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Abstract

Children with sickle cell disease (SCD) may develop large vessel narrowing, but studies suggest 

vessels may also be enlarged, possibly related to increased cerebral blood flow (CBF). We used 

MRI to investigate whether the cross-sectional total inflow vessel luminal area (TIVLA) proximal 

to the circle of Willis (carotid arteries + basilar artery) would be increased in SCD compared to 

age- and sex-matched peers after adjusting for CBF. Across 36 children with SCD (19 female, 

median age 10.7 [8.0–14.5] years and 43 controls (26 female, median age 12.7 [9.2–18.2] years) 

matched by age (p = 0.13) and sex (p = 0.50), the median TIVLA in the SCD group (35.9 mm2 

[30.7, 39.5]) was larger than controls (30.5 mm2 [27.8, 35.4], p = 0.002). In a mixed model 

including age, sex, hemoglobin, CBF, SCD status, and an interaction between hemoglobin and 

SCD status, CBF (β = 0.11, CI 0.02–0.20, p = 0.02), SCD (β = 28.02, CI 5.62–50.42, p = 0.015), 

and the interaction between SCD and hemoglobin (β = −2.48, CI −4.49 to −0.47, p = 0.018) 

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
*Corresponding author. Neurology, Pediatrics, and Radiology, Washington University School of Medicine, St. Louis, MO, 63110, 
USA. kristinguilliams@wustl.edu (K.P. Guilliams).
1Current address: Department of Pediatrics, University of Nebraska Medical Center, S. 42nd & Emile St., Omaha, NE 68198, USA.
2Current address: Feinberg School of Medicine, Northwestern University, 420 E. Superior St., Chicago, IL 60611, USA.

CRediT authorship contribution statement
Josiah B. Lewis: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Methodology, 
Investigation, Formal analysis. Melanie E. Fields: Writing – review & editing, Writing – original draft, Investigation. Michael 
M. Binkley: Writing – review & editing, Formal analysis. Anita Zhou: Writing – review & editing, Validation, Investigation, 
Formal analysis. Amy Mirro: Writing – review & editing, Software, Investigation. Amy Ouyang: Writing – review & editing, 
Investigation. Niket Gupta: Writing – review & editing, Methodology, Investigation. Yasheng Chen: Writing – review & editing, 
Software, Methodology. Slim Fellah: Writing – review & editing, Software, Investigation. Alyssa E. Smith: Writing – review & 
editing, Investigation. Igor Dedkov: Writing – review & editing, Visualization, Investigation. Monica L. Hulbert: Writing – review 
& editing, Investigation. Andria L. Ford: Writing – review & editing, Investigation. Hongyu An: Writing – review & editing, 
Investigation. Jin-Moo Lee: Writing – review & editing, Conceptualization. Manu S. Goyal: Writing – review & editing, Writing – 
original draft, Methodology, Investigation, Conceptualization. Kristin P. Guilliams: Writing – review & editing, Writing – original 
draft, Supervision, Project administration, Methodology, Investigation, Conceptualization.

HHS Public Access
Author manuscript
Neuroimage Rep. Author manuscript; available in PMC 2025 June 18.

Published in final edited form as:
Neuroimage Rep. 2025 June ; 5(2): . doi:10.1016/j.ynirp.2025.100265.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc/4.0/


were all significantly associated with increased TIVLA. Notably, TIVLA as a measure of arterial 

lumens is larger in children with SCD, even after adjusting for CBF in the mixed model. This 

implies disease-specific normative values may be needed to detect early vasculopathy.
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1. Introduction

Children with sickle cell disease (SCD), characterized by chronic anemia, are at increased 

risk for cerebral vasculopathy and neurologic injury. Vasculopathy in SCD is typically 

characterized by vascular endothelium hyperplasia causing steno-occlusion of the large 

arteries. Although differing definitions across studies have precluded a unified vasculopathy 

diagnosis in sickle cell disease, all current definitions use some element of large artery 

luminal narrowing, typically within the anterior circulation (Guilliams et al., 2019). This 

steno-occlusive vasculopathy further increases risk for stroke and stroke recurrence in SCD 

(Guilliams et al., 2017; Hulbert et al., 2011).

