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This research proposes to develop a monitoring system which uses Electrocardiograph (ECG) as a fundamental physiological
signal, to analyze and predict the presence or lack of cognitive attention in individuals during a task execution. The primary
focus of this study is to identify the correlation between fluctuating level of attention and its implications on the cardiac rhythm
recorded in the ECG. Furthermore, Electroencephalograph (EEG) signals are also analyzed and classified for use as a benchmark for
comparison with ECG analysis. Several advanced signal processing techniques have been implemented and investigated to derive
multiple clandestine and informative features from both these physiological signals. Decomposition and feature extraction are
done using Stockwell-transform for the ECG signal, while Discrete Wavelet Transform (DWT) is used for EEG. These features are
then applied to various machine-learning algorithms to produce classification models that are capable of differentiating between
the cases of a person being attentive and a person not being attentive. The presented results show that detection and classification
of cognitive attention using ECG are fairly comparable to EEG.

1. Introduction

In today’s high-paced, hi-tech, and high-stress environment,
a common sufferer is our cognitive processing and capacity.
Cognitive psychology primarily deals with people’s ability
to acquire, process, and retain information which is a
fundamental necessity for task execution [1]. Quality of task
performance largely depends on the individual’s capacity
to inculcate and sustain high levels of engagement and
attention during cognitive activities. However, considering
the perils of modern lifestyles such as extended work hours,
long to-do lists, and neglected personal health coupled
with repetitious nature of daily activities and professions,
sleep deprivation and fluctuating attention levels as well are
becoming a commonplace issue that needs to be tackled.
Momentary or prolonged lapse of attention for certain
critical professions such as doctors, pilots, defense personnel,
and road transportation drivers can be catastrophic and
sometimes deadly.

Studying alertness and drowsiness is not a new domain
in scientific research. Numerous research areas are actively

studying the concepts of attention, alertness, distraction, and
drowsiness. Many of these researches focuses on nonsensory
mechanisms to identify and quantify levels of attention in
individuals [2–5] such as user’s daily routine, schedules,
activities, with self-reports from users describing patterns in
activities and attention levels and so forth. More recently
researchers have begun using biosignals to understand the
complex implication of cognitive processing on physiological
parameters. Electroencephalogram (EEG) is a popular exam-
ple of a physiological signal that researchers use extensively in
understanding cognitive functioning [6–8]. The use of EEG
for detecting and identifying attention/focus in individuals is
an established concept. Several concepts have been developed
for improving concentration and other cognitive functions of
both attention-related disorder and head trauma patients [9–
11]. However, there are some fundamental issues regarding
the procedure of collecting EEG. It requires the individual
to wear a head gear which can be disruptive and troublesome
for long-duration usage. The EEG electrode sensors also need
to be moistened with electrode gel which can be uncom-
fortable for the user at the contact points on the scalp.
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Also, the EEG collection device is usually not designed to
be portable; they tend to be slightly large fixed devices
which make the collection of EEG confined to a set of
environmental contingencies. Furthermore, the EEG signal
itself is highly sensitive to noise. Movement of the muscles
around the scalp, movement of the subject, talking, blinking,
and so forth can induce various unwanted artifacts into
the signal thereby disrupting the quality of neuroelectric
information contained within the signal.

For this reason, this research is attempting to use
Electrocardiogram (ECG) for detecting cognitive attention
in individuals. The ECG is a fundamental physiological
signal which can be collected easily with a tiny wearable
and portable monitor. Since the collection device is portable
and has a small footprint on the body, it allows the capture
of ECG signals from individuals in various situations in a
noninvasive manner. The portability of such a data collection
unit allows a more realistic study of human cognitive
activities during task execution under various circumstances.
The research presented in this paper is attempting to
establish a correlation between cognitive attention and its
implications on ECG. By being able to identify a pattern and
correlation between the two it becomes possible to predict
well in advance, an individual’s potential loss of attention
and ingression of sleepiness during a task execution. This
also provides the ability for preemptive feedback to the user
upon identifying diminishing attention levels and thereby
improving the individuals’ overall performance.

The rest of this paper is organized as follows: Section 2
describes the experimental setup, followed by a description
of methods in Section 3. Section 4 describes the results and
conclusion of this research.

