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Platinum-based chemotherapy is an effective treatment used in multiple tumor treatments,
but produces severe side effects including neurotoxicity, anemia, and immunosuppression,
which limits its anti-tumor efficacy and increases the risk of infections. Electroacupuncture
(EA) is often used to ameliorate these side effects, but its mechanism is unknown. Here, we
report that EA on ST36 and SP6 prevents cisplatin-induced neurotoxicity and
immunosuppression. EA induces neuroprotection, prevents pain-related neurotoxicity,
preserves bone marrow (BM) hematopoiesis, and peripheral levels of leukocytes. EA
activates sympathetic BM terminals to release pituitary adenylate cyclase activating
polypeptide (PACAP). PACAP-receptor PAC1-antagonists abrogate the effects of EA,
whereas PAC1-agonists mimic EA, prevent neurotoxicity, immunosuppression, and
preserve BM hematopoiesis during cisplatin chemotherapy. Our results indicate that
PAC1-agonists may provide therapeutic advantages during chemotherapy to treat
patients with advanced neurotoxicity or neuropathies limiting EA efficacy.
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INTRODUCTION

Platinum-based chemotherapy, such as cisplatin, carboplatin, and oxaliplatin are widely used in
multiple tumors (1–3), but they produce severe side effects including neurotoxicity (4), anemia (5),
immunosuppression (6), nephrotoxicity (7), and gastrointestinal toxicity (8). Cisplatin-induced
neurotoxicity has been associated with pain neuropathies and deficient neuromodulation
contributing to multiple disorders. Cisplatin-induced immunosuppression limits anti-tumor
immune responses, treatment efficacy, and increases the risk of infections (9, 10). Thus,
chemotherapy is often combined with complementary treatments to prevent immunosuppression,
org September 2021 | Volume 12 | Article 7142441
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such as EA or treatment with stimulating factors such as colony
stimulating factor (CSF) to promote myeloid cell differentiation
in the bone marrow (BM) (11). However, CSF is not effective in
restoring the proliferation of hematopoietic stem/progenitor cells
(HSPCs), induces multiple complications such as bone pain (12),
and increases the risk of tumor growth and metastasis by
inducing myeloid-derived suppressor cells (13, 14). Thus, there
is an unmet clinical need to find safe and effective adjuvant treatments
for chemotherapy-induced neurotoxicity and immunosuppression.

Acupuncture is a common complementary and integrative
therapy as proved by profuse clinical studies and used by millions
of people worldwide (15). The World Health Organization
recommends acupuncture to prevent toxicity and leukopenia
during radio- and chemotherapy (16). Acupuncture is safe and its
effects have been confirmed in multiple clinical trials with different
types of tumors including breast (17) and lung cancer (18).
Systematic analysis of 31 clinical trials showed that acupuncture
alleviated chemotherapy-induced myelosuppression (leukopenia,
hemoglobin, and platelet reduction) and preserved immune
responses including IL-2 production and lymphocyte counts
in lung cancer patients during chemotherapy (19). A pilot,
randomized, sham-controlled clinical trial also showed that
acupuncture reduced chemotherapy-induced leukopenia in patients
with ovarian cancer (20). However, the use of acupuncture is still
debated because its inefficacy in some patients. Despite its clinical
implications, the mechanism of acupuncture to treat chemotherapy-
induced leukopenia is still unknown, and thus its efficacy in many
patients but not in others with similar symptoms.

Although the mechanism of acupuncture is unknown, multiple
studies reported the critical role of the sympathetic nervous system to
modulate BM hematopoiesis. Hematopoietic stem (HSCs) and
HSPCs reside in specific BM niches with a complex cellular and
molecular environment including mesenchymal stem cells (21),
osteoblasts (22), endothelial cells (23), and sympathetic projections
(24, 25). Among these, the sympathetic projections are the most
critical factors orchestrating BM cell proliferation, differentiation,
and egress (24–26). Sympathetic terminals produce multiple factors
orchestrating different cell types depending on the physiologic needs.
Neurogenic factors produced by these terminals induce different
factors such as catecholamines (dopamine and epinephrine) can
activate HSCs proliferation and differentiation. The sympathetic
system also modulates BM hematopoiesis indirectly by evoking
multiple cells to produce stimulating factors, such as granulocyte-
Abbreviations: ANOVA, Analysis of variance; BM, bone marrow; Bdnf, brain
derivedneurotrophic factor; CLPs, common lymphoid progenitors; CSF,
colonystimulating factor; CMPs, common myeloid progenitors; DEG, common
differentially expressed genes; EA, electroacupuncture; FBS, fetal bovine serum;
FC, fold change; GMPs, granulocyte-macrophage progenitors; HSCs, hematopoietic
stemcells; H&E, Hematoxylin & Eosin; HSPCs, hematopoietic stem/progenitor cells;
HMGB1, high-mobility group Box 1; i.p, intraperitoneal; KEGG, Kyoto
Encyclopedia of Genes and Genomes; LLC, lewis lung carcinoma; LT-HSCs,
longterm HSCs; MPPs, multipotent progenitors; MEPs, megakaryocytic/erythroid
progenitors; Ngf, nerve growth factor; PACAP, pituitary adenylate cyclase activating
polypeptide; PBS, phosphate-buffered saline; PI, propidium iodide; PPI, protein-
protein interaction; RT-qPCR, reverse transcription-quantitative and polymerase
chain reaction; RIN, RNA integrity number; SEM, standard error of mean; ST-HSCs,
short term HSCs; Th, tyrosine hydroxylase; TGF-a, transforming growth factor-a;
COL1A1, type I collagen a1 chain; VIP, vasoactive intestinal peptide.
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colony stimulating factor, which enhances hematopoietic cell
proliferation and migration (24). Conversely, sympathetic signals
can also inhibit CXCL12 production in mesenchymal stem cells and
osteoblasts to induce BM egress of HSCs (27–29). Thus,
sympathetic innervations induce complex signals to orchestrate
the proliferation, differentiation, and egress of multiple cell types
at different levels depending on the physiological needs (27–29).
This complexity hasmade it difficult to design alternative treatments
for patients with limited response to acupuncture.

Pituitary adenylate cyclase activating polypeptide (PACAP) is
a multifunctional neuropeptide of the glucagon-secretin-
vasoactive intestinal peptide (VIP) family, with 67% similarity
to VIP (30). There are two isoforms of PACAP: PACAP27 and
PACAP38, with the latter being dominant in mammalian tissues in
most physiological and pathological conditions (31–33). However,
several studies found PACAP levels of different tissue samples are
altered under pathological conditions, with lower PACAP
immunoreactivity in different human samples of primary small
cell lung cancer, colon, and kidney cancers as compared to healthy
tissues, while higher PACAP27 immunoreactivity was found in
prostatic cancers as compared to benign prostatic hyperplasia
(32, 33). PACAP binds to three G-protein coupled receptors,
a higher affinity PACAP-specific receptor (PAC1), and two
VIP/PACAP receptors (VPAC1 and VPAC2) with similar
affinity for VIP and PACAP (34). PACAP has been found to be
involved in neuroprotection, prevents apoptosis (35, 36), promotes
cell proliferation (37), neurogenesis and axonal regeneration in the
central and peripheral nervous systems (38, 39), and modulates
immune and inflammatory responses (40, 41). We previously
reported that PACAP is secreted by sympathetic nerve endings
projected into the BM, and can modulate HSPCs proliferation via
PAC1 signaling (42).