One barrier to defining vasculopathy in SCD is a lack of understanding of typical large 

vessel characteristics and changes in SCD. Recent studies have noted increased vessel 

lumens in sickle cell disease, possibly as a means to decrease endothelial stress in the 

presence of higher blood velocity due to anemia (Croal et al., 2017; Václavů et al., 2018). 

Mouse models of SCD have also found degradation of elastin and collagen in the carotid 

arteries, leading to expansive remodeling of the large vessels (Song et al., 2020). Together, 

these studies suggest that decreased lumen size may be a late finding in SCD vasculopathy, 

limiting options for halting further progression of vasculopathy and increasing risk for stroke 

and brain injury.

As few studies have examined large vessel luminal measurements in the absence of 

clinically apparent vascular narrowing in children with SCD, we sought to quantify large 

artery lumen measurements between children with and without SCD in the absence of large 

vessel vasculopathy. To contextualize lumen measurements within the known alterations 

of cerebral hemodynamics of SCD, we also sought to examine the relationship of vessel 

luminal area to CBF. We hypothesized that vessel luminal areas would be increased in 

children with SCD compared to controls, and larger area would be associated with increased 

CBF.

2. Materials and methods

2.1. Study design and cohort

The Washington University in St. Louis Institutional Review Board reviewed and approved 

this study. Informed consent was provided by participants or by legal guardian if the 

participant was less than 18 years of age upon enrollment. This study used prospectively 

collected data from research visits of children and young adults with SCD between the ages 
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of 4 and 30 years old, and healthy siblings and friends without SCD within the same age 

range, recruited between 2014 and 2021.

Individuals were excluded from participation if they had any form of anemia other than 

SCD, other neurological or significant systemic illness, had a contraindication or significant 

artifact (e.g., metal implant or braces, respectively) to magnetic resonance imaging (MRI), 

were unable to tolerate brain MRI without sedation, had a past medical history including 

overt stroke, bone marrow transplant, gene therapy, or a clinical diagnosis of cerebral 

vasculopathy, defined for study purposes as any previously abnormal magnetic resonance 

angiography (MRA) in the medical record.

2.2. Brain MRI sequences and processing

MRI sequences were collected for each participant without sedation using 3T Siemens 

Trio or Prisma scanners. Time-of-flight MRA with three-dimensional (3D) readout were 

collected with a low flip angle of 18° to minimize the effects of intraluminal saturation and 

were centered on the circle of Willis. Voxel resolution was ~0.6 × 0.6 × 0.7 mm3, or 0.6 × 

0.6 × 0.6 mm3 (TE = 3.34, 3.59, or 3.94 ms, TR = 1900–2200 ms). MRAs were visually 

screened for motion artifacts or field-of-view issues that could affect vessel measurements.

Additional brain MRI sequences included: 3D magnetization prepared rapid gradient echo 

(MPRAGE) T1-weighted images (1 × 1 × 1 mm3 voxel resolution, TE/TR = 2.94, 2.95, or 

2.97 ms/1800, 1810, or 1820 ms, flip angle = 8°, TI = 1000 ms), processed to segment and 

measure cortical and white matter volume using the FreeSurfer 5.3 reconstruction pipeline 

(https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation). Fluid attenuated 

inversion recovery (FLAIR) images (TE/TR = 93 or 94/9000 ms; TI = 2500 ms; flip 

angle = 150°; in-plane resolution = 0.86 × 0.86 mm; slice thickness = 5 mm) were used 

to assess white matter lesions, manually outlined by a pediatric (K.P.G.) or adult (A.L.F.) 

vascular neurologist. Pseudo-continuous arterial spin labeling (pCASL) measured CBF with 

multiple-slice 2-dimensional echo planar imaging (TE/TR = 12 or 13 ms/3280–3840 ms; 

in-plane voxel resolution = 3 × 3 mm; slice thickness = 5 mm; 18 slices; 80 measurements; 

label duration = 1.5 s; post-labeling delay (PLD) = 1.0 or 1.5 s) (Alsop et al., 2015). 

