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Abstract

Working memory, a core function underlying many higher-level cognitive processes, requires cooperation of
multiple brain regions. White matter refers to myelinated axons, which are critical to interregional brain com-
munication. Past studies on the association between white-matter integrity and working memory have yielded
mixed findings. Using voxelwise tract-based spatial statistics analysis, we investigated this relationship in a
sample of 328 healthy adults from 25 to 80 years of age. Given the important role of dopamine (DA) in work-
ing-memory functioning and white matter, we also analyzed the effects of dopamine-related genes on them.
There were associations between white-matter integrity and working memory in multiple tracts, indicating that
working-memory functioning relies on global connections between different brain areas across the adult life
span. Moreover, a mediation analysis suggested that white-matter integrity contributes to age-related differen-
ces in working memory. Finally, there was an effect of the COMT Val158Met polymorphism on white-matter in-
tegrity, such that Val/Val carriers had lower fractional anisotropy values than any Met carriers in the internal
capsule, corona radiata, and posterior thalamic radiation. As this polymorphism has been associated with do-
paminergic tone in the prefrontal cortex, this result provides evidence for a link between DA neurotransmission
and white matter. Together, the results support a link between white-matter integrity and working memory,
and provide evidence for its interplay with age- and DA-related genes.
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Significance Statement

Working memory, a core function underlying many higher-level cognitive processes, requires cooperation
of multiple brain regions. Using tract-based spatial statistics analysis, we found associations between
white-matter integrity and working memory in multiple tracts in a sample of 328 healthy participants from 25
to 80 years old. This result indicates that working-memory functioning relies on global connections between
different brain areas across the adult life span. Moreover, a novel voxelwise mediation analysis suggested
that white-matter integrity contributes to age-related differences in working memory, with the strongest ef-
fect being observed in the corpus callosum and superior longitudinal fasciculus. Finally, we found an effect
of the COMT Val158Met polymorphism on white-matter integrity, providing evidence for a link between DA
neurotransmission and white matter.
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Introduction
Working memory (WM) refers to a capacity-limited sys-

tem, in which information is maintained for short periods
of time and manipulated or updated to achieve task-related
goals (Baddeley, 1986, 1992). Successful WM performance
relies on the interaction among multiple cognitive processes
and has been linked to engagement of a widespread network
of brain regions, such as the frontoparietal network (Kastner
and Ungerleider, 2000; Curtis and D’Esposito, 2003; Koenigs
et al., 2009) and basal ganglia (O’Reilly, 2006; Dahlin et al.,
2008; McNab and Klingberg, 2008). Other brain regions,
such as visual cortex and temporal regions may also be in-
volved when visual or semantic stimuli are encoded and
maintained in WM (Ranganath et al., 2004; Axmacher et al.,
2007).
Diffusion tensor imaging (DTI) assesses in vivo white-

matter integrity, which might reflect the efficiency of com-
munication among brain networks. A few DTI studies
have reported associations between white-matter integ-
rity and WM performance (Deary et al., 2006; Davis et al.,
2009; Kennedy and Raz, 2009a; Charlton et al., 2008,
2010b). However, their effect sizes are generally small,
and there are inconsistencies regarding the localization of
the effects. Moreover, it remains unclear whether the as-
sociations between white matter and WM are localized
or rather are widespread across multiple tracts, and
whether the associations vary across the entire brain (i.e.,
follow an anterior–posterior or inferior r–superior gradi-
ent). Functional magnetic resonance imaging (fMRI) stud-
ies have reported the strongest brain activation in the
most demanding WM conditions (Veltman et al., 2003;
Nagel et al., 2011). It is therefore possible that more de-
manding WM tasks require stronger white-matter connec-
tivity to facilitate interaction between distal brain regions.
There is no study to date exploring the link between differ-
ent levels of WM demand and white matter.
Relationships of white-matter integrity to other cogni-

tive domains, such as episodic memory and verbal ability,
are typically weak (Vernooij et al., 2009; Salami et al.,
2012). However, strong associations with processing
speed have been demonstrated (Salami et al., 2012;
Lövdén et al., 2014; Kuznetsova et al., 2016). There is a
substantial shared variance between WM and processing
speed (Oberauer et al., 2000; Ackerman et al., 2002),
although it remains unknown whether potential white mat-
ter–WM associations are, at least partly, independent of
processing speed.

Many previous studies have shown WM impairment
with advancing age (Hultsch et al., 1992; Park et al.,
2002). The underlying cause of age-related deficits is
not fully understood. One previous study showed that
age-related changes in global white-matter integrity ex-
plained 11% of the age-related WM decline (Charlton
et al., 2010a). It remains unknown which white-matter
tracts might account for age-related impairment in WM.
Using a novel approach, voxelwise mediation analysis,
the current study aimed to delineate the whole-brain
pattern of white-matter integrity in relation to age-re-
lated differences in WM.
Dopamine (DA) plays a critical role in WM (Brozoski et

