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Opioid use disorder is a psychological condition that affects over 200,000 people per

year in the U.S., causing the Centers for Disease Control and Prevention to label

the crisis as a rapidly spreading public health epidemic. The behavioral relationship

between opioid exposure and development of opioid use disorder (OUD) varies greatly

between individuals, implying existence of sup-populations with varying degrees of

opioid vulnerability. However, effective pre-clinical identification of these sub-populations

remains challenging due to the complex multivariate measurements employed in

animal models of OUD. In this study, we propose a novel non-linear network-based

data analysis workflow that employs seven behavioral traits to identify opioid use

sub-populations and assesses contributions of behavioral variables to opioid vulnerability

and resiliency. Through this analysis workflow we determined how behavioral variables

across heroin taking, refraining and seeking interact with one another to identify

potentially heroin resilient and vulnerable behavioral sub-populations. Data were collected

from over 400 heterogeneous stock rats in two geographically distinct locations.

Rats underwent heroin self-administration training, followed by a progressive ratio

and heroin-primed reinstatement test. Next, rats underwent extinction training and a

cue-induced reinstatement test. To enter the analysis workflow, we integrated data from

different cohorts of rats and removed possible batch effects. We then constructed a

rat-rat similarity network based on their behavioral patterns and implemented community

detection on this similarity network using a Bayesian degree-corrected stochastic block

model to uncover sub-populations of rats with differing levels of opioid vulnerability.

We identified three statistically distinct clusters corresponding to distinct behavioral

sub-populations, vulnerable, resilient and intermediate for heroin use, refraining and

seeking. We implement this analysis workflow as an open source R package,

named mlsbm.
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INTRODUCTION

Opioid addiction is a chronic neuropsychiatric disorder
characterized by compulsive drug taking and relapse, despite
efforts to remain abstinent. Opioid use disorder (OUD) has
risen substantially in the United States over the past two
decades, for both prescription drugs (1), as well as illicit opioids,
notably heroin (2). The parallel rise in both prescription and
illicit opioid use and abuse are related to one another, as a
majority of heroin users report using prescription opioids
prior to heroin use (2–4). Death due to an overdose is also
positively correlated between these two opioid classes (2),
posing an additional obstacle in addressing the current opioid
epidemic. Furthermore, heroin use since 2000 has increased in

all demographics, regardless of age, sex or socio-economic status
(2, 4), suggesting factors independent of these are contributing
to the escalation in OUD. This ubiquitous increase in heroin
use and dependence across disparate populations highlights the
need to assess how individual variation in multiple behavioral

traits may be interacting to contribute to an OUD resilient vs.
vulnerable phenotype.

OUD remains such a critical social and personal problem in
part because we are limited by current animal models that predict

neurological pathologies for OUD. Though animal models
capturing individual variation in addiction-related behaviors
have greatly contributed to our understanding of drug addiction,
most focus on one or two behavioral phenotypes, then apply
the power of animal experimentation to uncover circuitry
and cellular mechanisms for individual phenotypes. While this
approach has greatly enhanced our understanding of how brain
circuits and cell signaling mechanisms contribute to specific
behavioral phenotypes, OUD is a disorder containing many
behavioral traits that may contribute differentially to resilience
and vulnerability to drug addiction depending on individual
genetics and sociology (5–7). Indeed, the DSM-V diagnostic
criteria for OUD is neither meeting a single behavioral criterion
nor meeting all criteria, but rather a person needs to meet
a subcluster of criteria to be considered diagnostic (5). This
diagnostic protocol is employed because of individual differences
resulting from the presence of one diagnostically positive trait
does not necessarily predicting the presence of another trait.
In an effort to more accurately portray the multi-trait nature
of substance use disorders (SUDs), some studies have created
composite scores consisting of a few traits that are generally
summed in a linear manner to create an addiction score
(8, 9). Here we propose a different approach to analyzing
multiple traits and explore a multidimensional data clustering
strategy of seven behavioral traits potentially characteristic of
heroin use and seeking in 451 outbred rats, examined in two
distinct laboratories, one at the Medical University of South
Carolina (MUSC) in the USA and the other at the University
of Camerino (UCAM) in Italy. This approach allows for non-
linear relationships between multiple traits to be simultaneously
quantified, resulting in clusters of animals that may correspond
to overall resilient and vulnerable subgroups.

Various clustering algorithms are available, including k-means
clustering (10), hierarchical clustering (11), and finite mixture

models (12), among others. However, behavioral studies generate
complex multivariate measurements which can make clustering
difficult using standard algorithms. Recently, network-based
clustering approaches have become popular across multiple
disciplines due to their flexibility and applicability to high-
dimensional data. For example, in high dimensional single cell
genomics studies, these algorithms are employed in multiple
software packages for identifying latent cell types such as T and B
cells (13). In general, these network-based clustering approaches
first construct a similarity network based on observations and
then implement a community detection algorithm on this
similarity network to identify underlying clusters. As a result,
these approaches are less affected by violations of underlying
assumptions, such as Gaussianity.