A single-compartment model was used for CBF quantification. An inversion recovery 

sequence measured blood T1 within the superior sagittal sinus, allowing for individual CBF 

quantification, as T1 varies with age and hematocrit (Jain et al., 2012). Whole brain CBF 

was calculated from voxel-wise, partial volume corrected CBF maps, as previously reported 

(Fields et al., 2018; Ford et al., 2018; Guilliams et al., 2017, 2018). Maps were calculated 

from 2D-readout pCASL sequences.

In 54 scans, there were two pCASL acquisitions per scan visit, one with a PLD of 1 s, 

and one with 1.5 s. Comparing these two CBF measurements using a Bland-Altman test 

(Supplemental Fig. 1(a)) shows linear proportional bias and fixed bias. We determine a 

simple linear regression model CBF1.5sPLD = 0.762 × CBF1sPLD + 9.126, R2 = 0.929, 

predictive error = ±6.2 % (CI −10.6–13.7 %) (Supplemental Fig. 1), similar to previously 

described methods (Hulbert et al., 2023). Predictive error is calculated using leave-one-out 

cross-validation (Molinaro et al., 2005). In 28 of the 103 scanning sessions (21 with SCD 

Lewis et al. Page 3

Neuroimage Rep. Author manuscript; available in PMC 2025 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation


and 7 controls) that had 1 s PLD pCASL but not 1.5 s PLD, we used this model to impute 

the missing 1.5 s PLD, partial volume corrected, whole brain CBF data (CBF1.5sPLD).

2.3. Vessel diameter measurements and vessel area calculations

Since blood is delivered to the supratentorial brain through either the anterior (internal 

carotid arteries) or posterior (basilar artery) circulation, we focused on these inflow vessels. 

To remain agnostic to the relative contribution of anterior vs. posterior bulk circulation or 

potential asymmetry within the anterior circulation that may be normalized and redistributed 

once blood enters the circle of Willis, we measured and summed cross-sectional areas of the 

internal carotid terminal C7 segments and the distal basilar arteries immediately proximal to 

the circle of Willis to reflect the total inflow vessel luminal area (TIVLA). Measurements of 

vessel lumen diameters were made by one of two trained readers (J.L. and A.Z.) using the 

software RadiAnt DICOM Viewer (Version, 2020.2.3) with the double oblique method and 

multiplanar reconstruction, as previously described in detail (Guilliams et al., 2021). Briefly, 

all measurements were collected using the same brightness and contrast to remove inter-rater 

bias in window selection. Due to issues of partial volume effects at the edges of the vessels, 

raters drew measurements to capture 2/3rds of the mid-intensity border surrounding the 

high-intensity vessel cross-section. TIVLA was then calculated as the summed area of the 

three inflow vessels, where area = π × (major axis diameter/2) × (minor axis diameter/2) 

(Supplemental Fig. 2).

2.4. Statistical analyses

Baseline continuous variables are presented as median and interquartile range (IQR). 

Categorical baseline variables are presented as count data and percentage when applicable. 

Differences in baseline demographics between controls and SCD subjects were compared 

with the Mann-Whitney U test and Chi-squared test for continuous and categorical variables, 

respectively.

Differences in median TIVLA and CBF between groups were assessed with the Mann-

Whitney U test. Univariate association between continuous variables of interest (age, 

TIVLA, hemoglobin, lesion volume, and CBF) was assessed with the Pearson correlation 

coefficient. A univariate, two-sided significance of less than 0.3 was required for entry 

into generalized linear mixed models controlling for repeated subject observation. β and 

95 % confidence interval (CI) are reported for each variable. Sex and SCD status were 

retained in the models to adjust for cohort differences in subject population regardless of 

their significance. Model fit was assessed using the variance inflation factor (VIF) to test for 

collinearity and the normality of model residuals were evaluated using the Shapiro-Wilk test. 