Multiple studies have shown that cisplatin chemotherapy
causes neurotoxicity and multiple neuropathies (43, 44). We
reasoned that this neurotoxicity can prevent sympathetic
neuromodulation of BM hematopoiesis and thereby induce
immunosuppression and leukopenia. In line with our
hypothesis, BM hematopoiesis is prevented by neurotoxic
agents such as 4-methylcatechol or glial-derived neurotrophic
factor and chemotherapy-induced BM nerve injury impairs
hematopoietic regeneration (45). Thus, we reasoned that
electroacupuncture (EA) may activate BM sympathetic fibers,
and protect them from chemotherapy-induced neurotoxicity to
preserve hematopoiesis during chemotherapy. Here, we analyze
whether EA induces sympathetic neuroprotection and preserves
BM hematopoiesis in normal and cancer mice with Lewis lung
carcinoma (LLC) cells. We also identify the neurogenic factor
that mediates the protective effects of EA during chemotherapy.
MATERIALS AND METHODS

Animals
All experimental procedures were performed in accordance with
the Tianjin University of Traditional Chinese Medicine
guidelines for the care and use of laboratory animals, and
approved by the Animal Care and Use Committee of Tianjin
September 2021 | Volume 12 | Article 714244

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Neuroprotection During Chemotherapy
University of Traditional Chinese Medicine (Permit Number:
TCM-LAEC2019057). Male Balb/c (8 weeks old, n=180) and
C57/BL6 (6 weeks old, n=50) mice weighting 18-24 g were
purchased from the experimental animal center of Beijing Wei
Tong Li Hua Experimental Animal Technology Co., Ltd.
(Beijing, China). License number: SCXK (Beijing) 2016-0006.
All mice were maintained under a 12/12-hour light/dark cycle at
24-26°C in cages at a controlled humidity of 40-50%, and allowed
free access to food and water. All mice were anesthetized with 4%
isoflurane with oxygen as the carrier (Shenzhen RWD Life
Technology Co., Ltd. China) before sacrificing for sample collection.

Materials and Reagents
Cisplatin (Jiangsu haosen pharmaceutical group Co., Ltd.,
China) was administered at 3-5 mg/kg in 0.9% sodium
chloride solution intraperitoneal (i.p.), twice per week for two
weeks. Control mice were treated with an equal amount of saline
solution. The role of PACAP was analyzed by using PACAP6-38,
a PAC1 antagonist at different concentrations (Low dose:10 mg/kg,
High dose:100 mg/kg, i.p., Selleck Chemicals, Houston, USA),
and PACAP1-38, PAC1 agonist (Low:10 mg/kg, High:50 mg/kg,
i.p., Selleck Chemicals, Houston, USA) (46).

Establishment of LLC-Bearing Mice Model
LLC cells were cultured with Dulbecco’s modified Eagle’s
medium (Gibco, Waltham, MA, USA) supplemented with 10%
fetal bovine serum (FBS), 100 mg/ml penicillin, and 0.1 mg/ml
streptomycin, and were maintained in a humidified chamber at
37°C in a 5% CO2 atmosphere. One week after the C57/BL6 mice
are acclimated and injected 1×105 LLC cells in 0.1 ml phosphate-
buffered saline (PBS) buffer subcutaneously into the right groin
(47). Tumor dimensions were measured by digital calipers at
days 7, 10, 14, 17, and 21, and the tumor volume (mm3) was
calculated as (length × width2)/2 (48).

Electroacupuncture Treatment
EA treatment was initiated on the same day that the mice
received cisplatin. Mice were restrained using the soft cloth
fixation method, the skin around the bilateral acupoint ST36
(49, 50) (Zusanli acupoint, located 2.0 mm lateral to the anterior
tubercle of the tibia in the anterior tibial muscle and 4.0 mm
distal to the knee joint lower point) and SP6 (51) (Sanyinjiao
acupoint, located 2.0 mm proximal to the upper border of the
medial malleolus, between the posterior border of the tibia and
the anterior border of the Achilles tendon) were disinfected with
alcohol swabs. The acupuncture needles (diameter=0.25 mm,
length=13 mm, Huatuo Brand, Suzhou Medical Appliance
Factory, Jiangsu, China) were inserted in bilateral ST36 and
SP6 acupoints, with 3.0 and 2.0 mm depth, respectively. Then,
the needles were connected to the SDZ-V EA device (Huatuo
Brand, Suzhou Medical Appliance Factory, Jiangsu, China) with
the dilatational wave at 5/25 Hz and 0.76 mA stimulation for
15 min. Experimental mice received EA three times per week for
two weeks, and control mice received the same treatment
without EA stimulation.
Frontiers in Immunology | www.frontiersin.org 3
Blood Examination
Peripheral blood was collected in polypropylene tubes with
ethylenediaminetetraacetic acid (Beijing Nobleryder technology
co. Ltd. China) from the orbital sinus of mice anesthetized with
isoflurane. Hematological parameters including leukocyte and
lymphocyte counts were measured by an automated hematology
analyzer (MEK-7222K, Nihon Kohden, Japan).

Flow Cytometry Assay
Hemocyte Panel
200 mL of blood was collected from each sample and incubated
with cell membrane markers including LY-6G-PE, LY-6C-APC,
CD3-PE-Cy7 and CD19-FITC (Biolegend, San Diego, California,
USA) for 20 min at room temperature protected from light.
Then, lysing buffer (BD Bioscience, Franklin Lakes, New Jersey,
USA) was used to remove red blood cells. Samples were washed
before resuspension in 0.5 ml PBS containing 2% FBS. The
acquisition was conducted on an Attune™ NxT Acoustic
Focusing Cytometer (Thermo Fisher Scientific, Waltham, MA,
USA), and the concentration of target population (events/mL)
were analyzed.

HSPCs Subpopulation Panel
Mice tibias were harvested, the epiphyses of the bones were cut
and immersed in 15 ml conical tubes with 1.0 ml PBS. Total BM
cells were collected by centrifugation at 3,000×rpm for 10 min,
and red blood cells were removed with lysis buffer. For HSPC
subsets detection, 106 cells were stained with FITC-conjugated
anti-Lin, PE-Cy7-conjugated anti-Sca-1, APC-conjugated anti-
CD34, Brilliant Violet 421™-conjugated anti-CD16/32, PE-
conjugated anti-CD127 (IL-7R) or Brilliant Violet 510™-
conjugated anti-CD127, APC-Cy7-conjugated anti-CD117 (c-
Kit), PerCP-Cy5.5-conjugated anti-CD90.1 (Thy1.1), PE-Cy5-
conjugated anti-CD135 (Flk2) or PE-conjugated anti-CD135
(Biolegend, San Diego, California, USA) for 20 min at room
temperature protected from light. Samples were then washed
again before resuspension in 0.5 ml PBS containing 2% FBS.
Acquisition was conducted on an Attune™ NxT Acoustic
Focusing Cytometer (Thermo Fisher Scientific, Waltham, MA,
USA). All the data were analyzed as following: Positive cells
events (%) = (the events in target gate/the total cell) × 100.

Cell Cycle Panel
Cell cycle was determined by nuclear staining with propidium
iodide (PI) of BM cells. Briefly, suspensions of single cells were
fixed in 75% ethanol at -20°C overnight. Samples of cells were
incubated with 0.5 ml PI (TxCyclePI/RNAse, BD Bioscience,
Franklin Lakes, New Jersey, USA) at 4°C for 15 min. Acquisition
was conducted the same as the above panel, and analyzed by
ModFit 3.1 software (Verity Software House, Topsham, ME).