In this paper, we adopt the stochastic block model (SBM),
which has strong and rigorous theoretical foundation in statistics
literature (14, 15). In essence, the SBM allows for identification
of latent communities using a probabilistic model that describes
interconnectivity between nodes within and between clusters. In
this sense, the SBM may be used as a descriptive tool to assess
the presence of distinct latent populations in a data set. The
biological utility of such populations may then be determined by
investigating the distributions of relevant variables (e.g., heroin
consumption) across clusters. While we do not seek to propose
a predictive model for opioid vulnerability, the sub-populations
identified from our approach may be correlated with data from
future studies (e.g., genetic studies) to assess the predictive ability
of characteristics that define the identified sub-populations.

Due to its probabilistic nature, the SBM has multiple strengths
over deterministic approaches. First, it provides a natural
framework for deriving uncertainty measures for identified
clusters, which are critical to understanding latent community
structure, e.g., understanding gradual changes across multiple
latent clusters. Second, using goodness-of-fit measures, the SBM
helps selection of the number of clusters, which is a long-standing
problem in clustering methodology and not straightforward to
address in deterministic algorithmic approaches. Finally, the
SBM fits naturally into the Bayesian framework, allowing for
incorporation of prior expert knowledge to guide the clustering
and the ability to make posterior probability statements about all
model parameters (15).

MATERIALS AND METHODS

Experimental Methods
All experimental procedures were approved by the Institutional
Animal Care and Use Committee at MUSC and by the Italian
Ministry of Health (approval 1D580.18). Procedures abided by
the National Institute of Health Guide for the Care and Use of
Laboratory Animals and the Assessment and Accreditation of
Laboratory Animals Care, as well as the European Community
Council Directive for Care and Use of Laboratory Animals.

A total of 600 heterogeneous stock (HS: originally n/NIH-HS)
rats bred at Wake Forest University (currently NMcwiWFsm:HS;
Rat Genome Database number 13673907) were obtained for
these studies. Of these rats, 149 were excluded from final analyses
due to death following surgery (n = 21), death over the course
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of training (n = 77) or undergoing saline, not heroin, self-
administration training (n = 51). Final analyses were performed
on 451 rats (males, n = 238; females, n = 213). HS rats were
outbred from eight inbred strains and maintained in a way
to minimize inbreeding (16), allowing genetic fine-mapping to
relatively small intervals (17). Animals were shipped in batches
of 40 (20 males and 20 females per site) to either MUSC (USA)
or UCAM (Italy) at approximately 5 weeks of age. Upon arrival,
animals were pair-housed and left undisturbed in a climate-
controlled colony room with a standard 12-h light:dark cycle for
3 weeks prior to the start of testing. Throughout training, rats
had ad libitum access to food and water. Testing occurred during
the dark cycle, between 18:00 and 6:00 h. Heroin hydrochloride
supplied by theNational Institute onDrugAbuse (Bethesda,MD)
dissolved in 0.9% sterile saline was used in these studies.

Following the 3-week acclimation period, rats underwent
surgery under isoflurane anesthesia for the implantation of an
indwelling jugular catheter. An analgesic (Ketorolac, 2 mg/kg,
sc; or Meloxicam, 0.5 mg/rat, sc), and antibiotic (Cefazolin, 0.2
mg/kg, sc; or enrofloxacin, 1 mg/kg, iv), were administered pre-
operatively. Rats were given a minimum of 3 days of recovery
prior to heroin self-administration training commencing. All
testing occurred in standard behavioral testing chambers (MED
Associates, St. Albans, VT, USA). Presses on an active lever
resulted in presentation of a light and tone cue for 5-s and an
infusion of heroin (20µg/kg/100µg infusion over 3 s) on a fixed-
ratio 1 schedule of reinforcement. At the start of the infusion,
the house light also turned off for 20-s signaling a time-out
period during which additional presses on the active lever were
recorded but without consequence. Presses on the inactive lever
were recorded but without consequence. Sessions lasted for 12 h
or until 300 infusions were earned. Self-administration occurred
Monday-Friday, with one session off per week, for a total of
four sessions/week. Following 12 self-administration sessions rats
underwent a progressive ratio test whereby the number of presses
p(t) required to receive an infusion increased exponentially after
each infusion t = 1, ...,T according to the function p(t) = 5e0.2t−
5 (18). Rats then had three more days of self-administration
training to re-establish baseline heroin-taking behavior prior to
tests for reinstatement.