2. Experimental Setup

An essential aspect of this research has been the collection of
the data itself. Extensive search revealed that there was no
dataset available, freely or otherwise, which catered to the
exact needs to this particular study. Since the study is about
utilizing ECG collected via a portable armband to detect
the presence or lack of attention/focus in an individual,
the dataset had to be collected specifically based on the
requirements of this research.

In the designed experiment, volunteer subjects were
individually asked to watch a series of preselected video clips
during which two physiological signals, that is, the ECG and
EEG, were acquired. Based on their content, the chosen video
clips fell in either of two categories that is either “interesting”
or “noninteresting,” requiring high and low levels of viewer
engagement, respectively. The average length of each selected
video clips was about 4-minute long. For each category the
respective video clips were put together to form a video
montage of about 20-minute viewing duration. The first
category of the video montage named “interesting” included
engaging scenes from documentaries, popular movie scenes,
high-speed car chases, and so forth. which were intended
to keep the viewers attentive and engaged with its con-
tent. The second video montage named “noninteresting”

Figure 1: Two leads ECG collection from Armband.

contained videos which were repetitive and monotonous in
nature such as a clock ticking and still images shown for
extended periods of time. These were intended to induce
boredom in subjects and thereby reduce their attentiveness.
Viewing the two categories of video montages one after the
other required contrasting levels of engagement and focus
from the participant, thereby ensuring (as far as possible)
that the subjects were interested and paid attention to the
interesting video set and the subjects were subsequently
bored and lost focused attention during the noninteresting
videos.

During the experiment the ECG signal was collected
using the SenseWear-Pro armband developed by Bodymedia
Inc. This armband is capable of collecting ECG data at
128 Hz [12].

As shown in Figure 1, two leads from the armband
are attached to the subject using ECG adhesive electrodes
patches. One lead of the leads is placed on the side of the
arm and the other lead is fastened on the bridge between the
neck and shoulder.

The EEG signal was collected from the subjects using
MP150: EEG-100C a product by Biopac Inc. With this system
an EEG cap is provided that fits snug on the head of the
subject and it collects the EEG signal at a sampling rate of
1000 Hz. Signals were collected from the forehead or the
frontal cortex (fp1 and fp2) with a ground reference from
the ear lobe. The frontal cortex is primarily responsible
for attention and higher-order functions including work-
ing memory, language, planning, judgment, and decision-
making [13]. The entire setup is completely noninvasive and
only utilizes surface contact sensors. The data collection has
been conducted with required IRB approval.



Computational and Mathematical Methods in Medicine 3

Subject

Methodology overview

Machine
learning and
classification
(training and
testing)

Data
acquisition

Data
decomposition

Data
preprocessing

Feature
extraction

ECG
signal

EEG
signal

Figure 2: Methodology overview.

3. Methods

The schematic diagram in Figure 2 illustrates the overall
method of this study. As shown the two physiological signals
ECG and EEG are acquired from the subject during the
experiment.

The acquired raw signals are first preprocessed to remove
unwanted artifacts presented within the signals. Next the
preprocessed signals are decomposed using various decom-
position and analysis methods. In the next step valuable
and informative features are extracted from the decomposed
components of the signal. These extracted features are finally
fed to the machine-learning step where classification models
are developed to classify the feature instances to either of two
cases “attention” or “nonattention.”

3.1. Data Preprocessing. The acquired raw ECG signal con-
tains some inherent unwanted artifacts that need to be dealt
with before any analysis can be performed on it. The cause of
these artifacts, which is usually frequency noise or baseline
trend, could be due to a number of reasons such as subjects’
movement causing motion artifacts, breathing patter artifact,
loose skin contact of the electrodes, and electric interference
(usually found around 55 Hz). Therefore a preprocessing
step has been designed to ensure that the signal is as clean
and artifact free before analysis.

3.1.1. ECG Preprocessing. The preprocessing steps for the
ECG signal are shown in Figure 3. Since each signal has
to be filtered differently based on the type of inherent
noise, the raw ECG signal is first filtered using “SGolay”
filtering method. The “SGolay” filter was developed by
Savitzky-Golay. This filter is a digital polynomial filter based
on least square smoothing mechanism. The SGolay filters
are typically used to smooth out a noisy signal with a
large frequency span. They perform better than standard
averaging FIR filters, since these filters tend to retain a
significant portion of the signals high-frequency content
while removing only the noise [14].