al., 1979; Landau et al., 2009; Cools and D’Esposito,
2011) and has been associated with white-matter integrity
(Rieckmann et al., 2016). Several genetic polymorphisms
have been related to DA receptor density in cortical and
subcortical brain regions, including DRD2/ANKK1 Taq1A,
DRD2-C957T, and COMT-Val158Met (Lotta et al., 1995;
Thompson et al., 1997; Pohjalainen et al., 1998; Jönsson
et al., 1999; Hirvonen et al., 2004, 2009a,b). These poly-
morphisms have been associated with WM functioning
(Xu et al., 2007; Berryhill et al., 2013; Nyberg et al., 2014).
For example, carriers of the COMT Met allele, which has
been associated with higher DA levels in the prefrontal
cortex (PFC; Lotta et al., 1995), had greater white-matter
integrity (Papenberg et al., 2015), and had higher effi-
ciency in the dorsolateral PFC during WM performance
(Nyberg et al., 2014) compared with Val carriers. The ge-
netic effects were more pronounced in older compared
with younger adults (Papenberg et al., 2015; Persson et
al., 2015; Li et al., 2019), which is consistent with the re-
source modulation hypothesis. This hypothesis asserts
that the relationship of brain resources to cognitive
performance is nonlinear: genetic effects are thought
to be larger when brain resources decrease, such as in
old age (Lindenberger et al., 2008). To our knowledge,
only two studies have shown the genetic effects of
COMT (Papenberg et al., 2015) and C957T (Markett et
al., 2017) on white matter; the effect of Taq1A has not
been examined.
The main questions addressed in this study are as fol-

lows. (1) Is WM associated with white-matter integrity?
(1a) If so, what is the spatial pattern of these associations?
(1b) Do the associations change across WM load? And
(1c) are the associations independent of the effects of
processing speed? (2) Does white-matter integrity con-
tribute to age differences in WM? And (3) do three DA-re-
lated genes, DRD2/ANKK1 Taq1A, DRD2-C957T, and
COMT-Val158Met, affect white-matter integrity, WM per-
formance, and the associations between white matter and
WM? These questions were investigated for the first time
using a voxelwise whole-brain approach across the adult
life span.

Materials and Methods
Participants
The current sample is drawn from a longitudinal popula-

tion-based study, the Betula project (Nilsson et al., 1997,
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2004). This project uses an age-homogeneous, narrow
age cohort (NAC) design, where chronological age is held
constant for each cohort (e.g., participants were recruited
at ages 35, 40, 45). The purpose of using a NAC design is
to decrease confounding effects introduced by different
age cohorts, such as education and nutritional level
(Rönnlund et al., 2005; Sternäng et al., 2008). The initial
fMRI sample included 372 participants. Twenty partici-
pants were excluded because of a diagnosis of dementia
(4 participants), stroke (10 participants), epilepsy (2 partic-
ipants), Parkinson’s disease (1 participant), multiple scle-
rosis (1 participant), and hydrocephalus (2 participants).
Study participants provided written informed consent,
and the protocol was approved by the Ethical Review
Board in Umeå.
Dementia status was assessed at baseline and reas-

sessed every 5years using a three-step procedure, accord-
ing to the Diagnostic and Statistical Manual of Mental
Disorders, fourth edition (American Psychiatric Association,
1994). First, an overall evaluation was performed by an ex-
amining physician. The diagnosis was then compared
with a second independent diagnosis based on scores
from several cognitive tests. In cases of disagreement, a
supervising physician made a third and final diagnosis.
The cognitive assessment used in the diagnoses in-
cluded the Mini-Mental State Examination (MMSE;
Folstein et al., 1975), the Clock test (Manos and Wu,
1994), and tests of episodic memory, working memory,
processing speed, semantic memory, and fluid intelli-
gence. The WM task of primary interest in this study was
not used for diagnostic purposes.
Nine additional participants were excluded because

of deviant brain morphology (three participants), head
surgery (two participants), and vascular brain lesions
and infarcts (four participants). Three participants with-
out complete DTI data and 12 subjects with measure-
ment artifacts were also excluded. The final sample
consisted of 328 participants. All participants’ MMSE
scores were �24, and their cognitive test results were
within normal ranges for their age cohort. Thirteen par-
ticipants without genetic data, 12 participants without
WM performance data, and 6 participants without proc-
essing speed data were excluded from the correspond-
ing analyses.

Cognitive measurements
In the Betula dataset, the cognitive test battery cov-

ered a wide range of domains, including working mem-
ory, processing speed, fluid intelligence, verbal
fluency, and episodic memory (Pedersen et al., 2021).
The data for fluid intelligence, verbal fluency, and epi-
sodic memory have been reported previously (Salami
et al., 2012). The current study focused on WM and
processing speed.

Working memory
An in-scanner WM task was used that included the

following three conditions with different cognitive
loads: manipulation, maintenance, and control. Note
that in the current study, WM load refers to different

levels of cognitive demand, and not necessarily to the
number of items kept in WM. In the manipulation con-
dition, participants were shown two target letters and
instructed to generate and keep the subsequent letters
in the alphabet in memory. After a fixation star, a probe
letter with a question mark was presented and partici-
pants were asked to decide whether the probe letter
was a letter that occurred subsequent to any of the
two target letters in the alphabet. In the maintenance
condition, participants were shown four target letters
and were asked to keep these letters in memory. The
task was to decide whether the probe letter was the
same as any of the target letters. In the control condi-
tion, four identical letters were presented, and partici-
pants were instructed to decide whether the probe
letter was the same as the target letter. Accuracy in the
three conditions was used to index WM performance
under the three loads.