Hematoxylin & Eosin (H&E) Staining
Tibial bone was collected and fixed as described (42). The OCT-
embedded bone samples were sliced to a thickness of 5.0 mmwith
a Lecia frozen slicer (1950) and were stained with H&E. The
histological sections were observed and photographed under a
September 2021 | Volume 12 | Article 714244
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light microscope (NIKON Eclipse Ci-L, Japan), the section
within each group (n=4, each sample has two tissue slices) of
randomly selected perspective in three pictures. Then BM
hematopoietic cellularity was analyzed by Image-Pro Plus 6.0
software (Media Cybernetics, Inc., Rockville, MD, USA) and
calculated as follows, BM hematopoietic cellularity (%) = [1 -
(white area pixels/total area pixels)] × 100% (52). BM cell density
was measured using StrataQuest v7.0.176 software (TissueGnostics,
Vienna, Austria). Total cells were identified based on hematoxylin
staining. The number and density of cells were counted by the
software after excluded cell debris, and BM cell density=total cells
counts/total areas (mm2).

Gene Chip (GCT) and Data Analysis
BM sample extraction (n=6) was performed as described above
in flow cytometry assay. RNAs were extracted purified with a
standard Affymetrix protocol according to Shanghai
Biotechnology Corporation (Shanghai, China), and equal
amount of RNA from each sample was pooled (n=1) in the
same group and tested on a microarray. The raw chip data are
accessible from the BioProject ID PRJNA 687726 in the public
database of the NCBI BioProject (https://www.ncbi.nlm.nih.gov/
bioproject/PRJNA687726). Briefly, total RNA was isolated and
RNA integrity number (RIN) value to inspect RNA integration
was checked (53). Only RNA with RIN value greater than 7.0 and
a 28S/18S ratio greater than 0.7 were used for microarray
analyses. The gene chip results were scanned by Gene Chip
Scanner 3000 (Cat#00-00213, Affymetrix, Santa Clara, CA, US)
and analyzed by Command Console Software 4.0 (Affymetrix,
Santa Clara, CA, US), the qualified data were normalized at the
gene and exon levels, respectively by the Expression Console
software (Affymetrix, Santa Clara, CA, US) (53), and the
normalized signal value was the signal value calculated by
Log2. Then the differentially expressed genes (DEGs) were
screened by threshold method, and the genes with a fold
change (FC) > 2 were considered as DEGs as shown in Figure
3A of scatter plot. Also, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways obtained in the drawing by DEGs
through website in http://enrich.shbio.com/. The KEGG
obtained were sorted in descending order of size according to
the value of the enriching factor and considering the top 30
pathways. The protein-protein interaction (PPI) network is
based on the above analysis results of DEGs of different groups
(Cis vs Veh, EA vs Cis) were further analyzed by STRING.

Reverse Transcription-Quantitative and
Polymerase Chain Reaction (RT-qPCR)
RNA samples from each group returned by the company were
verified by RT-qPCR. The RNA concentration was measured by
Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara,
CA, US) and total RNA was used for reverse transcription with
the PrimeScript RT reagent kit (Takara Bio, Inc., Otsu, Japan)
following the manufacturer’s protocol.

The cDNA was amplified by SYBR™ Select Master Mix
(Applied Biosystem, Thermo Fisher Scientific, Inc), and the
RT-qPCR procedure according to the manufacturer’s protocol.
Frontiers in Immunology | www.frontiersin.org 4
Applied ABI Quant Studio 3 - Time PCR System (Applied
Biosystems; Thermo Fisher Scientific, Inc.) was used to
perform RT-qPCR under the following conditions: 95°C for 30
sec, followed by 40 cycles of 95°C for 5 sec and 60°C for 30 sec,
and finally the melt curve stage (95°C for 15 sec, 60°C for 1 min
and 95°C for 15 sec). The associated primers were synthesized by
Suzhou GENEWIZ Biological Technology Co. Ltd, which were
listed in Additional File1: Table S1. Relative gene expression
was calculated using the double-standard curve method.

Immunofluorescence Staining
The bone fixation method was consistent with HE staining. The
bone slice thickness of 8.0 mm was rinsed with 0.05% PBST and
Proteinase K (BOSTER, WuhFan, China) incubation antigen-
repaired for 15 min at room temperature. The following
experimental method of immunofluorescence staining was
referred to our previous protocol (42). Briefly, the sections
were incubated with the primary antibodies rabbit anti-Th
(1:50, BOSTER, Wuhan, China) overnight at 4°C. After a
0.05% PBST rinsed, the sections were incubated with Alexa
Fluor 594-labeled anti-rabbit IgG (1:400, Abcam, Cambridge,
UK) as secondary antibodies for 60 min at room temperature.
The sections were observed and photographed under a
fluorescence microscope (NIKON Eclipse Ci-L, Japan). Th+

immunofluorescence staining analyzed the mean number of
nerve fibers in five fields randomly was quantified and plotted
as per mm2 (45).

ELISA
BM samples were crushed while frozen and then suspended in
cell lysis buffer (Solarbio life sciences, Beijing, China) with
protease inhibitor cocktail (1%; Solarbio life sciences, Beijing,
China), standing for 30 min at 4°C. Next, samples were
centrifuged at 12,000 g for 10 min at 4°C for protein extraction
and the clear supernatant extracts were stored at -80°C. PACAP
levels including PACAP27 and PACAP38 were measured by
using a sandwich enzyme immunoassay special for mouse
(Product No. SEB347Mu, Cloud Clone Corp, Wuhan, China)
according to the manufacturers’ instructions.

Heated Pad Assay
Latency time response of mice to thermal nociception was
analyzed with hot-plate tests performed at day 0, 3, 7, 10, 14
(54). The hot-plate temperature was set at 55 ± 0.2˚C. Mice were
individually placed on the top of the heated surface and the time
of the first episode of nociception (jumping or paw licking) was
measured, and the cut-off time was 30 s. The heated surface was
cleaned up completely by ethanol in two tests and the
temperature was allowed to stabilize.

Statistical Analysis
Results are presented as the mean ± standard error of mean
(SEM). When the data were normally distributed, the results
were analyzed by analysis of variance (ANOVA) for independent
samples compared differences between two groups. Comparison
of weight, latency, tumor volumes were assessed two-way
repeated-measures ANOVA, other indicators were assessed
September 2021 | Volume 12 | Article 714244
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one-way ANOVA. LSD test was used if the data meet test of
homogeneity of variances, if not, Dunnett’s T3 test was used. For
non-normal distributions, a nonparametric test with Kruskal
Wallis was performed with SPSS 23.0. P < 0.05 was considered
statistically significant. GraphPad Prism software (GraphPad,
San Diego, CA, USA) was used for mapping.
RESULTS

Prevention of Cisplatin-Induced
Leukopenia and Normal Hematopoiesis
Preservation by Electroacupuncture
First, we analyzed whether EA prevents cisplatin-induced
leukopenia by performing hematologic analyses of peripheral
blood from control and cisplatin-treated mice with or without
EA (Figure 1A). Cisplatin treatment induced leukopenia and EA
prevented leukopenia and preserved the normal count of
peripheral leukocytes. Next, we analyzed specific subpopulations
of leukocytes as they are mainly composed of neutrophils,
lymphocytes, and monocytes. Cisplatin decreased peripheral
blood counts of all leukocytes but it was more detrimental to
neutrophils andmonocytes.We further confirmed our results with
flow cytometry analyses of neutrophils (LY6G+), monocytes
(LY6C+), and noted a similar effect on the subpopulations of
Frontiers in Immunology | www.frontiersin.org 5
lymphocytes T (CD3+) and B (CD19+) cells. EA was again effective
at inhibiting cisplatin side effects and preserves normal peripheral
counts of all these leukocytes and more protective on neutrophils
and monocytes (Figures 1B, C). Cisplatin also induced about 25%
mice body weight loss within 10 days, and EA preserved normal
body weight over 14 days (Figure 1D). These results show that
cisplatin induces leukopenia affecting all leukocytes although it
was more detrimental to myeloid cells including neutrophils and
monocytes, whereas EA preserved normal blood leukocyte counts.