A p-value of <0.05 was considered significant.

3. Results

3.1. Participants

We acquired MRI scans from 89 participants ages 4–28 years; 6 were excluded because of 

one or more vessels being outside the field of view of the MRA; and 4 were excluded due 

to CBF scans failing quality control assessment due to motion. The cohort with complete 
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data available included 36 participants with SCD, median 10.7 (IQR 8.0, 14.5) years old 

at baseline timepoint and 43 control participants, median 12.7 (IQR 9.2–18.2) years old (p 
= 0.13). 19 (53 %) of the SCD participants were female, not significantly different than 

the control participants with 26 (60 %) female (p = 0.50). Four participants had three MRI 

timepoints with available data, 16 participants had two MRI scans in the dataset, and all 

others had a single scan, for a total of 79 included participants with 103 scans with MRA 

and CBF acquired. Table 1 records baseline characteristics of the final cohort.

All SCD participants had hemoglobin-SS or S-Beta thal0. Twenty-five of the 36 SCD 

participants were taking hydroxyurea therapy at the baseline scan. Two children who were 

not taking hydroxyurea at their first scan were on hydroxyurea therapy at their repeat scan, 

two were on chronic transfusion therapy for frequent/chronic pain, two were on chronic 

transfusion therapy for abnormal transcranial Doppler ultra-sound (TCD), and one was 

on chronic transfusion therapy for progression of silent infarcts. All children on chronic 

transfusion therapy had MRAs for clinical purposes that were read as normal. As shown in 

Table 1, CBF was higher in children with sickle cell disease than controls (p < 0.001).

3.2. Factors influencing total inflow vessel luminal areas

In order to account for the full area of vasculature contributing to intracranial blood flow, the 

carotid and basilar arteries were summed to calculate TIVLA for each scan. Fig. 1 illustrates 

basilar artery measurements between representative members of SCD and control cohorts. 

Group individual artery measurements are shown in Table 1. The median TIVLA was 35.9 

mm2 in children with SCD (IQR 30.7–39.5), which was significantly larger than the median 

30.5 mm2 in controls (IQR 27.8–35.4; p = 0.0018, Fig. 2).

As time-of-flight signal is flow dependent, with higher flow having better signal-to-noise 

and brighter intensity, we assessed whether measurement differences in TIVLA could be 

attributed to flow-dependent artifacts by examining the relationship between our CBF and 

TIVLA measurements in several ways. First, we compared the ratios of TIVLA/CBF and 

TIVLA/CBF2 between SCD and controls using Mann-Whitney U. Both TIVLA/CBF (p 
= 0.003) and TIVLA/CBF2 (p < 0.001) were significantly different between the cohorts, 

suggesting that flow artifact was unlikely to be the sole factor causing the difference in 

measurements. Furthermore, as the proportional relationship between TIVLA and CBF 

was not consistent across the entire cohort, we treated TIVLA and CBF as related but 

independent variables in the subsequent analyses.

Second, we compared univariate analyses of TIVLA with age, hemoglobin, white matter 

lesion volume, and CBF (Fig. 3). Across the entire cohort, TIVLA significantly correlated 

with CBF (ρ = 0.48, p < 0.001, Fig. 3(b)) and hemoglobin (ρ = −0.36, p = 0.001, Fig. 3(c)). 

Within only the SCD cohort, there was not a correlation between TIVLA and lesion volume 

(ρ = −0.02, p = 0.92). Lesions were rarely seen in the control cohort, observed in 4 out of 

43 control participants, one of whom contributed 2 scans. Across the entire cohort, 5 control 

scans contained lesions.