Processing speed
Participants undertook the following three processing

speed tests: letter-digit substitution, pattern comparison,
and letter comparison (Nilsson et al., 1997). For letter-
digit substitution, participants were shown letters on
paper and were required to write down the paired digits
for each letter according to a letter-digit transformation
key shown on the top of the paper. The score was the
number of correct digits that the participant managed to
fill in during 1min (maximum=125 digits). In the pattern-
comparison task, participants were instructed to compare
pairs of abstract line figures during 30 s (maximum=30
figures). The letter-comparison task involved comparing
pairs of nonword strings of three to nine letters and judg-
ing whether they were the same or different. The score
was the number of correctly judged pairs during 30 s
(maximum=21 pairs). We used the sum of the z-trans-
formed scores of the three processing speed tests in the
following analyses, as this increases reliability and allows
for a more accurate estimation of the construct under
investigation.

Genotyping
All participants from the initial fMRI sample under-

went DNA extraction and genotyping of the candidate
genes. Genotyping was performed on a platform de-
scribed previously (Kauppi et al., 2011). Primers for
PCR amplification were designed using the Sequenom
MassARRAY System Designer software. Participants
with a sample call rate of,0.9 or indications of geno-
typing errors were excluded. The genotype distribu-
tions for all three polymorphisms did not deviate from
Hardy–Weinberg equilibrium (x = 0.75, 2.18, and 0.05;
r = 0.19, 0.56, and 0.47 for DRD2/ANKK1-Taq1A, DRD2-
C957T, andCOMT-Val168Met, respectively).

Image acquisition and preprocessing
DTI data were collected on a 3 T scanner (Discovery

MR750, General Electric) with a 32-channel head coil.
Diffusion-weighted data with a spatial resolution of 0.98�
0.98� 2 mm were acquired by a single-shot, spin-
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echoplanar, T2-weighted sequence. The sequence pa-
rameters were as follows: TR=8.0 s; 64 slices with no gap
in between; 256� 256 matrix (FOV=250 mm); 90° flip
angle; TE=84.4ms; three repetitions of 32 independent
directions; b =1000 s/mm2; and six b= 0 images. The ex-
perimental design consisted of three identical DTI ses-
sions. All participants were examined on the same
scanner with no software or hardware update during the
data collection period.
Diffusion-weighted imaging (DWI) data were analyzed

using the University of Oxford Center for Functional Magnetic
Resonance Imaging of the Brain (FMRIB) Software Library
(FSL) package (http://www.fmrib.ox.ac.uk/fsl). Before image
preprocessing, three sessions of the subject-specific diffu-
sion acquisitions were concatenated into a 4D file for each
subject. Then the raw images were corrected for eddy cur-
rent-induced distortions and headmovements by affine align-
ing them to the first no-diffusion-weighted image (b=0). The
transformation matrix was then used to rotate bvec files
(Jenkinson and Smith, 2001). A binary brain mask was gener-
ated using the first no-DWI with the Brain Extraction Tool to
exclude nonbrain voxels. Finally, the preprocessed DWI files
were fitted to the DTI model. The tensor matrix with infor-
mation in three directions (eigenvalues) was obtained
for each voxel within the brain mask. Voxelwise maps of
fractional anisotropy (FA), mean diffusivity (MD), radial
diffusivity (RD), and axial diffusivity (AD) were generated
using the three eigenvalues.

Tract-based spatial statistics
We used tract-based spatial statistics (TBSS; Smith et

al., 2006) to analyze the FA/MD/AD/RD images. First, all
FA images were transformed to Montreal Neurologic
Institute (MNI) space, using the high-resolution standar-
dized image (FMRIB158_FA) as a target. This method only
applies registration once per subject and provides highly
accurate realignment. Next, the transformed FA images
were averaged to produce a mean FA image for the entire
group. A single 4D file was created by merging all trans-
formed FA images. The mean FA image was fed into the
tract-skeleton generation program to produce a white-
matter tract skeleton, which represents the white-matter
tracts common to all subjects. Then a binary skeleton
mask was created by thresholding the mean FA skeleton
image with FA values .0.2. Finally, each subject’s FA
image was projected onto the group skeleton mask. MD/
RD/AD images were processed using a similar method as
for FA images. Voxelwise statistics were then run on the
skeletonized images. The current study focuses mainly on
FA, which is the most commonly used DTI variable.

Statistical analyses
For each DTI measurement, general linear models (GLMs)

were fitted to the data to investigate the relationship of
white-matter integrity to cognitive performance and genetic
factors. For each model, the Randomise toolbox in FSL was
used to assess the regression coefficients for each voxel
and to generate t statistic maps. Threshold-free cluster en-
hancement (TFCE) was then applied on the t maps. The

TFCE algorithm uses sensitive cluster-based inference with-
out a need for a primary cluster-forming threshold. Because
the null distribution of the TFCE output was unknown, a
nonparametric permutation test was used to build up the
null distribution, and to calculate corrected p-values for
each voxel. Five thousand permutations were performed for
each contrast, resulting in a minimum possible p-value of
0.0002 (1/p). An FWE-corrected p-value of ,0.05 was con-
sidered statistically significant.

Associations between white-matter indices andWM
We first examined the associations between FA and the

three WM conditions with age and sex as nuisance varia-
bles. WM load effects were examined by including pairs
of the WM conditions (manipulation, maintenance, and
control) in GLMs. The correlation coefficients were com-
pared among the three conditions for each voxel. We in-
cluded processing speed performance as an additional
covariate in the models to investigate whether potential
FA–WM associations were independent of speed. To ex-
plore the spatial pattern of FA–WM links, the t statistics
were averaged across all voxels within the skeleton for
each slice along the anterior–posterior or inferior–superior
axis.

