse these three KG representations

vectors and obtain two KG fusion representations. In addition, amulti-channel feature fusion framework based onGRUwas established, which

comprehensively integrated the information of two KG feature channels, structural feature channels, and additional label feature channels.

Finally, multi-class prediction and multi-label DDIs prediction were performed respectively.
EXPERIMENTS AND COMPARISON

Evaluation metrics

In general, the performance ofmodel is usually evaluated through experiments, therefore, the learning ability of themodel needs to be tested

by using a test set. Cross-validation (CV) is commonly utilized to train models, and the basic idea is to split the original data into the train set

and the test set. The train set for training themodel and the test set for evaluating the performance of themodel. Themost popular method is

the K-CV, which the original data is divided into K subsets, one of them is used as the test set while K-1 subsets as the train set. The process is

then repeated K times, with each subset being used as the test set once. The final performance score of the model is obtained by taking the

average of the evaluation scores obtained during these iterations. Normally, the values of K are set to 5 and 10.

Evaluating the performance of a model requires not only feasible experimental methods of evaluation, but also evaluationmetrics to mea-

sure the generalization ability of the model. In the classification task, the samples can be grouped into true positive (TP), false positive (FP),

true negative (TN) and false negative (FN) based on the true and prediction labels, which are referred to as ‘confusion matrix’, as shown in

Table 5. Accuracy, precision, recall and F1 are commonly used evaluation metrics in classification problems. Accuracy means the number

of correctly classified samples as a proportion of the total number of samples, and precision means the proportion of samples classified

as TP among all positive samples. The calculation formulas are as follows.

Accuracy =
TP+TN

TP+FP+FN+TN
(Equation 1)
Precision =
TP

TP+FP
(Equation 2)
Recall =
TP

TP+FN
(Equation 3)
F1 =
23precision3 recall

precision+recall
(Equation 4)

Receiver operating characteristic (ROC), by setting out several different continuous values of the continuous variables, thereby calculating

a series of true positive rate and false positive case rate, and plotted as curves for the vertical and horizontal axes respectively, the larger the

area under the curve, the higher the accuracy rate is indicated, and the area under the curve is also calledAUC. Precision-recall curve (PR), with

Recall on the horizontal axis and Precision on the vertical axis, showsmodel performance at different classification thresholds, AUPR is the area

under PR curve. The values of AUC and AUPR range from 0 to 1, and larger values indicate better model performance.
Experiment results

We compare the models in binary classification prediction, multi-class prediction, and multi-label prediction tasks, respectively. The exper-

iment results are shown in Figures 8, 9, and 10.

Figure 8 shows the comparison results of different models under binary classification task on six benchmark datasets. The performance of

DDIs prediction achieved by these models were all measured in terms of ACC, AUC, AUPR and F1. For Dm_l4, we can observe that GNN-

based method SSI-DDI achieves the highest AUC of 96.14. MFFGNN (AUPR = 96.81, F1 = 92.54), which also belongs to GNN-based model,
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Figure 8. Performance evaluation under binary classification task
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achieves the highest AUPR and F1, respectively. This may be attributed to the fact that the features from drug sequences and molecular

graphs are integrated and comprehensively learned, while some DNN-based models (e.g., DeepDDI and DDIMDL) only consider the struc-

tural information and features of drugs. Interestingly, for Db_3, AMDE, which based on the integration of multi-neural networks shows similar

AUC and ACC as KGNN that belongs to the models of combine DL and KG. KGNN and 3WDDI, which belong to the combined DL and KG

models performwell and obtain the best AUPR andAUCon three different datasets. KGNNobtains AUCof 99.12 andAUPRof 98.92 onDb_4,

also obtains AUC of 99.1 and AUPR of 98.9 on Db_6. For Db_5, the AUC and AUPR result of 3WDDI is 95.82 and 96.14, respectively.

For multi-class prediction task, we can observe from Figure 9 that MUFFIN (F1 = 94.95, ACC = 96.48, Precision = 95.68, Recall = 94.82) and

MCFF-MTDDI (AUPR = 97.57, AUC = 99.81, ACC = 97.74), the models combining DL and KG, achieve the best performance on Dm_c2 and

Dm_c3, respectively. The achievement of high performance means that the combination of KG-based features and drug features or fusion

with additional information is feasible. For Dm_c1, the AUPR and AUC of MDF-SA-DDI that based onmulti-neural network ensemble achieve

the best performance, 97.37 and 99.89, respectively. The success of MDF-SA-DDI may be attributed to the utilization of a novel approach to

fuse the information of drug pairs, i.e., four different drug fusion networks are utilized to obtain latent feature vectors of the drug pairs.