Finally, in a linear mixed model including age, sex, hemoglobin, CBF, SCD status, and 

an interaction between hemoglobin and SCD status, and adjusting for repeated scans, CBF 
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(β = 0.11, CI 0.02–0.20, p = 0.02, SCD (β = 28.02, CI 5.62–50.42, p = 0.02) and the 

interaction between SCD and hemoglobin (β = −2.48, CI −4.49 to −0.47, p = 0.02) were all 

independently associated with TIVLA.

3.3. Factors influencing cerebral blood flow

To further examine the relationship between CBF and vessel size, we examined factors 

associated with CBF. CBF had significant univariate correlations with TIVLA, age, and 

hemoglobin (Fig. 3). In a mixed model relating CBF to age, sex, hemoglobin, and TIVLA, 

age (β = −1.07, CI −1.60 to −0.54, p < 0.001), hemoglobin (β = −3.23, CI −4.47 to −1.99, p 
= 0.001) and TIVLA (β = 0.64, CI 0.20–1.08, p = 0.006) all remained significant predictors 

of CBF.

4. Discussion

4.1. Impact of findings

In this study of 79 children with and without sickle cell disease, we found that the total 

inflow vessel luminal area (TIVLA) is larger in children with SCD without cranial artery 

stenosis compared to age- and sex-matched controls, even after controlling for differences in 

CBF. This study adds to a growing body of literature suggesting that vessel narrowing is not 

the only vascular change in large vessels that impacts children with SCD. Furthermore, 

when examining the potential role of the vessel lumen in CBF, TIVLA remained a 

significant predictor of CBF even after adjusting for age and hemoglobin, suggesting that 

compensatory remodeling may have an adaptive impact on cerebral oxygen delivery beyond 

those factors currently established influence whole brain perfusion.

4.2. Vascular changes in sickle cell disease

Although lumen-narrowing arteriopathies are the most commonly considered vascular 

changes in pediatric sickle cell disease, our observation that the vascular lumens in those 

with SCD are larger than in peers without SCD is consistent with prior studies (Václavů et 

al., 2018). Václavů et al. (2018) found increased lumen areas and increased MR-measured 

blood flow velocity in children and young adults with SCD, both of which were associated 

with lower hemoglobin. This study noted that the increased luminal area allowed for similar 

levels of endothelial sheer stress observed in both SCD and control cohorts. Croal et al. 

(2017) also reported larger MCA vessel diameters in children with SCD than controls, but 

with the small sample size of 20 total participants, this difference did not reach significance. 

Our study supports these findings of increased luminal areas in people with SCD; with 

TIVLA being an independent predictor of cerebral blood flow in our study, suggests that 

potential SCD-related cerebravascular ectasia warrants further study. In a mouse model 

of SCD, vessel lumen enlargement was associated with elastin and collagen degradation. 

Notably, the elastin and collagen degradation was mitigated by inhibiting JNK (c-jun N-

terminal kinase) signaling, which led to smaller vessel lumens in the JNK-inhibited SCD 

mice (Song et al., 2020). If similar mechanisms are found in humans, this may represent a 

potential therapeutic target to mitigate risk of cerebrovascular injury in people living with 

SCD.
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Interestingly, in non-SCD atherosclerotic disease in adults, where steno-occlusive 

cerebrovascular disease also increases stroke risk, vessel luminal dilation in the large 

arteries is one of the earliest markers of vascular dysfunction, preceding vascular lumen 

narrowing (Labropoulos et al., 1998). Yuan et al. (2021) found children and young adults 

with SCD had thicker ICA and basilar artery walls with vessel wall imaging. They observed 

non-significant trends of thicker walls with increasing white blood cell count and decreasing 

hematocrit, speculating that circulating markers of anemia may be leading to inflammation 

and remodeling of the vessel walls (Yuan et al., 2021); however, it is unclear if thickening of 

the vessel walls due to these factors would increase or decrease the inner diameter measured 

by TOF MRA. Adult studies of carotid diameters in people without SCD but at risk for 