At the conclusion of heroin self-administration training, rats
underwent a within-session extinction-prime test that lasted
for 6 h. The first 4 h were extinction training conditions
during which presses on both the active and inactive lever were
recorded but without consequence (i.e., active lever presses no
longer result in presentation of the light/ tone cues or heroin
infusion). With 2 h left in the session, rats were administered
an injection of heroin (0.25 mg/mg, sc), and continued testing
under extinction conditions. Daily extinction training sessions
(2 h) then commenced for 6 consecutive days prior to a test for
cue-induced reinstatement. During this test, presses on the active
lever resulted in presentation of the light/tone cue and turning off
of the house light, but no heroin infusions.

At the conclusion of training, several behavioral measures
were selected for clustering analyses to reflect three behaviorally
distinct phases of drug addiction: drug-taking (drug reinforced
behavior), refraining (drug non-reinforced behavior), and

seeking behaviors (both drug reinforced and non-reinforced).
Heroin-taking behaviors include total heroin consumption (total
µg/kg heroin consumed across the first 12 self-administration
training session), escalation of intake (total heroin consumed
the first 3 days of self-administration subtracted from the last 3
days; see Supplementary Figure 2 for heroin self-administration
acquisition curve), and break point achieved during the
progressive ratio test. The break point is the total number of
active lever presses the rat is willing to perform in order to
receive an infusion of heroin. Refraining behavior consisted of
active lever presses during the first 2 h of the within-session
extinction-prime test (extinction burst) and the last day of
extinction training prior to the test for cue-induced reinstatement
(extinction day 6). Two extinction training time points were
used as to capture refraining behavior immediately after heroin
taking, and following several sessions of non-reinforced seeking
prior to cue-induced reinstatement. Heroin-seeking behavior is
represented by active lever presses during the heroin-prime and
cue-induced reinstatement tests. Active lever presses were used
for all variables to maintain continuity in measured behavioral
output for each behavior.

Data Pre-processing
Batch Correction for Multi-Site Samples
To analyze the MUSC and UCAM cohorts simultaneously,
we first performed a visual inspection of possible batch
effects between the two study sites. Specifically, we began
by concatenating the raw data matrices from each site
into an integrated data matrix, where rows corresponded
to individual rats and columns correspond to behavioral
measures, as described in section Experimental Methods. Then,
to facilitate visualization, we applied the Uniform Manifold
Approximation and Projection (UMAP) (19) algorithm to
compute 2-dimensional embeddings for each rat. To correct
for the apparent batch effect between study sites, we z-score
transformed each behavioral measure within study site. This
allowed for analysis of each behavioral measurement on a
standardized scale, and, in effect, regressed out unwanted site-
specific effects. Distributions of raw behavioral measures (i.e.,
before z-scoring) are shown in Supplementary Figures 5, 6.

Similarity Network Construction
After integrating the behavioral data from each study site
as described in section Batch Correction for Multi-Site
Samples, we constructed a rat-rat similarity network as follows.
First we defined a single parsimonious subset of relevant
behavioral measures from the experiments discussed in section
Experimental Methods using expert knowledge. Here, the goal
was to choose variables that reflected the behavioral propensity of
each rat for opioid dependence. Next, we computed the Euclidean
distance between each pair of rats using this single parsimonious
variable subset. We then formed a rat-rat similarity network, i.e.,
a collection of nodes and edges, where nodes in the network
represent individual rats and edges represent similarities between
rats. We placed an edge from each node to its R closest other
nodes based on the rat-rat distance measures. Here, the number
of neighbors R is a tuning parameter that controls the density of
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edges in the similarity network. By default, we adopt the widely
used heuristic R =

√
N (20).

Stochastic Block Model
To detect communities within the overall rat-rat similaritymatrix
that might correspond to behaviorally distinct sub-populations,
we adopted the Bayesian stochastic block model (SBM), a
generative model for network data (15). Let A be an n × n
adjacency matrix encoding the rat-rat similarity network among
n total rats, with Aij = 1 if rat i shares an edge with rat j (i 6= j),
and Aij = 0 otherwise. For a fixed and pre-specified number of
communities, K, the SBM assumes

Aij|z,2
ind∼ Bernoulli(θzi , zj ) for i < j = 1, ..., n, (1)

where zi ∈ {1, ...,K} is a categorical indicator variable that
denotes the community membership of rat i, z = (z1, ..., zn), and
2 is a K × K connectivity matrix with elements θrs described in
detail below. Equation (1) implies that the probability of an edge
occurring between two nodes depends only on the community
membership of each node. Thus, all rats belonging to the same
sub-population are regarded as stochastically equivalent.