Next, the filtered ECG data is sent through a baseline
drift removal step. Typically baseline drift is observed in
ECG recordings due to respiration, muscle contraction, and
electrode impedance changes due to subject’s movement
[15]. To remove the baseline drift first the regression line
that best fits the samples within a window of size equal to
the sampling rate is determined.

Given n points of the ECG signal (x1, y1),(x2, y2),. . . ,
(xn, yn), the best fit line associated with these points can be
computed as follows:

m = n
(∑n

1 xy
)− (∑n

1 x
)(∑n

1 y
)

n
(∑n

1 x2
)− (∑n

1 x
)2 ,

b =
∑n

1 y −m
(∑n

1 x
)

n
,

y = mx + b,

(1)

where y is a point on the line, m is the slope of the line, and b
is the intercept. The computed best fit line for each window
is then subtracted from the original signal window to obtain
a baseline drift-free signal.

After the raw ECG signal has been filtered of noise and
baseline drift, the signal is then split into two portions based
on the acquisition and experiment framework. The two por-
tions of signals, namely, “interesting” and “noninteresting”
are extracted from the original signal using timestamps that
are recorded and indexed during signal acquisition. Splitting
and analyzing the two sections of data separately facilitate
supervised learning mechanism during the training phase in
the machine learning step.

3.1.2. EEG Preprocessing. The EEG signal is comprised of
a complex and nonlinear combination of several distinct
waveforms which are also called band components. Each of
the band components is categorized by the frequency range
that they exist in. The state of consciousness of the indi-
viduals may make one frequency range more pronounced
than others [16]. As shown in Figure 4, the different band
components are extracted from the raw EEG signal using
Butterworth bandpass filters. Five primary bands of the EEG
signal are extracted, namely, Delta (0.2–4 Hz), Theta (4–
8 Hz), Alpha (8–13 Hz), Beta (13–30 Hz), and Gamma (30–
55 Hz).

3.2. ECG Decomposition: Using Stockwell Transform. The S-
transform was proposed by Stockwell and his coworkers
in 1996. The distinction of S-transform is that it produces
decomposition of frequency-dependant resolution in the
time-frequency domain while entirely retaining the local
phase information. In other words, the S-transform not only
estimates the local power spectrum, but also the local phase
spectrum, which is highly desirable in studying complex
physiological signals such as the ECG.
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When it comes to analyzing dynamic spectrum or local
spectral nature of nonstationary observations such as the
ECG some of the popular methods include Short-Time
Fourier Transform (STFT) [17], Gabor transform [18],
complex demodulation [19] which produces a series of band
pass filtered voices and is also related to the filter bank theory
of wavelets and so forth. Some methods represent the trans-
formation in a combination of time and frequency domain
such as the Cohen class [20] of generalized time-frequency
distributions (GTFD), Cone-Kernel distribution [21], Choi-
Williams distribution [22] as well as the smoothed pseudo
Wigner distribution (PWD) [23]. One of the more popular
methods for decomposition and analysis in time-frequency
domain is Wavelet Transform. Discrete Wavelet Transform
or DWT performs decomposition of a signal that provides
excellent time resolution while maintaining key spectral
information or frequency resolution [24, 25].

Although S-transform is similar to wavelet transform
in having progressive resolution, unlike wavelet transform,
the S-transform retains absolutely referenced phase infor-
mation. Absolutely referenced phase implies that the phase
information calculated by the S-transform is referenced to
time t = 0, which is also true for the phase given by the
Fourier transform. The only difference being the S-transform
provides the absolute referenced phase information for each
sample of the time-frequency space.

3.2.1. Mathematical Formulation of S-Transform. There are
two varieties of S-transform, continuous and discrete. The
continuous S-transform [26] is essentially an extension of the
STFT. It can also be seen as a phase-corrected format of the
Continuous Wavelet Transform (CWT).

The STFT of a signal h(t) is defined as

STFT
(
τ, f

) =
∫∞

−∞
h(t) g(τ − t)e− j2π f tdt, (2)

where

(i) τ is the time of spectral localization,

(ii) f is the Fourier frequency,

(iii) g(t) denotes a window function.