Next, we analyzed the effects of cisplatin and EA in BM
hematopoiesis. Histological hematoxylin & eosin (H&E) staining
show normal BM morphology with proliferating hematopoietic
cells in control mice. Cisplatin induced a sparse and scattered cell
distribution, whereas EA preserved normal BMmorphology (Figure
2A). We confirmed these results with semi-quantitative analyses BM
hematopoietic cellularity showing that cisplatin decreased BM cells
percentages, whereas EA improved it (Figure 2B). As shown in
Figures 2C, D, we also performed the BM cell density at
high configuration, and the results showed that cisplatin reduced
BM cell counts, and EA treatment have increased tendency. Then,
we analyzed the effects of cisplatin and EA in BM hematopoiesis
by analyzing specific hematopoietic cell subpopulations (Figure
2E). Hematopoiesis starts with hematopoietic stem/progenitor
cells (HSPCs; Lin-Sca-1+CD117+) undergoing a sequential
differentiation into self-renewal long-term (LT-HSCs; Lin-/Sca-1+/
CD117+/CD90.1+/CD135-), and short-term hematopoietic stem cells
C

D

BA

FIGURE 1 | Electroacupuncture prevented cisplatin-induced leukopenia. (A) Experimental flowchart depicting the time of the treatments of Cisplatin (C),
electroacupuncture (E), and the analyses of body weight (W) and sample collection. (B) Representative peripheral blood flow cytometry analyses of neutrophils
(LY6G+), monocytes (LY6C+), T (CD3+), and B (CD19+) lymphocytes and (C) Blood counts of specific subpopulation of leukocytes of mice with control (Veh), cisplatin
alone (Cis; 3 mg/kg), or with electroacupuncture (EA) treatment (leukocytes, lymphocytes: n=6 per group; neutrophils, monocytes, T and B lymphocytes: Veh, n=6;
Cis, n=6; EA, n=7). (D) Mice body weight curves treatment at day 0, 3, 7, 10, 14 (n=6 per group), P values were calculated using two-way repeated-measures
ANOVA. Data are mean ± SEM, *P < 0.05, **P < 0.01, ***P < 0.001 vs Veh; #P < 0.05, ##P < 0.01 vs Cis.
September 2021 | Volume 12 | Article 714244
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(ST-HSCs; Lin-/Sca-1+/CD117+/CD90.1+/CD135+), which
differentiate into non-self-renewing multipotent progenitors
(MPPs; Lin-/Sca-1+/CD117+/CD90.1-/CD135+). These progenitors
can then differentiated into either common lymphoid (CLPs; Lin-/
Sca-1+/CD117+/CD127+ for lymphocytes and NK cells) or common
myeloid progenitors (CMPs; Lin-/Sca-1-/CD117+/CD127-/CD34+/
CD16/32-), which ensuing differentiate into either megakaryocytic/
erythroid (MEPs; Lin-/Sca-1-/CD117+/CD127-/CD34-/CD16/32-) or
granulocyte-macrophage progenitors (GMPs; Lin-/Sca-1-/CD117+/
CD127-/CD34+/CD16/32+ for neutrophils, monocytes, basophils,
and eosinophils) (55, 56). Flow cytometry analyses showed that
cisplatin was more detrimental in reducing HSPCs, MPPs, and
myeloid ontogenesis (CMPs, GMPs, and MEPs), but not self-
renewing stem cells (LT-HSCs, ST-HSCs) or lymphoid
ontogenesis (CLPs). EA preserved the normal counts of all
hematopoietic cells (MPPs, CMPs), and the proportion of HSPCs
and MEPs have increased tendency, but not GMPs (Figures 2F, G).
These results show that cisplatin inhibited BM hematopoiesis and
specifically myeloid ontogenesis, whereas EA preserved
BM hematopoiesis.

We next studied hematopoietic cell proliferation and cycle
profile in BM by propidium iodide nuclear staining. Cisplatin
inhibited hematopoietic cell proliferation by decreasing the
transition from S to G2/M phase, whereas EA preserved
normal cell proliferation (Figures 2H, I). At the molecular
level, we analyzed the expression of cell cycle genes by
quantitative RT-qPCR. Cisplatin specifically reduced the
expression of Ki67 and Ccna2 without significantly affecting
Ccnd1 and Ccne1, whereas EA preserved normal expression of
these genes (Figures 2J). These results show that cisplatin
inhibits the progression of S into the G2/M phase by inhibiting
DNA replication and the expression of critical factors such as
Ki67 (associated with ribosomal RNA synthesis) and Ccna2
(cyclin A2). Again, EA preserved normal cell proliferation of
BM hematopoietic cells.

Activated Bone Marrow Pathways
in Cisplatin-Treated Mice
by Electroacupuncture
We further analyzed the molecular mechanisms of cisplatin and
EA by gene chip analyses (Figure 3A). Cisplatin modified the
expression of 1,414 BM genes as compared to normal tissue, and
EA modified 1,684 genes as compared to cisplatin (Figure 3B).
Differential gene KEGG pathway analyses revealed that cisplatin
main effects (P < 0.01; enrichment > 3) were activating pathways
related to extracellular matrix receptor interaction, B cell and
toll-like receptors signaling, the p53, PPAR signaling, osteoblast
differentiation and NF-kB pathways (Table 1). KEGG analyses
also showed the potential of EA to mainly activate pathways
related to ribosome biogenesis (P < 0.01; enrichment > 28)
(Table 1). KEGG analyses revealed 163 common differentially
expressed genes (DEG) in both cisplatin and EA groups. The
factors modulated by both cisplatin and EA further emphasizes
the role of three major pathways (P < 0.01) related to ribosome
biogenesis (Rpl14, Gm6344, Rpl29, Rpl32; enrichment > 12),
PPAR signaling (Fabp4, Scd1; enrichment > 9), and collagen
Frontiers in Immunology | www.frontiersin.org 6
extracellular matrix receptor interaction (Col1a1, Col1a2,
enrichment > 8) (Table 1). These results were consistent with
the protein-protein interaction (PPI) analyses that revealed the
potential of cisplatin to induce 71 genes mostly related to ribosome
biogenesis (Rps13, Rpl14, Rpl32, Rpl34, > 15 counts) and collagen
extracellular matrix (Col1a1, Col1a2, 3 counts/each) (Figure 3C
and Table 2). EA was again protective against cisplatin and
preserving the expression of 48 genes mostly related to ribosome
biogenesis (Rpl14, Rps11, Rps13, Rpl32, Rpl34, > 10 counts)
(Table 2). The levels of common DEG detected by gene chip in
both cisplatin and EA further emphasized the role of ribosome
biogenesis, collagen extracellular matrix receptor interaction, and
PPAR signaling (Additional File 2: Table S2). These results were
then confirmed by RT-qPCR. Cisplatin significantly induced Col1a1,
Col1a2, expression as shown in KEGG analyses, whereas EA
preserved Col1a1 normal expression consistent with the gene chip
analyses (Figure 3D). These results suggest that cisplatin induces
type I collagen a1 chain (Col1a1) and disrupts BM extracellular
matrix, whereas EA preserves normal collagen BM expression and
extracellular matrix composition for normal hematopoiesis.