While our primary object of inference is the vector of
latent community indicators z, an advantage of the SBM
over other community detection algorithms is its ability to
conduct statistical inference on the edge probability parameters
θrs, for r ≤ s = 1, ...,K. By encoding these parameters
in a symmetric connectivity matrix 2, we obtain a useful
summary of community structure. Here, diagonal elements of
2 are within-community edge probabilities, and off-diagonal
elements of 2 are between-community edge probabilities. In
most cases, we expect to find an assortative community structure,
in which within-community connections are more likely than
between-community connections, though the model is capable
of detecting dissortative community structures as well (21). Thus,
in addition to the community labels, the SBM allows us to
characterize the global relationships between communities.

Commonly, the SBM as formulated in model (1) is refined
to accommodate heterogeneous degree distributions, i.e., degree
correction (22). Since model (1) assumes that the probability
of an edge being place between two nodes only depends on
the community membership of the nodes, it is not suitable for
networks in which each node may have varying degree, that is,
the number of edges connected to it. However, as described in
section Similarity Network Construction, our workflow relies on
construction of a nearest neighbors network, in which each node,
by definition, will have exactly R edges, thus degree correction is
not necessary.

We estimate parameters of the SBM using a fully Bayesian
approach by assigning prior distributions to all unknown model
parameters. We select conjugate priors to obtain closed-form full
conditional distributions of all model parameters, which in turn
allows for straightforward Gibbs sampling. First, for the cluster
indicators z1, ..., zn, we assume a conjugate multinomial-Dirichlet

prior with zi
iid∼ Categorical(π) for i = 1, ..., n, and π ∼

Dirichlet(α1, ...,αK), where π = (π1, ...,πK) control the number
of nodes in each community, i.e., the community size. Similarly,

we adopt a conjugate beta-Bernoulli prior for 2 by letting θrs
iid∼

Beta(β1,β2) for r < s = 1, ... K. By default, we opt for weakly
informative priors by setting α1 = α2 = ... = αK = 1 and
β1 = β2 = 1 (23).

Posterior Inference
We implement parameter estimation using Gibbs sampling, as
detailed in the Supplementary Material. A critical step of our
proposed workflow for identifying behavioral sub-populations in
rats is the choice of K, i.e., the number of communities. Since the
choice of K should consider both expert knowledge and evidence
from the data, we refrain from proposing a “one size fits all”
globally optimal method for choosing of K. Instead, in section
Results we discuss how Bayesian Information Criterion (BIC)
(24) can be used in conjunction with biological knowledge to
make informed choices for K.

Label switching is an issue encountered in Markov chain
Monte Carlo (MCMC) methods, such as the Gibbs sampler
proposed above, wherein the model likelihood is invariant
to permutations of a latent categorical variable such as z.
As a result, we may observe natural permutations of z over
the course of the MCMC sampling that cause the estimates
of all other community-specific parameters to be conflated,
thereby jeopardizing the accuracy of model parameter estimates.
This problem is exacerbated when communities are not well-
separated. Previous works have attempted to address the issue by
re-shuffling posterior samples after the sampling has completed
(25). However, these post-sampling methods rely on prediction
and thereby are fallible to prediction error. To address label
switching, we adopt the canonical projection of z proposed by
(26) in the context of Bayesian SBMs, in which we restrict samples
of z to the canonical sub-space Z = {z : ord(z) = (1, ...,K)}. In
other words, we permute z at each MCMC iteration such that
community 1 appears first in z, community 2 appears second
in z, et cetera. Finally, we choose as our final estimate of z the
maximum a posteriori (MAP) estimate of z across all post-burn
MCMC samples (23).

Continuous Phenotyping
While the SBM presented thus far assumes that the overall
experimental cohort can be decomposed into a fixed number
of discrete communities, where each experimental unit (e.g.,
rat) is assigned to exactly one community, often interest lies in
further differentiating members within a community in a more
continuous fashion. Indeed, a core benefit of the Bayesian SBM
is that the discrete model structure may be augmented using
uncertainty measures, i.e., a quantification of our inferred level
of confidence in each estimated model parameter. For instance,
let ẑ = (ẑ1, ..., ẑn) be the posterior estimate of the true community
labeling vector z obtained from theMCMC estimation procedure
described in the Supplementary Material. Letting s = 1, ..., S
index the post burn-in MCMC iterations, we may quantify the
uncertainty in each estimate ẑi as

u(ẑi) = 1− 1

S

S
∑

s = 1

I
(

ẑ
(s)
i = ẑi

)

for i = 1, ..., n, (2)
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where ẑ
(s)
i is the estimate of zi at MCMC iteration s, and

I
(

ẑ
(s)
i = ẑi

)

is the indicator function equal to 1 if ẑ
(s)
i = ẑi and 0

otherwise. In words, u(ẑi) represents the proportion of MCMC
iterations where the estimate of zi was not the posterior MAP
estimate ẑi. For nodes that share many edges with other nodes
within their respective community, i.e., those that are highly
typical of their community, the uncertainty measure should be
low. Meanwhile, for nodes that share edges with nodes outside of
their respective community, the uncertainty measure should be
high, as these nodes will likely be assigned to other communities
intermittently over the course of the MCMC estimation. In this
way, wemay augment the cluster labels obtained by the SBMwith
quantification of our level of confidence in them—a significant
advantage over other non-model-based clustering methods.