The S-transform can be derived from the above STFT
equation simply by substituting the window function g(t) the
Gaussian function:

g(t) =
∣
∣ f
∣
∣

√
2π

e−(t2 f 2)/2. (3)

Therefore the S-transform be mathematically defined as
follows:

S
(
τ, f

) =
∫∞

−∞
h(t)

∣
∣ f
∣
∣

√
2π

e−((τ−t)2 f 2)/2e− j2π f tdt. (4)

Since S-transform essentially functions with the Gaussian
window during decomposition, it can be deduced that with a
wider window in the time domain the transformation can
provide better resolution for lower frequency, and with a
narrow Gaussian window the resolution for higher frequency
is better accentuated.

For application of S-transform in this study, the contin-
uous S-transform does not prove to be a practical choice.
Simply because the acquisitions of the ECG signal itself were
performed with discrete sampling and also a continuous
decomposition of this signal for all frequencies can be
extremely time consuming, thereby not computationally
pragmatic. Hence a Discrete version of the S-transform has
been adopted for the decomposition of the ECG signal.

The discrete S-transform can be presented as follows.
Let h[kT] be the discrete time series signal to be

investigated, where k = 0, 1, . . . ,N − 1, and T is the
time sampling interval. The discrete format of the Fourier
transform can be shown as follows:

H
[

n

NT

]
= 1

N

N−1∑

k=0

h[kT]e2 jπnk/N . (5)

Using the continuous S-transform equation and the above
equation, the time series, h[kT]’s S-transform can be repre-
sented as follows: (making f → n/NTand τ → jT)

S
[
jT ,

n

NT

]
=

N−1∑

m=0

H
[
m + n

NT

]
e2π2m2/n2

e2 jπmj/N , n /= 0,

(6)

where j,m, and n = 0, 1, . . . ,N − 1.
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3.2.2. Application of S-Transform. Figure 5 shows the differ-
ent steps involved in the decomposition of the ECG signal
using S-transform. First, the preprocessed ECG signal is sent
through a windowing mechanism. In this mechanism, the
preprocessed ECG signal is partitioned into tiny windows.
These windows are nonoverlapping and contain ECG data of
10 sec interval (128 Hz∗ 10 sec = 1280 data-points/window).

After the windowing step, each of the 10 seconds
windows is decomposed using S-transform. The output of
the S-transform is a complex 2-dimensional matrix with
rows representing the frequencies and the columns represent
the time values. The S-transform algorithm applied in this
study is tuned to produce a stepwise frequency range with
step size being 1 Hz and the time interval between samples in
the result is 1 step unit.

An example output of a 5-second window of an ECG data
after S-transform is given in Figure 6 .

Figure 6 shows the exact point-to-point representation
of the original (Figure 6(b)) signal in the S-transforms time-
frequency domain. The S-transform output matrix has been
shown in a contour map display (Figure 6(a)).

3.2.3. Feature Extraction. The output of each window is
a frequency-time represented matrix. Each instance of the
matrix is frequency point and a time point (by the row and
column position, resp.). So the entire output matrix can be
presented as follows: ST(x, y), where x is the frequency (row)
location and y is the time (column) location.

The extraction of features from the derived output matrix
of ST is performed in two steps. In the first step the
output matrix is reduced from two dimensions to a single
dimension. This is done by computing certain statistical
measures along the frequency dimension x, while retaining
the discreteness in the time dimension y as is. The computed
statistical measures along frequencies ( f ) are as follows:

(i) mean of frequencies ( f ),

(ii) sum of frequencies ( f ),

(iii) product of frequencies ( f ),

(iv) standard Deviation of frequencies ( f ),

(v) range ( f ).

At the end of the first step we get an array of features from
the frequency domain as follows:

Freqfets =
[
mean

(
f
)
, sum

(
f
)
, product

(
f
)
, std

(
f
)
,

range
(
f
)]
.

(7)

The next step is to compute statistical features along the time
domain.

(i) Mean:

mean(ST) = mean
(
fi
)
, where fi ∈ Freqfets. (8)

(ii) Sum:

sum(ST) = sum
(
fi
)
, where fi ∈ Freqfets. (9)

(iii) Mean of autocovariance:

mean(autocovariance(ST)) = mean
(
autocovariance

(
fi
))

,
(10)

where fi ∈ Freqfets.