Voxelwise mediation analysis
We investigated whether white-matter integrity medi-

ated the age effects on WM and the spatial pattern of
these potential mediation effects using a voxelwise ap-
proach (Lett et al., 2017). We first examined the associa-
tions between age and white-matter indices using GLM
and created a set of masks that demonstrated significant
age effects (only negative age effects on white matter
were observed). The following mediation analysis was
conducted within the masks. The mediation effect was
estimated using a Sobel test for each voxel (Eq. 1 below),
in which a and b are two coefficients of the paths (from
age to white matter and from white matter to WM) and Sa

and Sb are the SDs of the coefficients. The voxelwise me-
diation analysis was conducted using the TFCE-media-
tion package (Lett et al., 2017) in Python (https://github.
com/trislett/TFCE_mediation). First, the covariate (sex)
was regressed out for the independent variable (age), the
dependent variables (WM), and for the mediator (white-
matter integrity). After the Sobel z values were calculated
for each voxel using Equation 1, TFCE was applied on the
z map. Then 5000 permutations were conducted on the
resulting z images. FWE-corrected p-values were calcu-
lated based on the permutation distribution.
We compute the change in effect sizes before and after

mediation. First, a regression model of age and sex on
WM was fitted to estimate the total variance of WM ex-
plained by age (i.e., r2 before mediation). The FA value
with the maximal mediation effects was extracted for
each participant. Then both the FA values extracted from
the last step, age and sex, were included in a second-
step regression model. This was done to evaluate the
total WM variance accounted for by both FA and age (i.e.,
r2 after mediation). The change in effect was calculated by
(r2 after mediation – r2 before mediation)/r2 before media-
tion, as follows:
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zvalue ¼ a�b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�s2a 1 a2�s2b 1 s2a�s2b

p : (1)

Genetic effects
We examined the effects of the DRD2/ANKK1-Taq1A,

DRD2-C957T, andCOMT Val158Met polymorphisms onWM
performance and white matter integrity by comparing the ge-
netic groups, controlling for age and sex using GLMs. The
slopes of the relation between white-matter and WM per-
formance were then compared among genetic groups, with
age and sex as covariates. To further investigate whether the
genetic effect is magnified in older adults, we separated the
whole sample into younger (�60 years) and older (.60 years)
age groups. This was done to ensure that the two age groups
were as similar as possible in sample size (n=34, 42, 73; and

35, 45, 86 for ValVal, MetMet, and ValMet in younger and
older groups, respectively). Analysis of covariance was used
to investigate age� gene interactions.

Results
Demographic information is shown in 10 year intervals to il-

lustrate the age distribution (Table 1), which was skewed to-
ward older participants. There is a significant age� condition
interaction (F(7.65,474.28)=13.22, p, 0.0001, h2 = 0.18).
Follow-up tests revealed that the effects of conditions were
observed in age groups .55 years, in which WM perform-
ance in manipulation was worse than in maintenance and
control conditions (p values, 0.001 for all comparisons).
Demographic information across genotypes for the three
polymorphisms is shown in Table 2. No genetic effects were

Table 1: Demographic information across age groups

25–30 years
(n=18)

35–40 years
(n=18)

45–50 years
(n=19)

55–60 years
(n=100)

65–70 years
(n=104)

75–80 years
(n=89)

Sex (female/male) 9/9 9/9 10/9 48/52 54/50 43/26
Education, years 15.1 (2.1) 15.9 (2.7) 13.7 (2.6) 14.4 (3.2) 12.6 (4.3) 9.5 (3.5)
MMSE 28.2 (1.4) 28.9 (1.1) 28.6 (1.3) 28.2 (1.4) 28 (1.6) 27.6 (1.6)
Manipulation, accuracy 16.8 (1) 17 (1.2) 16.8 (0.9) 16.1 (1.6) 15 (2.9) 12.5 (3.7)
Maintenance, accuracy 17.6 (0.8) 17.8 (0.4) 17.6 (0.7) 17.2 (1.3) 16.7 (1.8) 15.8 (2.8)
Control, accuracy 17.9 (0.2) 17.7 (0.6) 17.8 (0.4) 17.7 (0.6) 17.3 (1.6) 16.8 (1.9)
Processing speed, accuracy 2.7 (2.5) 2.3 (3.1) 2.3 (1.9) 0.9 (2) �0.6 (1.9) �2.4 (2)

Values are given as mean (SD).

Table 2: Genotype-specific demographic information

DRD2/ANKK1-Taq1A GG (n=208) GA (n=93) AA (n=14) Statistics
Age 62 (13.2) 60.1 (14.4) 60.7 (13.6) 1.04a

Sex (female/male) 118/90 47/46 4/10 4.7b

Education, years 13 (4.1) 12.8 (4.1) 13.4 (4) 0.002a

MMSE 28.1 (1.5) 28.1 (1.4) 28.2 (1) 0.003a

Manipulation, accuracy 15.1 (3) 15.3 (2.7) 15 (2.7) 0.11a

Maintenance, accuracy 16.8 (1.9) 16.9 (1.9) 16.7 (1.8) 0.001a

Control, accuracy 17.4 (1.4) 17.4 (1.2) 17.4 (1.4) 0.015a

Processing speed, accuracy �0.1 (2.4) 0.3 (3) 0.2 (2.3) 1.22a

DRD2-C957T TT (n=93) CT (n=168) CC (n=54) Statistics
Age 60.9 (14) 60.9 (14) 62 (12.6) 0.52a