Sympathetic Nerve Released PACAP
Mediating Electroacupuncture Alleviation
of Cisplatin-Induced Leukopenia
We next reasoned that cisplatin-induced neurotoxicity may affect
hematopoiesis, and EA may preserve BM sympathetic
neuromodulation. Thus, we analyzed the sympathetic fibers in
BM sections by staining tyrosine hydroxylase (Th), the enzyme
that converts tyrosine to dopamine essential for catecholamine
biosynthesis in sympathetic innervations. These results showed
the significant neurotoxicity induced by cisplatin, and the
potential of EA to preserve BM sympathetic innervations (Figures
4A, B). Then, we performed RT-qPCR analyses to determine the
neurogenic factors mediating EA-induced neuroprotection. Protein
expression was confirmed by ELISA analyses. Cisplatin inhibited
the production of critical neurogenic factors but especially nerve
growth factor (Ngf), brain-derived neurotrophic factor (Bdnf), and
PACAP. EA preserved normal production of all these factors, but
was more effective in inducing PACAP expression (Figure 4C).
Thus, we reasoned that PACAP may contribute to EA-induced
neuroprotection during chemotherapy, and we analyzed whether
PACAP inhibition prevents EA-induced neuroprotection using
functional analyses of nociception. Previous studies reported that
cisplatin neurotoxicity induces peripheral nerve injury affecting
nociception (54). Thus, we analyzed whether EA preserves
sensory nerve activity using thermal pain tests, and whether this
effect is mediated by PACAP. Cisplatin increased mice latency time
in the hot-plate tests showing neurotoxicity preventing thermal
pain, whereas EA preserved thermal nociception (Figure 4D). Next,
we analyzed whether PACAP is required for EA-induced
neuroprotection by inhibiting the specific receptor for PACAP,
PAC1. PACAP6-38, a competitive PAC1 inhibitor, abrogated the
potential of EA to preserve nociception in thermal tests in a
concentration-dependent manner (Figure 4D). Then, we analyzed
whether the effects of PAC1 on neuroprotection correlated with
hematopoiesis. Similar to neuroprotection, EA prevented cisplatin-
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induced leukopenia, but not in mice pretreated with high doses of
PAC1 inhibitor (Figure 4E). Likewise, PAC1 inhibitor also prevented
the potential of EA to preserve BM hematopoiesis and counts of
HSPCs and myeloid progenitors (MPPs) during cisplatin
chemotherapy (Figure 4F). Control treatments with PACAP6-38
itself affected neither BM hematopoiesis nor HSPCs/MPPs counts.
Furthermore, PAC1 inhibitor also prevented the potential of EA to
preserve hematopoietic cell proliferation (Figure 4G). Together, these
results show that inhibition of PACAP receptor PAC1 prevents the
protective effects of EA during cisplatin chemotherapy, suggesting
that the protective effects of EA are mediated by PACAP production.

Next, we reasoned that PAC1-agonists may mimic the
protective effects of EA during cisplatin chemotherapy. PAC1-
agonist, PACAP1-38, mimics EA-induced neuroprotection and
preserves thermal nociception in cisplatin-treated mice in a
concentration-dependent manner (Figure 5A). The high dose
of PACAP1-38 preserves BM hematopoiesis and normal
peripheral counts of leukocytes, including neutrophils and
lymphocytes (Figure 5B). The high dose of PAC1-agonist also
mimics the potential of EA to preserve hematopoiesis including
HSPCs and myeloid progenitors (MPPs) but not GMPs (Figure
5C). The high and low dose of PAC1-agonist also preserved BM
Frontiers in Immunology | www.frontiersin.org 7
hematopoietic cell proliferation through the G2/M phase (Figure
5D). Thus, treatment with high dose of PAC1-agonist, PACAP1-
38, mimicked the potential of EA to preserve thermal
nociception, peripheral counts of leukocytes, BM myeloid
ontogenesis, and hematopoietic cell proliferation in mice with
cisplatin chemotherapy.

Preservation of BM Hematopoiesis in Lung
Carcinoma Mice by Electroacupuncture
We next analyzed the effects of EA in cancer mice with LLC cells.
Mice were injected LLC cells, cisplatin chemotherapy with or
without EA was started one week later, and tumor growth and
hematopoiesis were analyzed at different time points (Figure 6A).
Tumor volume dramatically increases after 14 days, and cisplatin
treatment (5 mg/Kg; i.p.) significantly reduces tumor growth by
over 60% by day 21 (Figure 6B). EA did not prevent the potential of
cisplatin to inhibit tumor growth, actually EA showed a tendency to
further decrease tumor growth to some extent as compared to
cisplatin treatment alone. Cisplatin also induces peripheral
leukopenia inhibiting all leukocyte subpopulations including
neutrophils, monocytes, and lymphocytes, and it was more
detrimental on T (CD3+) than B (CD19+) lymphocytes in cancer
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FIGURE 2 | Electroacupuncture preserved hematopoiesis in mice with cisplatin chemotherapy. (A) Representative H&E staining of tibia BM from mice with control
(Veh), cisplatin alone (Cis; 3 mg/kg), or with electroacupuncture (EA) treatment (scale bar=20.0 mm) and (B) Histogram representation of BM hematopoietic cellularity
of H&E staining analyzed by Image-Pro Plus 6.0 software (n=4 per group). (C) Representative H&E staining of tibia BM from mice with Veh, cisplatin alone or with EA
treatment at high configuration (scale bar=10.0 mm). (D) Representative HistoFAXS Tissue Analysis of BM cell nuclei hematoxylin-shade-mean intensity, and
quantitative analysis of BM cell density (n=4 per group). (E) Flowchart of hematopoiesis and hematopoietic cells markers. (F) Representative flow cytometry analyses
and (G) quantification of hematopoietic BM cell subpopulations (Positive cells events (%) = (the events in target gate/the total cell) × 100) (n=6 per group). (H)
Representative PI nuclear staining flow cytometry analyses in BM cell cycle (G0/G1, S, G2/M phases) and (I) Quantification of PI nuclear staining of BM cells in G0/G1,
S, G2/M phases by ModFit 3.1 software (n=6 per group). (J) Expression of cell cycle related genes in BM cells (Ki67: Veh, n=7; Cis, n=5; EA, n=7. Ccna2: n=7 per
group. Ccnd1: Veh, n=5; Cis, n=4; EA, n=6. Ccne1: Veh, n=6; Cis, n=4; EA, n=5). Data are mean ± SEM, *P < 0.05, **P < 0.01, ***P < 0.001 vs Veh; #P < 0.05 vs Cis.
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FIGURE 3 | Analyses of expression and enrichment of electroacupuncture in the bone marrow of mice with cisplatin. (A) Scatter plots of differentially expressed
genes (DEG)s in Cis vs Veh and EA vs Cis group Each probe is represented by a point with red and blue points showing up- and down-regulated genes defined
above Log2 FC > 2. (B) Venn diagram and (C) PPI network analyses of DEGs results. (D) RT-qPCR analyses of factors related to extracellular matrix (Col1a1,
Col1a2), ribosome (Rpl14, Rpl29, Rpl32), and PPAR signaling (Fabp4, Scd1) (Col1a1, Col1a2: n=7 per group. Rpl14, Rpl29, Scd1: n=6 per group. Rpl32, Fabp4:
Veh, n=6; Cis, n=5; EA, n=6). Data are mean ± SEM, *P < 0.05, **P <0.01 vs Veh.
TABLE 1 | KEGG enrichment of co-expressed DEGs.