(iv) Sum of cross-correlation:

sum(autocorrilation(ST)) = sum
(
autocorrelation

(
fi
))

,
(11)

where fi ∈ Freqfets.

(v) Log2 of Variance:

Log2(variance(ST)) = Log2

(
variance

(
fi
))

, (12)

where fi ∈ Freqfets.

Two additional features are calculated from the initially
obtained ST matrix.

(i) Mean of max frequencies:

mean(max(ST)) = mean
(

max
(

ST1,y , ST2,y , . . . , STx,y

))
.

(13)

(ii) Mean absolute deviation of frequencies:

mean(abs(ST)) = mean(abs(ST−mean(ST))). (14)

After the feature extraction has been performed, the
total feature set for the S-Transform step will contain
(5 (features in step 1) ∗ 5 (features in step 2)) +
2 (additional noniterative features) = 27 (features
columns per window).

3.3. EEG Decomposition and Analysis: Using Wavelet Trans-
form. The EEG signal exhibits complex behavior and non-
linear dynamics. In the past wide range of work has been
done in understanding the complexities associated with the
brain through multiple windows of mathematics, physics,
engineering and chemistry, physiology, and so forth [27,
28]. The intention of acquiring and analyzing EEG in this
research is to develop a benchmark of sorts for attention
recognition. The key point of this study is to see if the ECG
signal that can be collected from a portable armband can be
comparably efficient in recognizing an individual’s attention
and focus.

The small yet complex varying frequency structure
found in scalp-recorded EEG waveforms contains detailed
neuroelectric information about the millisecond time frame
of underlying processing systems, and many studies indicate
that waveform structure at distinct scales holds significant
basic and clinical information [29, 30]. Small-scale neural
rhythms, in particular event-related oscillation EROs, have
been regarded as fundamental to perception and cognition
[29]. Wavelet analysis provides a powerful method of isolat-
ing such rhythms for study. There are several applications
of wavelet transform on EEG analysis. It has been used in
removal of noise from raw EEG waveforms since wavelet
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Figure 6: (a) shows the contour-based visualization of frequency spectrum along time, based on the S-transform of the signal window. (b)
shows the original signal window.

coefficients facilitate the precise noise filtering mechanism
by zeroing out or attenuating any coefficients associated
primarily with noise before reconstructing the signal with
wavelet synthesis [31–33]. Wavelet analysis of EEG has also
been extensively used for signal processing applications in
intelligent detection systems for use in clinical settings [34,
35]. Wavelet transform has also been used for compression
EEG signals. Wavelet compression techniques have been
shown to improve neuroelectric data compression ratios
with little loss of signal information [36, 37]. It can also
be seen for component and event detection as well as spike
and transient detection within the EEG waveforms. Wavelet
analysis has proven quite effective in many research studies
[33–38].

3.3.1. Mathematical Formulation of Wavelet Transform.
Wavelet transforms essentially exist in two distinct types:
the Continuous Wavelet Transform (CWT) and the Discrete
Wavelet Transform (DWT). In this study for the analysis of
the EEG signal the DWT method has been employed. The
advantages of using DWT is that it allows the analysis of
signals by applying only discrete values of shift and scaling
to form the discrete wavelets. Also, if the original signal is
sampled with a suitable set of scaling and shifting values,
the entire continuous signal can be reconstructed from the
DWT (using Inverse-DWT). A natural way of setting up the
parameters a (scaling) and b (shifting) is to use a logarithmic
discretization of the “a” scale and link this, respectively, to

the step size taken between “b” locations or shifts. To link “b”
to “a” discrete steps are taken to each location “b,” which are
proportional to the “a” scale. This kind of mother wavelet
can be shown in the following form.

Discrete mother wavelet representation:

Ψm,n(t) = 1
√
am0

(
t − nb0a

m
0

am0

)

, (15)

where

(i) integer’s m and n control the wavelet shifting and
scaling, respectively,

(ii) a0 is a specified fixed dilation step parameter set at a
value greater than 1,

(iii) b0 is the location parameter which must be greater
than zero.