Sex (female/male) 53/40 92/76 24/30 2.34b

Education, years 13 (4.1) 12.8 (4.2) 13.3 (3.9) 0.16a

MMSE 28.3 (1.6) 28.1 (1.4) 27.9 (1.4) 0.35a

Manipulation, accuracy 15.5 (3.1) 15 (2.8) 15 (2.6) 1.16a

Maintenance, accuracy 16.9 (2) 16.8 (2.1) 16.8 (1.5) 0.04a

Control, accuracy 17.4 (1.4) 17.4 (1.5) 17.4 (1.2) 0.007a

Processing speed, accuracy �0.1 (2.8) �0.02 (2.5) 0.35 (2.4) 0.008a

COMT-Val168Met ValVal (n=69) ValMet (n=159) MetMet (n=87) Statistics
Age 61.6 (12.9) 61.5 (13.5) 61.6 (14.2) 0.001a

Sex (female/male) 37/32 89/70 43/44 0.97b

Education, years 13.1 (3.4) 13 (4.2) 12.7 (4.3) 0.19a

MMSE 28.1 (1.4) 28.1 (1.5) 28.1 (1.5) 0.11a

Manipulation, accuracy 15 (2.8) 15.2 (3.1) 15.2 (2.7) 0.032a

Maintenance, accuracy 17 (1.4) 16.8 (2.1) 16.8 (1.9) ,0.001a

Control, accuracy 17.5 (1) 17.4 (1.5) 17.4 (1.1) 0.071a

Processing speed, accuracy 0.1 (2.6) 0.2 (2.7) �0.3 (2.5) 2.1a

Values are given as mean (SD).
aF value.
bx2 value.
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observed for WM performance, processing speed, or any de-
mographic variables (p values. 0.1).

White-matter microstructure andWM performance
FA was associated with WM performance for all three

WM conditions in multiple white-matter tracts (Fig. 1). The
voxels that showed significant positive associations
with FA cover 36.5% (manipulation), 29.2% (mainte-
nance), and 5.5% (control) of skeleton voxels, respec-
tively. As can be seen in Figure 1, tracts with significant
associations include the corpus callosum (genu, body,

and splenium), internal capsule (anterior, posterior, and
the retrolenticular part), external capsule, corona radiata
(anterior, superior, and posterior), and superior longitudi-
nal fasciculus. Figure 2 shows the correlation coefficients
between mean FA across the entire skeleton and WM per-
formance. All associations are independent of age and
sex. Correlation coefficients among mean values of MD/
RD/AD and working-memory performance are reported in
Table 3.
Although the white matter–WM associations were

stronger and more widespread in the high-WM load com-
pared with the low-WM load condition (Figs. 1, 2), no

Figure 1. Positive associations between FA and WM performance in manipulation, maintenance, and control conditions, controlling
for age and sex. Significant voxels (p, 0.05) are overlaid on the T1-weighted image, with yellow color indicating lower p values.
Coordinates are given according to the MNI152 template.

Figure 2. Positive relationship between mean FA across the entire skeleton and working-memory performance in manipulation (2
outliers removed, total n=314), maintenance (7 outliers removed, total n=309), and control conditions (10 outliers removed, total
n=306). Outliers are defined as FA or WM values .3.5 SDs from the mean. All the values are age- and sex-adjusted residuals.
Confidence intervals (shaded area) are given by 2 � standard error.
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significant differences among WM conditions were found.
Since the load effects onWM performance were observed
only in participants .55 years old, we repeated the analy-
ses on this subsample, but found no load effect in these
participants either.
After controlling for processing speed, age, and sex in

GLMs, the associations between FA and WM manipula-
tion/maintenance became less widespread but remained
significant in multiple white-matter tracts (Fig. 3), includ-
ing corpus callosum, coronal radiata, superior longitudinal
fasciculus, and posterior thalamic radiation. The FA–con-
trol associations largely disappeared after controlling for
processing speed, but remained significant in parts of the
corpus callosum (body and splenium) and internal capsu-
le. These results suggest that the association between
white matter and WM, especially in high WM-demanding
conditions, is partly independent of individual differences
in speed.
Slice-by-slice profiles of mean t values did not reveal

stronger FA–WM associations in anterior compared with
posterior brain regions in any WM condition, and the

associations did not follow a superior–inferior gradient ei-
ther (Fig. 4).
We present the patterns of white matter–WM manip-

ulation associations for the DTI parameters in Figure 5.
FA, MD, and RD showed more widespread associa-
tions with WM in the skeleton compared with AD. The
most prevalent relationships were positive associa-
tions for FA, and negative association for MD and RD,
which occupied 35% of all significant voxels in the
skeleton.

The association between age andWM performance is
mediated by white-matter microstructure
Because there was no WM-load effect on FA–WM

associations, we next focused on the manipulation
condition to reduce the number of comparisons. We
found that FA mediated the negative relationship be-
tween age and performance in the manipulation con-
dition. This mediation effect was observed in 34% of
the corpus callosum, 24% of the corona radiata, 38%
of the posterior thalamic radiation, 10% of the exter-
nal capsule, and 47% of the superior longitudinal fas-
ciculus (Fig. 6). We then evaluated the mediation
effects of FA within the significant voxels and found
that the relationship between age and WM was largely
attenuated (t = �8.99; CI = �0.12, �0.78; p, 0.001)
after adjusting for individual differences in white-mat-
ter integrity (t = �7.38; CI = �0.11, �0.64; p, 0.001;
10.9% r2 drop).