In addition to uncertainty quantification, wemay similarly use
the MCMC draws ẑ(1), ..., ẑ(S) to conduct continuous phenotyping,
or the ranking of subjects based on their affinity toward a certain
phenotype. For example, in our context of assigning rats to
vulnerable and resilient phenotypes using the SBM, we may also
provide a continuous measure of affinity toward the vulnerable
phenotype for each rat that can be used to rank rats within
clusters. In this setting, let cluster kv ∈ {1, 2, ...,K} be the cluster
annotated as vulnerable for opioid dependence. For each rat
i = 1, ..., n, we define the continuous phenotype vulnerability

score v(i) as
∑S

s=1 I(ẑ
(s)
i = kv)/S, i.e., the proportion of MCMC

iterations in which rat i is assigned to cluster kv.

Software Implementation
For convenient implementation of the workflow proposed
throughout section Materials and Methods, we developed
“mlsbm,” an efficient and user-friendly R package for the
identification of sub-populations in network data (27). The
mlsbm package is freely available for download from the
Comprehensive R Archive Network (28) (https://cran.r-
project.org/package=mlsbm). The mlsbm package includes
robust documentation to facilitate applications to a variety of
clustering tasks.

Comparison to Alternative Approaches
We sought to assess the performance of the SBM clustering
workflow relative to alternative clustering approaches, we applied
five popular clustering algorithms, namely the Louvain, walktrap,
hierarchical clustering, K-means, and DBSCAN algorithms. The
Louvain (29) and walktrap (30) algorithms, like the SBM, are
network-based methods that operate on the nearest neighbors
network described in section Similarity Network Construction.
The Louvain algorithm seeks to maximize the modularity of the
graph, a measurement of the strength of clustering structure of
a graph relative to randomly generated graphs. The walktrap
algorithm uses random walks on the nearest neighbors graph
to find the most densely connected sub-graphs, i.e., clusters,
within the graph. Hierarchical clustering (11) is a “bottom up”
approach that iteratively merges the most similar observations
into clusters to form a tree structure that can be used to produce
cluster labels for a pre-specified value of K. K-means (10) and
DBSCAN (31) seek to place boundaries around observations
in high-dimensional space such that the data points within

boundaries, i.e., clusters, are more similar than those across
boundaries. While these approaches are commonly used, they
lack the inferential benefits of the SBM such as the ability
to choose K using model fit criteria and provide uncertainty
quantification in addition to cluster labels.

RESULTS

The overall sample was composed of Nm = 238 males and Nf =
213 females. The MUSC study site contributed 243 rats, while
the UCAM study site contributed 208. As seen in Figure 1A,
the MUSC and UCAM cohorts exhibit clear separation on the
2-dimensional UMAP space, indicating the potential of study
site to act as a confounding variable in our analysis, and
preventing simultaneous analysis of rats from both cohorts. The
site difference is also apparent in Supplementary Figure 6, where
in spite of substantially overlapping populations, the MUSC site
shows higher mean values than the UCAM site in each of the
traits quantified, except for escalation, suggesting a location shift
batch effect present between study sites. In Figure 1B, we present
the 2-dimension UMAP embedding of the concatenated z-score
transformed data set, in which no distinguishable separation
exists between the MUSC and UCAM rats. Hence, the site-
specific z-scoring approach detailed in section Batch Correction
for Multi-Site Samples was able to effectively remove the site-
specific batch effect from the data.

To construct the rat-rat similarity network, we computed the
Euclidean distance between each pair of rats using the 7 variables
discussed in section Experimental Methods and then formed an
adjacency network where each rat was connected to its 21 most
similar rats. We applied the SBM clustering analysis described
in section Stochastic Block Model to the analysis of N = 451
rats. To choose the most appropriate number of clusters K, we
fit the SBM to the adjacency network for a range of K from
K = 2, ..., 10. We ran each model for 10,000 MCMC iterations
and discarded the first 1,000 iterations as burn-in, resulting in a
total run time of under 4 min for each model using a single 4.7
GHz Intel i7 processor. Using BIC, we found that K = 3, 4, 5
provided approximately equal goodness of fit, with K = 2 or
K > 5 provided relatively poor fit (Figure 2A). As such, we
chose K = 3 to provide the most parsimonious representation
of the data and to assess the vulnerable, intermediate, and
resilient sub-type hypothesis discussed in section Introduction.
An adjacency matrix with rows and columns sorted by inferred
cluster indicators from the 3 cluster model is shown in Figure 2B.
Figure 2C shows the SBM estimated cluster labels on UMAP
space. In Table 1, we present the distribution of two covariates
of interest across the three inferred clusters, namely sex and
study site. We find a significantly skewed distribution of sex
across clusters, with a female bias in cluster 1 and a male bias in
cluster 3 (3-sample normal proportion test p< 0.0001), while the
distribution of study site across inferred clusters is more uniform
(3-sample normal proportion test p= 0.601).