Analysis equation (DWT):

Wmn =
∫ +∞

−∞
x(t)Ψ∗mn(t)dt. (16)

Synthesis equation (inverse DWT):

x(t) = c
∑

m

∑

n

WmnΨmn(t), (17)

where c is a constant associated with the mother wavelet.
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3.3.2. Application of DWT on EEG. In this study, Discrete
Wavelet Transform or DWT is applied to the EEG band
components which are extracted in the preprocessing step.

As shown in Figure 7, each of the extracted band
components is sent through the “windowing” step. In
this step the interesting and boring portions of the band
components based on the timestamps of the original EEG
are extracted and sent through a windowing mechanism. In
this mechanism, each band component signal is partitioned
into tiny windows. The windows are 10-second long and are
nonoverlapping. The EEG signal is acquired at a sampling
rate of 1000 Hz, so each window will have 1000 Hz ∗ 10 sec
= 10000 data points.

Each window is then decomposed using DWT. Perfor-
mance of the Wavelet transform depends on the mother
wavelet chosen for decomposition of the signal. A common
heuristic is to choose one similar to the shape of the signal of
interest. So for the set of band components that is extracted
from the original EEG signal different mother wavelets that
suit different bands are applied during decomposition.

As shown in Figure 8, the analysis of the Gamma wave
component, the mother wavelet chosen is the “bior3.9”
from the bi-orthogonal family of wavelets. Delta, Theta,
and Alpha wave components are decomposed using “db4”
as their mother wavelet from the Daubechies family of
wavelets. Finally Beta waves are decomposed using “coif3” as
the mother wavelet from the Coiflets wavelet family. These
wavelets were chosen not only based on the shape and
complexity but also because they seemed to be commonly
used for such application in related research.

The decomposition process in wavelet transform can be
performed iteratively into several levels. The number of levels
chosen for decomposition is application specific and also
depends on the complexity of the signal. For window of
the EEG signal band components, 5 levels of decomposition
seemed to provide all the required useful information;
further decomposition did not yield a better result. The
detailed coefficients of all the stages from 1 through 5 and the
approximation coefficient of level 5 are retained for feature
extraction step.

3.3.3. Feature Extraction Step. The features computed from
these coefficients are as follows. (Here, (x1, x2, . . . , xn) repre-
sents the values of each coefficient from the 10 sec window.)

(i) Standard deviation:

std = 1
n

n∑

i=1

x2
i . (18)

(ii) Entropy: entropy is a statistical measure of random-
ness. It is very useful in evaluating the information
present within a signal:

entropy = −sum
(
p ∗ log 2

(
p
))

, (19)

where p is the histogram of the signal.

(iii) Log of variance: let the probability mass function of
each element be as follows x1 �→ p1, . . . , xn �→ pn, then

Variance =
n∑

i=1

pi ∗
(
xi − μ

)2, (20)

where μ is the expected value, that is,

μ =
n∑

i=1

pi ∗ xi.

Therefore, Log of variance = log2(Variance(x)).

(21)

(iv) Mean of frequencies (discrete Fourier domain):

dft(xk) =
N−1∑

k=1

X
(
j
)
e j(2π/N)kn, (22)

where a net of N time samples, dft(xk), represents
the magnitude of sine and cosine components in the
samples given by e j(2π/N)kn:

mean of fourier domain = mean(dft(x)). (23)

(v) Variance of probability distribution:

Probability Distribution Function = P[a ≤ x ≤ b]

=
∫ b

a
f (x)dx

Variance of distribution = variance(P).

(24)

(vi) Sum of autocorrelation:

Autocorrelation function = R(s, t)

= E
[(
xt − μ

)∗ (xt+r − μ
)]

σtσs
,

(25)

where s and t are different times in the time series, μ is
the mean of X , σ is the standard deviation of X , and
“E” is the expected value operator:

Sum of AutoCorrelation = sum(R(s, t)). (26)

(vii) Mean of autocovariance:

C(s, t) = E
[(
xt − μt

)∗ (xs − μs
)]

, (27)

where s and t are different times in the time series,
μ is the mean of X , and “E” is the expected value
operator:

mean of autocorrelation = mean(C(s, t)). (28)

After the feature extraction has been performed, the
total feature set for the wavelet transform step will
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Figure 8: (a) “COIF3” wavelet, (b) “DB4” wavelet, and (c) “BOIR3.9” wavelet.

contain; 6 coefficients (5 detailed + 1 approxima-
tion) ∗ 7 (features per coefficient) = 42 (features
columns per band component). In total there are
5 extracted band components, so, 42 (features per
band component) ∗ 5 (different band components)
= 210 (total features from EEG). These computed
features are then sent to the machine learning stage
for classification, training, and testing.