white matter lesions have found a relationship between increased large vessel diameter 

and white matter lesion burden. Both the Northern Manhattan Study (Rundek et al., 2017) 

and a large population study in China (Zhai et al., 2020) found that increased common 

carotid diameters were associated with increased white matter hyperintensity volume. In our 

study, children with SCD, who are at risk for silent strokes in the white matter, had larger 

internal carotid diameters compared to those without SCD. Larger sample sizes and neck 

vasculature exams are needed to investigate whether a similar relationship between large 

vessel diameter and white matter lesion burden exists among those with SCD, as we did not 

find a significant relationship between white matter lesions and TIVLA in our study.

4.3. Changes in cerebral blood flow

Consistent with multiple previous studies in people with and without SCD, we found 

that age and hemoglobin are significant predictors of cerebral blood flow (Borzage et al., 

2016; Goyal et al., 2014; Hurlet-Jensen et al., 1994; Prohovnik et al., 1989). We add the 

contribution of the vascular lumen to CBF, even after controlling for age and hemoglobin. 

The relationship between age and CBF is related to changes in cerebral metabolism. 

The brain undergoes dramatic growth and maturation in childhood, with brain volumes 

peaking early in the 2nd decade of life between ages 11–14 years (Lenroot et al., 2007). 

In parallel, cerebral oxygen and glucose metabolism rises in childhood, the latter up to 

1.5 to 2-fold of typical adult values (Goyal et al., 2014). Even beyond childhood, both 

age and vascular anatomy contribute to CBF variability in healthy adults (Amin-Hanjani 

et al., 2015). Cerebral oxygen delivery is the product of cerebral blood flow and arterial 

oxygen content (total hemoglobin × percent oxygen saturation of hemoglobin × constant). 

It is unsurprising and well established that decreases in hemoglobin lead to increases in 

cerebral blood flow as the body compensates to maintain a steady oxygen delivery to the 

brain. However, this vasodilatory compensation is largely presumed to occur on the smaller 

arteriolar level (Bizeau et al., 2018; Epp et al., 2020), and the potential impact on the 

large vessels has not been well-described. While the large vessels may need to enlarge to 

compensate for the increased bulk flow and endothelial shear stress (Guilliams et al., 2021), 

if the increased vessel area was only a passive accommodation for cerebral oxygen delivery, 

we would expect that the ratio of TIVLA/CBF would be similar between the groups, or that 

vessel area would lose significance after adjusting for hemoglobin, neither of which is true 

in our data. The persistence of TIVLA in the CBF model after adjustment for hemoglobin 

suggests that hemoglobin and inflow area represent unique components affected in the SCD 

population, warranting further investigation.
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The relationship between flow and area is dependent on velocity, and cerebral blood flow 

velocity is a known important risk factor for overt stroke development in sickle cell disease 

(Adams et al., 1998, 1992; Adams et al., 1992). We did not directly measure blood flow 

velocity at the time of CBF and MRA in this study, and there is not a clear correlation 

between TCD velocities and cerebral blood flow, unless both patient-specific vessel areas 

and estimated weight of tissue perfused by the insonated vessel are captured to allow 

conversion of the TCD measurement into similar units of cerebral blood flow (Croal et 

al., 2017). This underscores the importance of vessel area in understanding cerebrovascular 

hemodynamics in SCD. There is currently wide variation in whether duplex, a.k.a. imaging, 

or non-duplex TCD is used for sickle cell disease screening (Schlenz et al., 2020). Non-

duplex and duplex have different thresholds recommended for initiating stroke prevention 

interventions (DeBaun et al., 2020). Future work could consider whether imaging TCD-

measured vessels may find similarly increased vessel area in SCD and whether this adds 

value to current TCD screening thresholds.

In summary, this cross-sectional study cannot fully explain why TIVLA is increased in SCD 

beyond the portion of the increase due to a heightened CBF. This unexplained proportion 

of increased TIVLA may be an appropriately adaptive to decrease the resistance of higher 

cerebral blood flow. Indeed, one of the hallmarks of the vasculature is the ability to adapt 

and dilate or constrict to regulate pressure, sheer stress, resistance, and flow.