Figure 3 shows empirical means and 95% z confidence
intervals for each of the 7 selected behavioral measures across
each of the inferred clusters from the SBM. Notably, each cluster
appears to show clear separation in most of the behavioral
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FIGURE 1 | (A) UMAP dimension reduction of behavioral measures before site-specific z-scoring shows significant batch effect of study site (MUSC vs. UCAM).

(B) UMAP dimension reduction after site-specific z-scoring shows adjustment for study site batch effect.

variables. For instance, the total heroin consumption was
highest in cluster 1 and lowest in cluster 3, with cluster 2
falling in between clusters 1 and 3, and all 95% confidence
intervals not overlapping. Similarly, cluster 1 demonstrated
a more rapid escalation of heroin intake relative to clusters
2 and 3. We quantified the difference between clusters by
fitting a one-way ANOVA for each of the 7 behavioral
measures vs. the SBM cluster indicators. We conducted a
global F-test for mean differences among groups. F-statistics
and associated p-values are displayed in Table 2. Distributions
of raw behavioral measures in each cluster are shown in
Supplementary Figure 1, where the same pattern persists as
with standardized variables. We observed qualitatively consistent
results in site-specific analyses (Supplementary Figure 4). We
quantified this observation through use of the adjusted Rand
index (ARI) between each site-specific analysis and the integrated
analysis, which revealed high correspondence between each site-
specific analysis and the integrated analysis (MUSC ARI = 0.43;
UCAM ARI= 0.54).

To further investigate the vulnerable, intermediate, and
resilient sub-type hypothesis, we leveraged the inferential abilities
of the Bayesian SBM to infer the similarity among rats from each
cluster. Specifically, by investigating the posterior distribution of
the elements of the matrix 2, we may characterize the similarity

among rats within and between each of the three clusters. In
Figure 4, we show a heatmap of posterior means and 95%
Bayesian credible intervals for θ11, θ22, θ33, θ12, θ13, and θ23. We
found that the estimated values of the within-cluster connectivity
parameters θ11, θ22, θ33 were found to be significantly higher
than those of the between-cluster parameters θ12, θ13, and θ23.
In fact, cluster 1, which had the weakest estimated within-cluster
connectivity (θ̂11 = 0.116), was still over four times more densely
connected than the highest between-cluster connection, which
was shared between clusters 2 and 3 (θ̂23 = 0.025). This is
indicative of strong assortative community structure in the rat-
rat similarity network, in which rats of the same community are
more likely to be correlated in terms of behavioral measurements
than rats of differing communities. Further, Figure 4 shows that
clusters 1 and 3 were the most dissimilar, with cluster 2 serving as
an intermediate cluster.

In Figure 5, we plot results from the uncertainty measure
and continuous phenotyping analysis presented in section
Continuous Phenotyping. Figure 5A plots the cluster
assignments on UMAP space, where each point is sized
proportionally to its uncertainty measure of cluster assignment
(larger points imply higher uncertainty). We label the ID of
each rat that featured an uncertainty measure above 0.10,
corresponding to rats that spent at least 10% of the post burn-in
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FIGURE 2 | (A) Bayesian Information Criterion (BIC) from SBMs fit with a range of K. K = 3, 4, 5 seem to provide similarly optimal fit in terms of BIC. (B) Adjacency

matrix of inferred clusters from the SBM using K = 3 clusters. (C) UMAP reduction of behavioral measurements colored by inferred cluster labels from the SBM using

K = 3 clusters.
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MCMC iterations from the K = 3 SBM in a cluster other than
the cluster it was assigned to by theMAP estimate ẑ. A number of
interesting patterns emerge from this uncertainty analysis. First,
we find that rats with higher uncertainty tend to be located near
borders between clusters on the UMAP space. Interestingly, rat
101, which was assigned to cluster 2 but is surrounded in UMAP
space by rats in cluster 3, featured high uncertainty. Meanwhile,
several cluster 2 rats were surrounded by cluster 1 rats in the
UMAP space but featured low uncertainty.

Figure 5B displays results from the continuous phenotyping
analysis, wherein cluster 1 was annotated as the vulnerable
cluster (Figure 3) and chosen as the phenotype of interest. We
computed the vulnerability score of each rat as the proportion
of post burn-in MCMC iterations from the SBM that were spent
in cluster 1. We labeled the IDs of the most interesting rats:

TABLE 1 | Distribution of sex and study site across clusters.