3.4. Machine Learning and Classification Model. In this appli-
cation the result after signal processing on various acquired
psychological signals is a large set of features. Since the data
was collected in a systematic and controlled environment, the
features extracted from respective portions of the signals can
be classified under the two presumed categories: “attention”

and “nonattention.” Hence supervised learning method is
used for this study to developed classification heuristics.

Three different machine learning algorithms have been
implemented and tested for this experiment. These are as
follows.

3.4.1. Classification via Regression. There are different mod-
els for predicting continuous variables or categorical vari-
ables from a set of continuous predictors and/or categor-
ical factor effects such as General Linear Models (GLMs)
and General Regression Models (GRMs). Regression-type
problems are those where attempt is made to predict the
values of a continuous variable from one or more continuous
and/or categorical predictor variables [28, 38, 39]. This is
a nonparametric approach meaning that no distribution
assumptions are made about the data whereas in GLM it
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is either known or assumed that the data follows a specific
linear model such as binomial or Poisson. In regression-
based classifiers, splits for the decision trees are made based
on the variables that best differentiate between the categories
of the target classification label variables. Here the decision
splits are composed based on regression trees. In regression
trees each node is split into two child nodes. As the regression
tree grows certain stopping rules are applied to stop the tree
growth.

In more general terms, the purpose of the analyses via
tree-building algorithms is to determine a set of if-then
logical (split) conditions that permit accurate prediction or
classification of cases. Tree classification techniques, when
applied correctly, produce accurate predictions or predicted
classifications based on few logical if-then conditions. Their
advantage of regression tree-based classifier over many of the
alternative techniques is that they produce simplicity in the
output classifier results. This simplicity not only is useful
for purposes of rapid classification of new observations
but can also often yield a much simpler “model” for
explaining why observations are classified or predicted in a
particular manner. The process of computing classification
and regression trees can be characterized as involving four
basic steps: specifying the criteria for predictive accuracy,
selecting splits, determining when to stop splitting, and
selecting the “right-sized” tree.

3.4.2. C4.5 Classification Method. C4.5 is also a decision-
tree-based classification algorithm, developed by Quinlan
[39, 40]. It has been developed based on the fundamentals
of the ID3 machine-learning algorithm [41]. The C4.5
computes the input data to form a decision tree based on
a divide-and-conquer strategy. In C4.5 each node in the
tree is associated with a set of cases. Every case is assigned
weights to deal with unknown attribute values. At first the
entire training set is started off as a root where the weights
assigned to all cases are 1.0. From here the tree computes the
information gain presented by each attribute of the training
set. For discrete attributes the information gain is relative
to the splitting of case at every node with distinct values.
The attribute with the highest information gain is selected
as a test node. After this the divide-and-conquer approach
consists of recursively splitting the attributes at each node
to form children node based on the information gain of
the attribute at each node. C4.5 has been used for several
applications in healthcare informatics [42, 43].

3.4.3. Random Forest. Breiman developed random forest
classification method which is basically an ensemble classifier
that consists of multiple decision trees [44]. It is a very
accurate classifier which displays great success with multiple
datasets. It is especially useful with data mining extremely
large datasets and databases. Unlike the other two mentioned
tree-based classifiers random forest uses multiple trees or
a forest to develop decisions and classifications. Although
in this study it is being used to develop models based on
supervised data, random forest can be used for unsupervised

Table 1: S-transform feature classification results of ECG.

S-transform feature
classification result ECG

Accuracy
(average)

Specificity
(average)

Sensitivity
(average)

C4.5 74.22% 67.31% 81.13%

Classification via regression 71.63% 63.11% 80.15%

Random forest 76.96% 66.73% 87.20%

data learning as well [45, 46]. Random forest is also popular
for applications in biosignal and biomedicine [46].