Figure 3. Positive associations between FA and WM performance across conditions, controlling for processing speed, age, and
sex. After controlling for speed, the associations between WM and FA became less widespread, but remained significant in all three
conditions. Significant voxels (p, 0.05) are overlaid on the T1-weighted image, with yellow color indicating lower p values.
Coordinates are given according to the MNI152 template.

Table 3: Correlation coefficients between MD/RD/AD and
working-memory performance

Manipulation Maintenance Control
r p r p r p

MD �0.15 0.01 �0.07 .0.05 �0.11 .0.05
RD �0.16 0.005 �0.1 .0.05 �0.1 .0.05
AD �0.09 .0.05 0.002 .0.05 �0.09 .0.05
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Genetic effects
Compared with COMT ValVal carriers, ValMet het-

erozygotes had higher FA in several white-matter
tracts, as follows: internal capsule, 12.7% of the whole
skeletonized tract; corona radiata, 4.5%; posterior
thalamic radiation, 14%; sagittal stratum, 12%; and
superior longitudinal fasciculus, 4.9%. MetMet car-
riers had higher FA values than ValVal carriers, and
lower FA values than ValMet heterozygotes, but these
differences were not significant (lowest p values are
0.13 and 0.25 respectively). No significant associa-
tions were found between FA and the other two genet-
ic polymorphisms. We further investigated the age �
COMT interaction for FA and found that genetic effects
were observed in the group of older adults only.
Compared with ValVal carriers, ValMet carriers had

higher FA in 25.7% of the internal capsule, 24.2%
of the corona radiata, 42.1% of the posterior thalamic
radiation, 66.4% of the sagittal stratum, and 26.5%
of the superior longitudinal fasciculus in older adults
(Fig. 7). In older adults, MetMet carriers had higher
FA than ValVal carriers, and lower FA values than
ValMet heterozygotes, but these differences were
not significant (lowest p values are 0.06 and 0.1
respectively).

Discussion
The current study investigated associations between

white-matter integrity and WM using TBSS. White-matter
integrity (FA/MD/RD) was associated with WM perform-
ance across all three WM loads. Associations were

Figure 4. Spatial pattern of the associations between FA and manipulation, maintenance, and control conditions. Slice-by-slice
profiles of mean t statistics in axial plane (top) and coronal plane (middle), and t statistics for the whole skeleton (bottom).
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Figure 5. Overlap of voxels showing significant (p, 0.05) white matter–WM (manipulation) associations for each DTI measurement.
Different segments illustrate the proportion of voxels showing the association between WM manipulation with FA only (white), MD
(gray), RD (blue), and AD (red).

Figure 6. Mediation effects of FA on the association between age and working-memory performance (manipulation). Significant
voxels (p,0.05) are overlaid on the T1-weighted image, with yellow color indicating lower p values. Coordinates are given accord-
ing to the MNI152 template.
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observed in multiple white-matter tracts, including corpus
callosum, internal capsule, external capsule, corona radi-
ata, posterior thalamic radiation, and superior longitudinal
fasciculus. There was no evidence that the associations
followed an anterior–posterior or superior–inferior gradi-
ent. These results indicate that WM might rely on connec-
tions of multiple regions across the whole brain. The
associations were independent of age and sex, and re-
mained partly significant after controlling for processing
speed. Furthermore, white-matter integrity mediated the
associations between age and WM, suggesting that com-
promised white-matter integrity partly accounts for less
efficient WM processes in aging. Finally, limited, yet sig-
nificant, effects of the COMT Val158Met polymorphism
on FA were observed, which support the role of dopami-
nergic systems in white-matter integrity.
The finding that WM performance was positively asso-

ciated with FA and was negatively associated with MD is
consistent with past research linking white-matter integ-
rity to various cognitive domains (O’Sullivan et al., 2001;
Charlton et al., 2006; Grieve et al., 2007; Davis et al.,
2009; Perry et al., 2009; Vernooij et al., 2009; Kennedy
and Raz, 2009b; Gold et al., 2010). The current study
adds new insights to this research field. Compared with
previous work, we were able to demonstrate these white
matter–WM associations in a large population-based
sample using a voxelwise TBSS approach. As noted, a
voxelwise approach should be more sensitive in detecting
associations compared with an ROI approach. Indeed,
associations between white-matter integrity and WM after
controlling for age were observed across a major portion
of the skeleton, compared with the smaller number of
tracts found in previous ROI analyses (Kennedy and Raz,
2009a). The fact that the associations cover multiple
white-matter tracts rather than being localized to specific

pathways is also consistent with the notion that WM in-
volves multiple interacting cognitive processes and re-
quires dynamic cross talk among a large number of brain
regions (Rottschy et al., 2012; D’Esposito and Postle,
2015; Eriksson et al., 2015; Liang et al., 2016; Salami et
al., 2018).
Associations between white matter and WM were ob-

served for the genu, body, and splenium of the corpus cal-
losum. These patterns corroborate previous work (Grieve et
al., 2007; Kennedy and Raz, 2009a) and point to a critical
role for these regions in across-brain interhemispheric com-
munication associated with WM processes (Avelar-Pereira
et al., 2020). The associations demonstrated in the superior
longitudinal fasciculus reflect that long tracts connecting
frontal to more posterior regions within one hemisphere are
important to WM. This is in line with fMRI work showing that
frontoparietal regions are critical to higher cognitive func-
tions, including WM (Kastner and Ungerleider, 2000; Rypma
and D’Esposito, 2000; Curtis and D’Esposito, 2003; Chee
and Choo, 2004; Collette et al., 2005; Koenigs et al., 2009).
Moreover, in the current study, FA values in the superior lon-
gitudinal fasciculus were more strongly associated with WM
in themanipulation condition than in themaintenance condi-
tion. Compared with manipulation, the maintenance condi-
tion taxes mainly short-term memory storage rather than
switching and shifting. The observed patterns are thus con-
sistent with previous findings showing a link between
switching/shifting and white-matter integrity in the superior
longitudinal fasciculus (Grieve et al., 2007; Perry et al.,
2009), frontoparietal regions (Gold et al., 2010), and external
capsule (Salami et al., 2018). Associations were also seen in
the posterior thalamic radiation, which connects thalamus
and visual cortex. These results are in agreement with find-
ings showing a role of the ventral visual pathway in process-
ing and storing information in WM (Ranganath et al., 2004).