Cluster % Female (N) % UCAM (N)

1: Vulnerable (N = 200) 58.5 (117) 44.5 (89)

2: Intermediate (N = 122) 47.5 (58) 50.0 (61)

3: Resilient (N = 129) 29.5 (38) 45.0 (58)

those with uncertainty measures above 0.10 but vulnerability
measures less than 0.90. These rats were located on the border
between the intermediate cluster 2 and the vulnerable cluster
1, indicating higher propensity toward opioid dependence than
other rats in cluster 2. These results demonstrate the ability of
continuous phenotyping to augment the clustering results of the
SBM to allow for disambiguation of within-cluster differences
between subjects.

Figure 6 displays results from alternative clustering methods
as described in section Comparison to Alternative Approaches.

TABLE 2 | ANOVA global F-statistics and associated p-values for each behavioral

measure.

Variable F-statistic P-value

Total consumption 283.8 <0.0001

Escalation of intake 220.7 <0.0001

Break point 221.6 <0.0001

Extinction burst 94.78 <0.0001

Extinction day 6 77.12 <0.0001

Prime reinstatement 72.36 <0.0001

Cued reinstatement 200.6 <0.0001

FIGURE 3 | Means and 95% confidence intervals for relevant behavioral measures (z-scored) in each cluster. Distributions of z-scored behavioral variables indicate

evidence for vulnerable (cluster 1; N = 200), intermediate (cluster 2; N = 122), and resilient (cluster 3; N = 129) sub-populations.
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FIGURE 4 | Point estimates and 95% credible intervals of cluster connectivity parameters 2. The SBM estimates higher values for within-cluster connectivity

parameters, θ11, θ22, and θ33, which is indicative of an assortative community structure. Thus, rats within the same community are expected to have significantly

higher similarity than rats of different clusters. Clusters 1 and 3 are most dissimilar as evidenced by lower values of θ̂13 relative to θ̂12 and θ̂23.

The network-based clustering algorithms such as Louvain and
walktrap algorithms tended to produce a larger number of
clusters, each smaller in size relative to the SBM. Due to this,
the agreement between the results from these methods and
those from the SBM is low (ARI < 0.30). Both the hierarchical
clustering method using squared Ward dissimilarity (32) and
the K-means algorithm resulted in moderate agreement with the
SBM (ARI = 0.343 and 0.374, respectively), while the DBSCAN
algorithm yielded a 4 cluster result using default parameters, two
of which were sparsely populated. These results suggest the SBM
is best suited to addressing the research question at hand.

In addition to validating the capacity of the SBM to create
three sub-populations of rats with high, intermediate and low
responding for seven heroin associated behavioral traits, we
evaluated how the sub-populations compare in terms of weight,
site and cohort differences. Supplementary Figure 7 shows that
between sites proportionally equivalent numbers of rats were
assigned to each sub-population between the two testing site,

and when analyzing between cohorts of rats within each site
we found that assignment into sub-populations was equivalent
across cohorts at the MUSC site, but that differences existed
at the UCAM site. Also, because all the behavioral traits
involved the same operant response (active lever pressing),
we examined whether any traits within each sub-population
were correlated using a Pearson’s linear correlation statistic.
Supplementary Figure 3 shows the Pearson’s coefficient for each
trait comparison within each sub-population, which reveals that
only Extinction Day 6 and Cued reinstatement were linearly
correlated within each cluster. Otherwise, there was no consistent
trait correlation across the three sub-populations. The lack of
linear relationship between traits within the clusters is also
revealed in Supplementary Figure 8, which shows the z-scored
behavioral responses for all rats in cluster 1 with a selection of
rats highlighted for descriptive purposes. Note that rats need not
be high responders in all traits to be identified in the cluster 1 sub-
population. These differences between clusters and the overall
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FIGURE 5 | (A) Uncertainty scores of cluster assignment for each rat on UMAP space. Animal IDs are given for subjects with uncertainty measure above 0.10, which

is indicative of at least 10% of MCMC iterations spent in a cluster other than the final inferred cluster. (B) Vulnerability scores for each rat on UMAP space. Animal IDs

were shown for subjects with uncertainty above 0.10 and vunerability <0.90.

low levels of linear correlation between traits supports exploring
the SBM non-linear clustering approach described here as a
means to identify non-linear relationships betweenmultiple traits
and thereby identify high (vulnerable) and low (resilient) heroin
responding sub-populations. Finally, Supplementary Figure 9

shows that equivalent weight gains occurred before and after
completing the behavioral testing between each sub-cluster.