There are many interrelated abnormalities of vascular function in SCD that may influence 

changes in TIVLA. Increased WBC adhesion to endothelium, intravascular hemolysis, and 

dysregulated coagulation activation are all potential contributors to vascular dysfunction in 

SCD (Kato et al., 2009). The viscosity of Hb S-containing blood is higher than non-Hb S 

blood at an equivalent hematocrit, which may contribute to alterations in cerebral blood flow 

and endothelial damage (Connes et al., 2016). Over time, these chronic abnormalities could 

lead to pathological vascular remodeling including loss of collagen and elastin. It is known 

that children (Fox et al., 2022) and adults with SCD (Nabavizadeh et al., 2016) are at high 

risk for cerebral aneurysms, which could be a late consequence of chronic vascular dilatation 

and vessel wall thinning.

4.4. Limitations

This study has several limitations. First, larger cohorts, particularly with longitudinal data, 

will likely elucidate the relationship between vasculature changes and CBF in SCD. Second, 

while time-of-flight MRA is commonly used clinically to look for vascular abnormalities 

including in children with SCD, this technique is limited in spatial resolution and potential 

artifacts related to high blood flow velocities. “Black-blood” sequences such as SPACE that 

suppress the blood flow signal (Mandell et al., 2017) can help to overcome these limitations 

and are needed to confirm the current findings. However, our main findings of increased 

diameter are consistent with other studies reporting increased diameter in SCD, and we 

would not expect vessel diameter to retain significance for predicting SCD while controlling 

for CBF if it were merely an indirect marker of increased CBF. Third, we do not have a 

single PLD across the entire cohort. However, when we examined the data just in the 52 

children (72 scans) with 1s PLD CBF data, all models retained similar significant variables 
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with only minor differences in exact estimates (Supplemental Fig. 3). Finally, we do not 

have simultaneous TCD or other measurements of velocity to fully explain the relationship 

between vessel area and blood flow. We presume that all children had normal TCD 

velocities at the time of scanning, as children with SCD were recruited from clinic where 

this is monitored regularly. Moreover, this information would not change the conclusions 

that vessel area is likely associated with CBF variability. Future studies combining CBF 

measurements, dedicated vessel wall imaging, and velocities across childhood would help 

further clarify these relationships.

4.5. Conclusion

Children with SCD have larger TIVLA compared to age- and sex-matched controls. Larger 

TIVLA is independently associated with higher global CBF, even after adjusting for age 

and hemoglobin. Together these findings suggest that SCD causes increased luminal area 

in cerebral large vessels, and that this increased area is unlikely to be only a biomarker of 

anemia but may have its own impact on cerebral hemodynamics independent of hemoglobin. 

Further research is needed to understand the mechanism of increased vessel area and the 

potential need for disease-specific normative values for early detection of vasculopathy.
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Fig. 1. 
Comparison of distal basilar cross-sectional area between representative subjects: both 11-

year-old females, one with SCD (top), the other a control (bottom). TOF-MRA axial slices 

(left) and zoomed basilar region (right). The area of the distal basilar segment for the SCD 

participant is ~7 % higher, and the TIVLA is ~20 % higher.
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Fig. 2. 
Density ‘violin’ plot showing TIVLA from SCD and control cohorts. Median values are 

represented by coarsely dashed lines, interquartile ranges by finely dashed lines.
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Fig. 3. 
Univariate correlations with Pearson correlation coefficients (ρ), significance (p), and linear 

regression (R2) showing (a) age, (b) whole brain cerebral blood flow, and (c) hemoglobin 

against TIVLA. Lesion volume is also plotted against TIVLA, along with a fit to the 

probability of having a lesion volume of any size detected, with Wilcoxon Z (d). 95 % 

confidence intervals are plotted in blue.
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