Figure 7. Effects of COMT on FA in the whole sample and in the older group. Significant voxels (p, 0.05) are overlaid on the T1-
weighted image, with yellow color indicating lower p values. Coordinates are given according to the MNI152 template.
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Consistent with the known role of the striatum in WM
functions (Cools et al., 2004; O’Reilly, 2006; Dahlin et al.,
2008; McNab and Klingberg, 2008), we also found that
white matter in the internal capsule was associated with
WM performance. This particular region contains white-
matter fibers connecting the lentiform and caudate nuclei,
and fibers connecting the cortex and subcortical regions,
such as caudate, putamen, and thalamus. Previous stud-
ies suggest that the PFC and the basal ganglia collaborate
and serve a gatekeeping function in WM tasks. According
to this view, the PFCmaintains current goal-relevant infor-
mation while the basal ganglia sends updating or shifting
signals to the PFC to filter out irrelevant information and
to update new WM representations (Frank et al., 2001;
O’Reilly, 2006; O’Reilly and Frank, 2006; McNab and
Klingberg, 2008). To our knowledge, this is the first study
showing a link between white matter in internal capsule
and WM, extending functional imaging studies by relating
WM to structural connections within the basal ganglia,
and between basal ganglia and cortical regions.
We found WM load effects on performance, especially

for participants .55 years of age. However, although the
white matter–WM associations were most pronounced in
the most demanding condition, the associations were not
significantly different when the three conditions were di-
rectly compared. This may be expected, given that the
correlations in WM performance among the three condi-
tions were high (r values = 0.64, 0.74, and 0.57, for manip-
ulation vs maintenance, maintenance vs control, and
manipulation vs control, respectively). Thus, the inclusion
of all three conditions makes the unique variance that
white matter can account for in each one relatively small.
The lack of a load-dependent relation between white mat-
ter and performance likely reflects the fact that age-re-
lated degradation in white-matter integrity is not the only
neurobiological mechanism of the lower performance in
WM manipulation in older adults. For example, age-re-
lated reductions in gray-matter morphology (Chee et al.,
2009; Evangelista et al., 2021) as well as age-related DA
losses might also account for age-related decline in WM
(Volkow et al., 1998), especially in high WM load condi-
tions (Salami et al., 2019).
In addition to WM, previous findings also demonstrate

significant associations between white matter and proc-
essing speed (Salami et al., 2012; Haász et al., 2013;
Peters et al., 2014; Kuznetsova et al., 2016). Although
processing speed and working memory are strongly re-
lated (Ackerman et al., 2002; Hertzog et al., 2003; Waters
and Caplan, 2005), they may have partly separate func-
tional and structural neural signatures (Ackerman et al.,
2002; Chen and Li, 2007). We found that, after control-
ling for processing speed, associations with WM re-
mained significant in multiple white-matter tracts,
including corpus callosum, superior and posterior co-
rona radiata, posterior thalamic radiation, and superior
longitudinal fasciculus. These results suggest that the
white-matter–WM link is partly independent of proc-
essing speed, and that these tracts might be critical for
WM maintenance and manipulation. However, note
that the number of significant voxels in anterior parts

of the corpus callosum (genu), anterior corona radiata,
external capsule, and superior longitudinal fasciculus
decreased when controlling for processing speed.
These findings indicate shared influences on process-
ing speed and WM for these white-matter tracts.
Current results also show that white-matter integrity
has both unique and shared influences on WM and
processing speed, especially in corpus callosum and
superior longitudinal fasciculus.
Our analyses of overlapping voxels showed that the

white matter–WM associations of the DTI measure-
ments did not have the same spatial pattern, and that
AD might be less sensitive compared with FA/MD/RD
when it comes to WM performance. Past research
shows that the impact of aging was stronger in RD
than in AD (Burzynska et al., 2010; Madden et al.,
2012). Similarly, our mediation analysis shows that
age-related difference in WM might be more attributed
to the age difference in RD compared with AD, espe-
cially in the body of the corpus callosum, corona radia-
ta, and superior longitudinal fasciculus. RD has been
linked to myelination, whereas AD might reflect axonal
integrity (Heckel et al., 2015; Song et al., 2003; Sun et
al., 2006, 2007). Thus, our results reflect that myelin
degradation of these white-matter tracts might be
more detrimental for WM compared with damage in
axonal integrity in aging. However, the interpretation of
the neurobiological mechanisms of DTI measurements
is still inconclusive (Klawiter et al., 2011). One reason
could be that most of the white-matter tracts contain
crossing fibers. RD and AD measure the tensor (i.e.,
structural integrity) along and perpendicular to the
major direction of the tract, which might be influenced
by local crossing fibers. Additional research is needed
to better understand the neural underpinning of DTI
measurements.
Aging is associated with both WM decline and degrada-