Description P value Counts Genes Enrich factor

KEGG enrichment of co-expressed DEGs in cisplatin vs control group
Extracellular matrix receptor interaction <0.01 9 Thbs1 Gp5 Reln Gp6 Col1a2 Col1a1 Gp9 Gp1ba Itgb3 8.11
B cell receptor signaling pathway <0.01 7 Jun Cd79a Fos Blnk Cd79b Cd19 Cd72 7.27
Hematopoietic cell lineage <0.01 7 Gp5 Gp9 Cd19 Gp1ba Il1a Itgb3 Il7r 5.51
Toll-like receptor signaling pathway <0.01 5 Jun Cxcl9 Fos Ctsk Ifna4 3.78
p53 signaling pathway <0.01 4 Thbs1 Ccng1 Cdkn1a Pten 4.21
NF-kappa B signaling pathway <0.01 5 Cxcl12 Tnfrsf13c Blnk Lat Vcam1 3.59
PPAR signaling pathway <0.05 4 Scd1 Fabp4 Lpl Adipoq 3.52
Osteoclast differentiation <0.05 6 Jun Fos Ctsk Blnk Il1a Itgb3 3.50
Th17 cell differentiation <0.05 4 Jun Fos Irf4 Lat 2.93
Serotonergic synapse 0.07 4 Gng11 Dusp1 Kcnj5 Alox12 2.27
Apoptosis 0.08 4 Jun Fos Ctsk Tuba4a 2.20
Cellular senescence 0.09 5 Mapkapk2 Slc25a5 Cdkn1a Il1a Pten 2.01
KEGG enrichment of co-expressed DEGs in EA vs cisplatin group
Ribosome biogenesis in eukaryotes <0.01 33 N-r5s100 Gm25212 N-r5s123 N-r5s134 Rn5s N-r5s128 N-r5s124 N-r5s136 N-

r5s121 Gm23284 N-r5s117 Gm22109 N-r5s108 N-r5s122 N-r5s105 Gm22291
Rmrp N-r5s143 N-r5s139 N-r5s111 N-r5s103 N-r5s138 Gm25018 N-r5s146 N-
r5s113 N-r5s142 N-r5s149 Gm26391 N-s5s110 N-r5s144 N-r5s133 N-r5s104 N-
r5s141

28.44

Biosynthesis of unsaturated fatty acids 0.09 1 Scd1 3.12
Extracellular matrix receptor interaction 0.11 2 Col1a1 Col1a2 2.41
PPAR signaling pathway 0.11 2 Fabp4 Scd1 2.35
Retrograde endocannabinoid signaling 0.14 3 Ndufb9 Nd2 Ndufa9 2.00
KEGG enrichment of co-expressed DEGs in cisplatin vs control group and EA vs cisplatin group
Ribosome <0.01 4 Rpl14 Gm6344 Rpl29 Rpl32 12.20
PPAR signaling pathway <0.01 2 Scd1 Gabp4 9.19
Extracellular matrix receptor interaction <0.01 2 Col1a1 Col1a2 8.65
Frontiers in Immunology | www.frontiersin
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mice. Furthermore, EA diminished leukopenia and neutropenia but
not monocytopenia and lymphopenia in cancer mice (Figure 6C).
Cisplatin inhibited hematopoiesis at different levels and significantly
reduced the counts of multipotent (MPPs) and GMPs in cancer
mice. EA preserved normal levels of both MPPs and GMPs in
cancer mice. Furthermore, EA increased the levels of HSPCs,
myeloid (CMPs), and megakaryocytic/erythroid progenitors
(MEPs) in cancer mice (Figure 6D). At the cellular level, cisplatin
significantly decreased BM cell counts in S phase, whereas EA
preserved normal cell proliferation through the cell cycle in cancer
mice (Figure 6E). These results show that EA diminished cisplatin-
induced leukopenia and preserves BMhematopoiesis in cancermice
with Lewis lung carcinoma cells.
DISCUSSION

Despite the profuse clinical evidence showing the potential of EA
to relieve leukopenia during chemotherapy, its mechanism is
unknown, and thus why it is effective in some patients but not in
others with similar symptoms and how the treatment can be
improved. EA activates mechanisms that have physiologic
limitations, and they are ineffective in patients with multiple
Frontiers in Immunology | www.frontiersin.org 9
comorbidities (57, 58). One typical example is that EA on ST36
improves organ function and survival in experimental sepsis by
inducing dopamine production in the adrenal glands (49, 59).
However, many septic patients have adrenal insufficiency, and
thus they render insufficient dopamine production for EA to
induce significant effects (49, 60, 61). Chemotherapy is another
major clinical challenge that causes neurotoxicity, anemia, and
immunosuppression that limit anti-tumor efficacy. Here, we
show that EA on ST36 and SP6 prevents neurotoxicity, preserves
BM hematopoiesis, and myeloid ontogenesis during cisplatin
chemotherapy. EA induces neuro and immune protection by
inducing neurogenic production of PACAP, which preserves BM
hematopoiesis via PAC1 receptor. Thus, PAC1-agonists mimic EA
potential to preserve BM hematopoiesis during chemotherapy and
may provide therapeutic advantages to treat cancer patients with
advanced neurotoxicity and neuropathies limiting EA efficacy.

Cisplatin is an effective chemotherapy treatment toxic to
proliferating cells such as cancer cells. However, cisplatin is not
specific for cancer cells and it also inhibits BM hematopoietic
cells inducing anemia and immunosuppression that prevent
anti-tumor immune responses (58, 62–64). Low concentrations
of cisplatin (3 mg/kg) in normal mice decreased blood counts of
all leukocytes but specially neutrophils and monocytes. Higher
concentrations of cisplatin (5 mg/kg) are required to induce
similar effects in cancer mice probably because it is absorbed
by the cancer cells. In cancer mice, cisplatin also inhibited all
leukocytes subpopulations and it was more detrimental to T
than B lymphocytes. These results further reveal the potential of
cisplatin to induce immunosuppression and limit anti-tumor
immune responses.

Cisplatin causes leukopenia by inhibiting hematopoiesis.
Cisplatin inhibited hematopoietic stem/progenitor, multipotent
progenitors, and myeloid ontogenesis (CMPs, GMPs, and
MEPs), but not self-renewing stem cells (LT-HSCs, ST-HSCs)
or lymphoid ontogenesis (CLPs) in normal mice. In cancer mice,
cisplatin induced similar results and inhibited multipotent
progenitors and myeloid ontogenesis of GMPs, and thus validate
our models to recapitulate leukopenia as shown in cancer patients
(62). However, cisplatin did not inhibit megakaryocytic/erythroid
progenitors in cancer mice because the lung carcinoma cells already
prevent MEPs as compared to normal mice. These results concur
with the peripheral blood counts as cisplatin inhibits myeloid
ontogenesis and therefore neutrophils and monocytes in normal
and cancer mice. Cisplatin inhibits hematopoiesis by binding to
the nuclear DNA of proliferative hematopoietic cells and inducing
an in-chain DNA cross-linking that forms a ternary complex of
DNA-platinated oligonucleotide-HMGB1 (high-mobility group
Box one protein) that blocks DNA replication and cell
proliferation (65, 66). Thus, cisplatin prevents the transition S to
G2/Mitosis phase as shown in normal mice, whereas higher
concentrations in cancer mice were more effective at early stages
and decrease cell counts in the S phase. This effect is also due to the
potential of cisplatin to inhibit the expression of critical proteins
related to the cell cycle. Our results show that cisplatin inhibited
Ccna2 expression of Cyclin A2, which is normally expressed in
dividing somatic cells to control the G1 to S transition as shown in
TABLE 2 | The node counts between proteins with PPI.