Furthermore, we discover that the DNN-based model DeepDDI has the same AUC as the AE-based model Lee et al.87 on Dm_c1, but the

latter has the better performance in general.

Actually, multi-label prediction is more difficult than binary and multi-class prediction. From Figure 10, we can observe that MUFFIN,

KG2ECapsule and MCFF-MTDDI, which belong to the combination of DL and KG methods achieve the best performance on three data-

sets, respectively. For Dm_l2, the AUC and AUPR of KG2ECapsule respectively increased by 23.03% and 31.16% compared to KGNN,

which is a surprising improvement. The success of KG2ECapsule may be attributed to modeling the triplets and integrating the relations

of edges into embedding. On Dm_l3, the AUC of MCFF-MTDDI is 93.15, and AUPR is 74.36, which demonstrate the importance of using

extra label information of drug pairs. It is worth mentioning that DL and KG methods are more often used in multi-label prediction task

with better results.
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Figure 9. Performance evaluation under multi-class task
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CHALLENGES AND OPPORTUNITIES

Although excellent results have been achieved using deep learning and knowledge graph for DDI prediction, there are still some issues that

need to be resolved, which are summarized as follows.

(1) Asymmetric drug-drug interactions prediction. In the field of DDI prediction, relevant computational methods are well developed,

and it is difficult to further improve. In most computational methods related to DDIs prediction, such as the model using DKG as input,

the relationships in DKG are undirected, and the drugs in the triples are symmetric, but that doesn’t fit the real world. When Wicha

et al.133 evaluated their model using a dataset of 200 combination experiments in Saccharomyces cerevisiae, they found that 67%

of the interactions were monodirectional. In addition, asymmetric DDIs prediction can also help patients determine the order of
Figure 10. Performance evaluation under multi-label task
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medication, which greatly affects the effectiveness of medication. Bible et al.134 demonstrated that for paclitaxel, cytarabine, topote-

can, doxorubicin and etoposide, synergy was more pronounced when the agents were administered before flavopiridol rather than

concomitant with or following flavopiridol. Therefore, in future researches, we can turn our attention to asymmetric DDIs prediction.

(2) High-order drug-drug interactions prediction. The vast majority of current methods have been developed to predict DDI, and few

methods predict interactions among multiple drugs. Ning et al.135 proposed a purely data-driven fashion for representing, discov-

ering, quantifying, and visualizing high-order DDIs. Peng et al.136 proposed a D3I model for predicting high-order DDI based on

deep learning techniques. There is still much room for development in predicting high-order DDIs, which should receive more atten-

tion in future research.

(3) Datasets. While utilizing a large amount of complex data can provide the model with rich drug features, it can also introduce a sig-

nificant level of noise. In addition, many datasets only contain known drug pairs with interactions, lacking validated drug pairs without

known interactions. These issues create excessive deviation between experimental results and actual values, which significantly re-

duces the accuracy of the experiment. Therefore, constructing high-quality and available negative samples can further improve the

accuracy of the DDI prediction methods.

DISCUSSION

It’s important to discuss the clinical relevance and practical applications of DDI prediction methods. How to translate these predictions into

actionable insights for healthcare providers and patients is a very important task. Therefore, we can do the following.

(1) The computational model is applied to various drug-drug pairs to predict whether and what kind of interactions exist between these

drug-drug pairs, to generate sentences describing relevant interactions, which suggest specific pharmacological effects (e.g., ‘‘the

decreased therapeutic efficacy’’ and ‘‘the increased anticoagulant activities’’) in addition to ‘‘the increased risk or severity of bleeding’’.

(2) To validate the accuracy of themodel’s predictions, outputs need to be comparedwith the consistent descriptions on theDDIs present

in the Drugs.com (https://www.drugs.com/), which provides additional information regarding DDIs.

(3) Except the drug pairs examined above by comparing with the information presented in the Drugs.com, there may be drug pairs for

which ADEs possible causal mechanisms are not available elsewhere. Therefore, the output sentences describing additional DDI types

for the drug pairs with the reported ADEs can serve as the likely causal mechanisms of DDIs for further validation.
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