tion of white-matter integrity (Hultsch et al., 1992; Park et
al., 2002; Madden et al., 2012). The current finding that
white-matter integrity mediated the association between
age and WM corroborates past research targeting other
aspects of cognition, such as processing speed (Salami
et al., 2012; Peters et al., 2014), executive functions
(Brickman et al., 2012), cognitive flexibility (Madden et al.,
2009; Borghesani et al., 2013), and associative learning
(Samanez-Larkin et al., 2012). Our results extend these
findings to the domain of WM, using a large age-hetero-
geneous sample. Mediation effects were found in several
of the major corticocortical tracts, including corpus cal-
losum, external capsule, and superior longitudinal fasci-
culus, and projection fibers, such as corona radiata, and
posterior thalamic radiation. Although these results are
consistent with those of the stud by Charlton et al. (2008),
note that, in that study, only mean MD values from a
restricted number of consecutive slices were used for es-
timating white-matter integrity. Together, the current re-
sults add support to the notion that reduced white-matter
integrity contributes to age-related impairments in cog-
nition, possibly by interrupting coordinated processing
and communication of distributed brain regions critical
to WM.
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Furthermore, we found a weak, but significant, effect on
white-matter integrity of the COMT Val158Met allele, and
this effect was mainly driven by older adults. The COMT
enzyme is involved in extracellular degradation of synapti-
cally released DA in the PFC (Matsumoto et al., 2003;
Tunbridge et al., 2006, 2007). The Val158Met polymor-
phism in the gene encoding COMT modulates DA trans-
mission in the PFC, with Val homozygotes having three to
four times higher turnover rates than Met homozygotes
(Lotta et al., 1995). Thus, prefrontal DA availability is lower
in Val homozygotes, and higher in Met homozygotes.
This polymorphism has been related to cognitive perform-
ance, especially executive function and working memory
(Mattay et al., 2003; Nagel et al., 2008; Colzato et al.,
2010), and influenced BOLD response in PFC during
working memory (Mattay et al., 2003; Nyberg et al., 2014).
Our findings suggest that the COMT gene might influence
dopaminergic activity in the PFC, which subsequently
leads to changes in brain axonal density and myelination.
This is also in line with previous studies demonstrating
a relationship between DA activity and myelination
(Belachew et al., 1999; Hakak et al., 2001; Szeszko et al.,
2005; Lindholm and Jazin, 2007). The fact that ValMet
heterozygotes demonstrated higher FA compared with
Val homozygotes in older adults could be partially driven
by the fact that there was a larger number of ValMet het-
erozygotes compared with homozygotes (n=35, 45, 86
for ValVal, MetMet, and ValMet, respectively), resulting in
greater statistical power in the group of heterozygotes.
We did not find a genetic effect on WM performance or on
the white matter–WM association. This could be because
of relatively low statistical power. Another reason could
be that brain-based phenotypes, such as brain structure
and function, might be more “proximal” and thus more
sensitive to genetic variation than behavioral phenotypes
(Green et al., 2008; Mattay et al., 2008; Rasetti and
Weinberger, 2011; Meyer-Lindenberg, 2012). Consistent
with the resource-modulation hypothesis (Lindenberger
et al., 2008), the genetic effect was found primarily in
older adults. However, the lack of age by gene interac-
tions in the current study warrants caution in interpreta-
tion, as it might be attributed to the weak effect of any
single polymorphism on white-matter integrity (Nyberg
and Salami, 2014), which obviously decreases the power
for detecting age by gene interactions.
Some limitations of the present work should be noted.

Our study does not consider the influence of other macro-
structural brain properties, such as gray-matter volume
and white-matter hyperintensities. Decreased gray-matter
volume and increased white-matter lesions are common
in older adults (for review, see Salthouse, 2011). Given
that more than one-third of the participants in our sample
were .70 years of age, individual differences in other
structural brain measures could have influenced the re-
sults. Also, the findings are based on cross-sectional
data, and, therefore, we cannot make any causal infer-
ences regarding true mediation effects of white-matter in-
tegrity on age-related WM deficits. TBSS also has its
limitations (Jones and Cercignani, 2010; Bach et al.,
2014). For example, as TBSS projects values for each

voxel to the nearest skeleton location, voxels further from
the center of the axons will be weighted less and may be
artificially assigned to other tracts. This makes effects
closer to the center of axons more easily detected and ef-
fects located in regions far from the axons less likely to be
found (Schwarz et al., 2014). In addition, the tensor model
used in TBSS cannot delineate tracts through crossing-
fiber areas. Certain white-matter tracts may collapse on
top of each other, and, therefore, potential effects in
those brain regions cannot be detected using TBSS.
Finally, because of the small effect sizes of single genes,
the genetic effect of COMT observed in our study is rather
weak and should be interpreted with caution. Further
studies are needed to replicate these results and to inves-
tigate gene–gene interactions and relations among DA-re-
lated genes, white matter, and WM using larger samples.
In conclusion, we found that WM was associated with

white-matter integrity in multiple tracts across the brain.
The associations were partly independent of the effect of
processing speed. In addition, age-related differences in
white-matter integrity partly accounted for age-related
WM deficits. Future longitudinal studies should address
the issue of causality. Finally, consistent with our hypoth-
esis, there was a weak genetic effect of the COMT
Val158Met polymorphism on FA in old age, suggesting a
link between DA activity and white-matter integrity.
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