Nodes Counts Nodes Counts Nodes Counts

The node counts between proteins with PPI in cisplatin vs control group
Rps13 21 Cfd 7 Cd79a 4
Rpl14 19 Gng11 7 Cd79b 4
Rpl32 19 Igfbp4 7 Dcn 4
Rpl34 16 Igfbp5 7 Serpine2 4
F5 14 Igfbp7 7 Blnk 3
Rpl13 13 Lgals1 7 Brix1 3
Rpl27-ps3 13 Thbs1 7 Col1a1 3
Rps27rt 13 Bc117090 6 Col1a2 3
Etf1 12 Ccl9 6 Ctsg 3
Rpl36 12 Clu 6 Fos 3
Rpl29 11 Gm5416 6 Ftl1 3
Pf4 10 Gm5483 6 Gm10709 3
Ppbp 10 mCG_130165 6 Gm5786 3
Rpl10 10 Rpl9-ps6 6 Gp1ba 3
Gm10269 9 Stfa1 6 Gp5 3
Gm17669 9 Stfa3 6 Gp9 3
Sparc 9 Cd19 5 H2afv 3
Gm10036 8 Cxcl12 5 Mpo 3
Rpl13-ps3 8 Cxcl9 5 Psma5 3
Apol10a 7 Gm9396 5 Rpl36-ps3 3
Apol11a 7 Stfa2l1 5 Vcl 3
Apol11b 7 Cct2 4
The node counts between proteins with PPI in EA vs cisplatin group
Rpl14 11 Gm17669 6 Col1a1 2
Rps11 11 Cst3 4 Col1a2 2
Rps13 11 Serping1 4 Ighv1-73 2
Rpl32 11 Sparc 4 Lsm5 2
Rpl34 10 Apol10a 3 mt-Nd2 2
Rps26-ps1 9 Apol11a 3 Ndufa9 2
Rpl29 8 Apol11b 3 Psmb7 2
Gm10020 7 Gm10709 3 Serpina3n 2
Gm10126 7 H3f3a 3
Rpl10 7 C1qb 2
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our results with cancer mice. These results reveal the detrimental
side effects of cisplatin in hematopoiesis during chemotherapy and
the clinical need to develop safe complementary treatments to
prevent immunosuppression in cancer patients.

Multiple clinical studies have confirmed the potential of
acupuncture to treat anemia and leukopenia during chemotherapy
(17, 20), but the use and efficacy of EA are still moot because of the
weak response in many patients. The mechanism of EA is still
unknown and thus why it is effective in many patients but not in
others with similar symptoms. According to traditional Chinese
medicine, acupuncture at ST36 and SP6 have the effect of tonifying
blood. Several studies show that stimulation of these two acupoints
protects against chemotherapy induced anemia, leukopenia, and
other peripheral neuropathies (67–71). Our results show that EA
ST36 and SP6 inhibited the most detrimental effects of cisplatin in
normal and cancer mice. EA preserved normal peripheral counts of
all leukocytes, and BM counts all hematopoietic cells (HSPCs, MPPs,
Frontiers in Immunology | www.frontiersin.org 10
CMPs, and MEPs) but not GMPs in normal mice. In cancer mice,
EA halted leukopenia and neutropenia and preserved normal counts
of multipotent (MPPs) and GMPs. Actually, EA not only prevented
the effects of cisplatin but also some of the effects of cancer on
hematopoiesis. As LLC cells decreased BM counts of common
myeloid and megakaryocytic/erythroid progenitors in cancer mice,
EA restored normal counts of BM hematopoietic cells even if the
treatment was started a week after the cancer onset.

Regarding the molecular mechanism of EA, gene chip results
suggested that EA may modulate the BM extracellular matrix
(ECM) and ribosome signaling pathway (cisplatin vs control, EA
vs cisplatin, EA vs control). EA restored BM hematopoiesis
despite the effects of cancer and chemotherapy by regulating
type I collagen a1 chain (Col1a1). Actually, Col1a1 is often
increased in cancer patients and disrupts BM hematopoiesis and
favors immunosuppression and tumor progression (72–74).
Thus, the potential of EA to halt Col1a1 and abnormal
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FIGURE 4 | Neurogenic PACAP mediated electroacupuncture-induced protection to cisplatin. (A) Representative immunofluorescence images (Scale bar=20.0 mm)
and (B) Quantification of sympathetic Th+ fibers (red) and nuclear (blue) in the BM of the experimental mice (n=4 per group). (C) Expression analyses of neurotrophic
factors (Ngf, Bndf: Veh, n=7; Cis, n=6; EA, n=7. PACAP: Veh, n=5; Cis, n=6; EA, n=6). (D) Representation of the latency time (seconds) in hot-plate tests of mice
treated with control (Veh), cisplatin (Cis; 3mg/kg), and cisplatin + electroacupuncture (EA) without or with PACAP6-38 (a blocker for PACAP receptor, PAC1) at low
(10 mg/kg) or high (100 mg/kg) concentrations (Cis, n=7; other groups, n=8), P values were calculated using two-way repeated-measures ANOVA. (E) Peripheral
blood counts of specific subpopulation of leukocytes (Veh, Cis, EA: n=6; other groups, n=7). (F) Analyses of hematopoietic BM subpopulation cells (Veh, Cis, EA, EA
+PA6-38-L, EA+PA6-38-H: n=7; PA6-38-L, n=8, PA6-38-H, n=6). (G) Quantification of PI nuclear staining of BM cells (Veh, n=8; Cis, n=7; EA, n=8; EA+PA6-38-L,
n=8; EA+PA6-38-H, n=7; PA6-38-L, n=8; PA6-38-H, n=7). Data are mean ± SEM *P < 0.05, **P < 0.01, ***P < 0.001 vs Veh; #P < 0.05, ##P < 0.01, ###P < 0.001 vs Cis;
⋆P < 0.05, ⋆⋆P < 0.01 vs EA.
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collagen production can explain its potential to restore
hematopoiesis and ameliorate the cancer inhibition of
common myeloid and megakaryocytic/erythroid progenitors as
discussed above in cancer mice. These results may suggest that
EA can be more effective than anticipated for cancer treatment
and not only beneficial to patients with chemotherapy.

Furthermore, EA restores hematopoiesis by preserving normal
hematopoietic cell proliferation and production critical factors
regulating the cell cycle such as Ccna2 expression of Cyclin A2.
One significant advantage of EA is its potential to activate specific
neuronal networks and induce local effects. Thus, EA preserved
Ccna2 expression and hematopoietic cell proliferation in the BM
without enhancing tumor proliferation (75). In addition to Ccna2,
EA also preserved the normal expression of Ki67 for ribosomal
RNA synthesis. These results concur with the KEGG and protein-
protein interaction analyses showing the potential of EA to
preserve multiple factors associated with ribosomal RNA
synthesis. Ribosomes are critical intracellular translational
Frontiers in Immunology | www.frontiersin.org 11
machinery responsible for protein synthesis and cellular
proliferation. Eukaryotic 80S ribosomes are composed of two
subunits, a 40S decoding subunit, and a large 60S subunit that
catalyzes the peptide bonds (76). Chemotherapy drugs inhibit
ribosomes at different levels, whereas oxaliplatin induces DNA
damage with nucleolar and ribosomal disruption as shown by
proteomic profiling (77), cisplatin modifies ribosomal mRNA via
1xr1-TOR signaling pathway to prevent protein synthesis. Ixr1 is
an HMGB protein that regulates the hypoxic regulon and controls
the oxidative stress response or re-adaptation of catabolic and
anabolic fluxes in hypoxia. Ixr1 binds with high affinity to
cisplatin-DNA adducts and, thus, cisplatin treatment mimics
IXR1 deletion, and prevents ribosome biogenesis. Ixr1 is critical
to regulating multiple transcriptional factors that respond to
nutrient availability and stress stimuli through the TOR and
PKA pathways (78, 79). Our analyses showed cisplatin
inhibiting multiple factors affecting both 40S and 60S ribosome
subunits, whereas EA preserved their normal expression.
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FIGURE 5 | PAC1-agonist mimics electroacupuncture-induced protection to cisplatin. (A) Representation of the latency time (seconds) in hot-plate tests of mice
with control (Veh), cisplatin (Cis; 3 mg/kg), EA (cisplatin + electroacupuncture), cisplatin mice were treated with low (10 mg/kg) or high (50 mg/kg) concentrations
PAC1-agonist, PACAP1-38 (Veh, n=8; Cis, n=7; EA, n=8; PA38-L, n=8; PA38-H, n=7), P values were calculated using two-way repeated-measures ANOVA.
(B) Peripheral blood counts of specific subpopulation of leukocytes ((Veh, Cis, EA: n=6; other groups, n=7). (C) Analyses of hematopoietic BM cell subpopulation
(Veh, Cis, EA: n=7; PA38-L, PA38-H: n=8). (D) Quantification of PI nuclear staining of BM cells (Veh, n=8; Cis, n=7; EA, n=8; PA38-L, n=8; PA38-H, n=7). Data are
mean ± SEM, *P < 0.05, **P < 0.01, ***P < 0.001 vs Veh; #P < 0.05, ##P < 0.01 vs Cis.
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Our molecular analyses also show the potential of EA to
modulate over 1,600 BM genes that are mainly related to
extracellular matrix receptor interaction, B cell and toll-like
receptors signaling, and the p53 and NF-kB pathways. Indeed,
the extracellular matrix is critical to hematopoiesis and the
response of hematopoietic cells to neurotransmitters and
growth factors (24, 80). For instance, fibronectin is important
for the adhesion and proliferation of hematopoietic and
erythroid progenitors (81), whereas adiponectin can inhibit
myelomonocytic cell expansion (82) and Col1a1 and Col1a2
are produced by BM stromal cells to define BM hematopoietic
niche microenvironment (83, 84). Our RT-qPCR analyses
showed that cisplatin activates Col1a1 and Col1a2, and EA
preserved normal Col1a1 production. The potential of EA to
modulate Col1a1 may be more significant than anticipate and
not only beneficial to patients with chemotherapy. The control of
Col1a1 by EA can explain its potential to restore hematopoiesis
and ameliorate the cancer inhibition of common myeloid and
megakaryocytic/erythroid progenitors as discussed above in
cancer mice. Our results warrant future studies to determine
Frontiers in Immunology | www.frontiersin.org 12
the role of this mechanism in hematopoietic cell translocation
and egress and their clinical implications in cancer progression.