All of the above-mentioned machine-learning methods
are known to have comparable performance to methods such
as neural networks in physiological and medical applications
[47]. Moreover, methodologies such as neural networks,
when analyzed using statistical learning theory, are shown
to be susceptible to the issue of overfitting [48–50], hence
further encouraging the use of the methods described above,
in particular when the number of data or subjects used for
training and testing is limited.

In the machine learning step, the three mentioned
classifiers are independently implemented on the extracted
features of ECG and EEG and the results of each of these
classifiers are compared. This is based on a setup developed
earlier during initial stages of this experiment. For this
experiment ECG signal from 21 subjects and EEG signal
from 12 subjects have been collected.

4. Results and Conclusion

The classification model for each of the classifiers is devel-
oped using “by-subject” or “leave one subject out” based
training and test sets. In this type of training and testing,
out of the given number of subject say x, x − 1 subjects are
subjects used for training and developing the classification
model, while the xth subject’s data is used for testing the
developed model. This procedure is repeated in a round
robin fashion until each of the subject’s data in the total
collected data has been tested with a classification model
developed exclusively for it. In this section for each type of
classification method used, the average accuracies and other
statistics have been presented over all the subjects.

4.1. Classification Results of ECG Using S-Transform. The
results obtained from the analysis and classification of the
computed features from Stockwell transform (ST) from the
ECG signal are presented.

Table 1 presents the overall average accuracies, specifici-
ties, and sensitivities of the three classification algorithms for
ECG testing and training models across all subjects.

It can be seen that overall accuracy of random-forest-
based classification model was more successful than both
C4.5 and classification via regression models with a classi-
fication accuracy of nearly 77%.

4.2. Classification Results of EEG Using Discrete Wavelet
Transform. The features computed from the analysis of
the EEG signal using discrete wavelet transform is used
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Table 2: DWT features classification results of EEG.

DWT feature classification
result EEG

Accuracy
(average)

Specificity
(average)

Sensitivity
(average)

C4.5 80.93% 81.11% 80.96%

Classification via regression 82.5% 76.74% 88.26%

Random forest 85.70% 79.74% 91.66%
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Figure 9: ECG versus EEG classification comparison.

to develop different classification models based on the
three described classification methods. The results of these
classification are presented in Table 2 .

Table 2 presents the overall average accuracies, specifici-
ties, and sensitivities of the three classification algorithms
for EEG testing and training models across all subjects. It
can be seen that overall accuracy of random-forest-based
classification model was more successful than both C4.5
and classification via regression models with a classification
accuracy of nearly 86% for the EEG feature set.

4.3. ECG versus EEG Classification Comparison. The results
from the ECG feature classification of all three classifier are
compared against the classification results of the EEG.

From Figure 9 it can be seen that although EEG
inherently has more information to indicate the presence
of attention or the lack of it, ECG signal analysis and
classification are not very far behind. Random Forest seems
to work best for both modalities given an average accuracy of
77% for ECG and 86% for EEG.

5. Conclusion

The analysis of the EEG signals is primarily to set a bench-
mark against which the analysis of the physiological features
from the armband can be compared. This system as it has
been proposed primarily focuses on the electrocardiogram
(ECG) signal and various methods of decomposition are
performed on it. The following are the conclusive statements
that can be deduced from the systems performance so far.

(i) It can be seen that to a reasonable level of accuracy
the system is able to identify cognitive attention in
comparison with that detected by the EEG collected
in the same experiment. The focus of this proposal
was entirely on ECG alone, and with just this signal it
was demonstrated that its classification accuracy was
comparable to that of EEG.

(ii) Amongst the various machine learning methods
investigated, “classification via regression” seems to
perform the best on the combined feature set. How-
ever, it was also demonstrated that “random-forest-”
based classification works on the subset of features for
each different decomposition and analysis method.

(iii) This study also establishes that ECG alone can be
used in analyzing cognitive attention and that the
fluctuation of attention does have a translated impact
on the Cardiac rhythm of an individual.

Here are some of the future work planned to improve the
system’s classification and prediction performance.

(i) A larger data set is needed to further validate this
experiment. A larger data set is expected to provide
a more robust classifier model.

(ii) More novel features are going to be developed and
tried for the feature extraction step after decomposi-
tion. Having a more diverse base of features usually
provides insight into some connate characteristics of
the signal which might not be openly evident.

(iii) Feature pruning and other classification methods
need to be tried for increasing the accuracy.
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