DISCUSSION

In this paper, we developed a comprehensive framework for the
descriptive analysis of behavioral sub-populations, and applied
it to the cohort of 451 outbred rats subject to heroin self-
administration exposure. We discovered the presence of batch
effects between the two study sites that contributed to this
cohort, and we corrected for these effects using study-site
specific z-scoring. Seven behavioral measures were chosen to
characterize the vulnerability of each rat to forming opioid
dependence. Taken together, these measures quantified three
important aspects of dependence: drug-taking, refraining and
seeking behaviors. Using these measures, we then converted
the multidimensional behavioral data into a rat-rat similarity
network, which allowed for investigation of distinct communities
within the overall network.

We chose the Bayesian stochastic block model, a statistical
model for network data, for investigation of behavioral sub-
populations within this cohort. We used the model fit criterion
BIC to choose a subset of best fitting models in terms of number
of communities. Of this best fitting subset, we chose the three
cluster model as it offered the best balance between optimizing
statistical and biological criteria. Using ANOVA global F-tests,
we found significant separation between clusters in terms of each
of the seven behavioral measures. Additionally, investigation of
average trends across clusters in each behavioral measure allowed
us to annotate vulnerable, resilient, and intermediate sub-
groups with high confidence. Using the community connectivity
parameters inferred by the SBM, we described the relative
similarity between clusters, with the vulnerable and resilient
clusters each displaying similarity to the intermediate cluster but
very little similarity to one another.

To augment the discrete community labels obtained
from the SBM, we developed an uncertainty measure,
which uses samples from the posterior distribution of the
cluster labels to estimate our confidence in the inferred
community structure. We also implemented continuous
phenotyping to investigate heterogeneities within clusters
in terms of vulnerability to opioid dependence. We found
a subset of intermediate vulnerability animals who featured
relatively high affinity toward the vulnerably cluster,
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FIGURE 6 | Comparison of SBM performance relative to alternative methods. (A) Clustering results from the SBM using K = 3. (B) Clustering results from the Louvain

algorithm (no tuning parameters available). (C) Clustering results from the Walktrap algorithm using random walks of length 4. (D) Hierarchical clustering results using

a dendrogram cut at K = 3. (E) K-means clustering results using the Hartigan-Wong method and K = 3. (F) DBSCAN clustering results using a radius of 0.8 and

minimum neighborhood size of 5.

providing candidate animals for further investigation of the
differences between vulnerable and resilient animals. Finally,
we developed “mlsbm,” an efficient and robust R package
for implementation of our proposed clustering workflow.
The mlsbm package is publicly available through CRAN
(https://cran.r-project.org/package=mlsbm) for use in future
behavioral studies.

The SBM analysis identified three behaviorally distinct
populations of rats that varied based on their apparent
vulnerability to OUD. OUD is a complex andmulti-symptomatic
disorder, making it imperative to understand how various
behaviors over the course of addiction interact with one
another to confer vulnerability vs. resiliency. Results indicate
that individuals more vulnerable to OUD exhibit higher lever
pressing across the behavioral tasks, but largely not in a linear
manner (Supplementary Figure 3). Thus, in the SMB, it is the
non-linear interaction between several variables that ultimately
results in differences between clusters. This is illustrated in

Supplementary Figure 8, showing how all animals in cluster
1 (vulnerable cluster) vary across the seven traits we used
for modeling. Highlighted are examples of three rats each
showing a distinct high and low z-score profile depending on
the traits. For example, not all rats in the vulnerable cluster
had high heroin consumption, although the mean consumption
for this cluster was greater than for the other two clusters
(Figure 3).

Both males and females were used in this study, and we
found sex differences in cluster composition with females more
represented in Cluster 1, and males in Cluster 3. These data
align with what is observed in humans, as females both acquire
and maintain higher levels of drug use, and relapse more often,
than males across several classes of drugs, including heroin (33).
This finding further bolsters the potential translational validity
of this model in assessing OUD vulnerability. However, a deeper
analysis of translational validity requires future studies where
traits determined prior to heroin exposure that predict OUD
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vulnerability in humans can be evaluated to determine if they
predict which cluster a rat will enter. For example, levels of
impulsivity, novelty-induced locomotor behavior and attributing
incentive salience to a reward-paired cue have all been show
to predict relapse propensity [for review see (34)]. Moreover,
measuring behaviors of drug seeking after obtaining the heroin
measures can be used as covariates to further validate cluster
allocation by the SBM model. For example, the model would
predict that cluster 1 rats would more compulsively seek heroin
in the presence of punishment than cluster 3 subpopulations.
Also, identifying these three distinct phenotypes using this model
allows for further characterization of individual variation in the
neurobiological mechanisms and genetic background underlying
OUD vulnerability. Finally, we plan to develop an interactive web
application using the SBMmodel to analyze a variety of network-
based data sets without the need for programming experience
in R, thereby allowing other laboratories to evaluate a variety
of network-based data sets for subpopulations of animals and
humans that may be more vulnerable or resilient to developing
SUDs or other neuropsychiatric disorders.
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