The main effects of EA are mediated by the nervous system,
which is critical to coordinate BM hematopoiesis for physiological
homeostasis. Many studies have shown that chemotherapy drugs
such as cisplatin are neurotoxic and damage BM autonomic nerves
compromising hematopoiesis (45). Thus, ablation of sensory nerves
with capsaicin also reduces BM cellularity and causes leukopenia
(85). Our results show that cisplatin induced neurotoxicity and
inhibited the production of multiple neurogenic factors such as Ngf,
Bdnf , and PACAP, whereas EA induced sympathetic
neuroprotection and preserved the production of these factors. Of
note, previous studies reported that the 28-38 tail of PACAP is
important for blood transportation, BBB crossing, and degradation
by plasma endopeptidases (31, 33). Furthermore, PACAP has two
isoforms, PACAP27 and PACAP38, with the latter being the
dominant in mammalian tissue at normal physiological
conditions. However, their respective levels change in different
physiological and pathological conditions. For instance, PACAP27
and PACAP38 levels were lower in lung cancer samples than in
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FIGURE 6 | Electroacupuncture restores hematopoiesis in cancer mice during cisplatin chemotherapy. (A) Experimental flowchart depicting the time of treatments of
tumor (LLC) cells at day 0, cisplatin (C), electroacupuncture (E), and analyses of tumor volume (T) and sample collection. (B) Tumor growth curve (n=9 per group),
P values were calculated using two-way repeated-measures ANOVA. (C) Peripheral blood counts of specific subpopulation of leukocytes (leukocytes, lymphocytes:
T, n=8; Cis, n=6; EA, n=8. neutrophils, monocytes, T and B lymphocytes: T, n=8; Cis, n=6; EA, n=7). (D) Analyses of hematopoietic BM cell subpopulation (n =9 per
group). (E) Quantification of PI nuclear staining of BM cells (n=9 per group). Data are mean ± SEM, *P < 0.05, **P < 0.01, ***P < 0.001 vs Veh; #P < 0.05, ##P < 0.01
vs Cis.
September 2021 | Volume 12 | Article 714244

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Neuroprotection During Chemotherapy
healthy tissue. Likewise, our present study shows lower PACAP
levels during cisplatin chemotherapy. Given that our PACAP ELISA
kit recognizes both PACAP27 and PACAP38, future detailed
studies will be required to determine the differential role of
PACAP27 and PACAP38 in chemotherapy, neuromodulation of
bone marrow hematopoiesis, and electroacupuncture.

Our previous studies showed that PACAP-specific receptor
(PAC1) is strongly expressed on HSPCs of murine BM, and
adcyap1−/− mice exhibited lower MPP populations and cell
frequency in the S-phase of the cell cycle. Exogenous PACAP38
increased the numbers of colony forming unit-granulocyte/
macrophage progenitor cells (CFU-GM) derived from HPSCs,
and increased Cyclin D1 and Ki67 expression, and these effects
were prevented by the PAC1 antagonist. Of note, the direct
sympathetic regulation of HSPCs proliferation is also evidence by
the fact that PACAP is not produced by BM cells, but secreted from
the sympathetic terminals (42). In this study, our results showed
PACAP is a critical neurogenic factor mediating the protective
effects of EA during chemotherapy. We showed that EA-induced
PACAP expression in BM is critical to sympathetic nerve
neuroprotection during cisplatin chemotherapy, and neurogenic
PACAP derived from BM sympathetic nerve terminals mediated
the protective effects of EA in cisplatin chemotherapy.

Inhibition of PACAP receptor PAC1 with high dose of
PACAP6-38, abrogated the potential of EA to preserve thermal
nociception, BM hematopoiesis, hematopoietic cell proliferation,
and peripheral leukopenia. Conversely, pharmacologic activation
of PAC1-agonist, with high dose of PACAP1-38 mimics EA-
induced neuroprotection and preserved thermal nociception in
cisplatin-treated mice. PACAP1-38 also preserved BM
hematopoiesis, hematopoietic cell proliferation, and peripheral
leukocyte levels. Furthermore, PACAP6-38 treatment can decrease
the hematopoiesis in cisplatin-treated mice, probably by blocking the
hematopoiesis promoting effect of the remaining PACAP secreted
from injured sympathetic nerve terminal in BM. As shown in
previous studies, activated PAC1 can interact with Gas stimulating
adenylyl cyclase leading to elevated cAMP, protein kinase A
activation to promote neuronal survival in cerebellar granule
neurons (86). Meanwhile, PAC1 signaling also stimulated the
proliferation of adult mouse neural progenitor cells through PKC-
dependent pathway (31, 87). The potential pathway maybe involve
that activated PAC1 can interact with Gaq stimulating PLC causing
phosphatidyl inositol turnover. The diacylglycerol activates protein
kinase C leading to Src phosphorylation to activate matrix
metalloprotease metabolizing transforming growth factor-a (TGF-
a) from inactive precursors, leading to the tyrosine phosphorylation
of the epidermal growth factor receptor to activate Ras and Raf,
resulting in the tyrosine phosphorylation of mitogen/extracellular
signal-regulated kinase and extracellular signal-regulated kinase to
increase cellular proliferation (31, 88). The effects and molecular
mechanism of PAC1 receptor in mediating preservation of BM
hematopoiesis in lung carcinoma mice by EA needs further
investigation. In conclusion, our results indicate that PAC1
signaling may be one of the mechanisms induced by EA to protect
against cisplatin-induced neurotoxicity and immunosuppression in
cancer patients, and PAC1-agonists may provide therapeutic
Frontiers in Immunology | www.frontiersin.org 13
advantages to treat patients with advanced neurotoxicity or
neuropathies limiting EA efficacy.
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