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Abstract: Background: equine sarcoids are the most frequent skin tumors in equidae worldwide. It is
well known that delta bovine papillomaviruses are their causative agents. We have recently shown
the presence in equine sarcoids of abnormal vessel structures, which could cause a hypoxic condition.
The aim of this study was to analyze the expression of hypoxia-inducible factor-1 alpha (HIF-1α) in a
subset of BPV positive equine sarcoids and explore the relationship with vascular endothelial growth
factor (VEGF) expression. Results: 80% of equine sarcoids showed strong cytoplasmic staining in
>60% of neoplastic fibroblasts, while 20% of samples showed a moderate cytoplasmic staining in
40–60% of neoplastic fibroblasts for HIF-1α. Results of Western blotting (WB) were consistent with
immunohistochemistry (IHC). Moreover, a positive correlation between HIF-1α and VEGF expression
(r = 0.60, p < 0.01) was observed. Conclusion: we have shown that HIF-1α was strongly expressed
in equine sarcoid. The upregulation of HIF-1α has been described in numerous tumors and can be
modulated by many proteins encoded by transforming viruses. Thus, it is also possible that BPV
could have a relevant role in HIF-1α pathway regulation, contributing to the development of equine
sarcoids by promoting HIF-1α/VEGF mediated tumor angiogenesis.
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1. Introduction

Equine sarcoids are the most frequent fibroblastic benign skin tumor in equidae worldwide,
with prevalence rates of 0.5–2.0% [1,2]. They often form from scar tissue or sites of a previous
wound or trauma, on the head, the limbs, the ventrum, and the paragenital region [3]. Sarcoids
often persist, can be locally invasive, and rarely regress [3,4], although it has been recently reported
that a high percentage of equine sarcoids spontaneously disappeared without therapy [5]. It is
widely known that these lesions do not always respond to therapy and are often correlated with a
high recurrence rate after surgical excision [3,4,6], leading to morbidity and impacting the function
and aesthetics of affected equids, which decreases their economic value [7,8]. Equine sarcoids have
a multifactorial cause [9]; however, it has been proved that there is a strong correlation between
permanent infection with delta bovine papillomaviruses (BPV type 1, 2 and 13), and persistent and
progressive sarcoids [7,10,11]. The evidence that BPV has a main role in the pathogenesis of sarcoids
may be partly explained by the detection, in naturally occurring equine sarcoid, of BPV DNA in an
episomal form and in multiple copies [11–14]. In addition, BPV oncogenes and capsid gene transcripts
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(E2, E5, E7, and L1) have been shown in equine sarcoid tissue [15–17], indicating the beginning
of viral transcription and replication [12,18,19] and providing evidence for a direct involvement of
BPV in equine sarcoids development. The protein E5, in synergy with E7, induces DNA damages
and genomic instability [20–23], leading to the cell transformation and to subsequent development
of cancer [12]. The principal mechanisms whereby the BPV major oncogene E5 induces malignant
transformation, involve the activation of platelet-derived growth factor βeta-receptor (PDGFβ-r) [24],
the immune evasion [11], the resistance to apoptosis [25], the upregulation of matrix metalloproteinase
(MMPs) with consequent alteration of extracellular matrix (ECM) turnover [26], and the increase of
angiogenesis [27]. Angiogenesis, the development of new vessels, is necessary for neoplastic invasion,
growth, and metastasis, and has a crucial role in the development and progression of numerous human
and animal cancers [28–37]. Angiogenesis is induced in response to hypoxia, and cellular response to
hypoxia is primarily regulated through the activity of the hypoxia-inducible factor-1 (HIF-1) [38,39].
HIF-1 is a heterodimer composed by HIF-1alpha (HIF-1α) and HIF-1beta (HIF-1β) subunits. The
latter, also known as aryl hydrocarbon receptor nuclear translocator, is constitutively expressed in the
cell nucleus, whereas HIF-1α is synthesized continuously in an oxygen-dependent manner. Under
normoxic conditions, HIF-1α is rapidly hydroxylated and degraded by prolyl hydroxylases (PHD).
Under hypoxia, which is common in tumors, HIF-1α heterodimerizes with the HIF-1β subunit, and
together, by translocating to the nucleus, they bind DNA and increase the transcription of target
genes, such as vascular endothelial growth factor (VEGF) [40–42]. It is now accepted that VEGF
expression is mediated by HIF-1α during hypoxia, and the expression of HIF-1α directly correlates
with VEGF expression and tumor vascularity in several tumors [43–51]. Tumor hypoxia often appears
in many cancers as a result of tumor growth exceeding its own angiogenic capability. In this regard,
HIF-1α plays a crucial role in the adaptative response of neoplastic cells to oxygen limitation, inducing
activation of numerous genes that are involved in angiogenesis. Moreover, besides being a ‘guardian’
of oxygen homeostasis, HIF-1α has recently emerged as a key player in energy metabolism, survival,
cell migration, and in immune cell regulation [40–42,52,53].

We have recently shown an overexpression of VEGF and abnormal vessel structures [27] in equine
sarcoids, which could cause a hypoxic condition, leading to an upregulation of HIF-1α.

Since the specific function of HIF-1α in sarcoid pathogenesis has not been investigated, so far, we
analyzed the expression of HIF-1α in 35 BPV positive equine sarcoids and explored the relationship
with VEGF expression reported in our previous study [27].

2. Results

2.1. Histological Features

The examined sarcoids (n = 35) showed the classic histological features of the lesion: epidermal
hyperplasia with rete pegs; hyperkeratosis; proliferation of neoplastic fibroblast in the dermal layer,
oriented in a ‘picket fence’ perpendicular to the basilar epidermal layer; exuberant extracellular matrix;
presence of many small vessels irregular in shape [26,27].

2.2. Immunohistochemical Results

All results of HIF-1α expression pattern in 35 equine sarcoids and 10 normal skin samples are
shown in Table 1.

2.2.1. Control Samples

Equine kidney used as positive control showed strong immunostaining for HIF-1α in tubular
epithelial cells (Figure S1). Equine normal skin and sarcoid, used as the control, showed staining for
Purified Rabbit IgG (P120–201-Bethyl Laboratories, Inc.) in cells at the base of the epidermis but not in
fibroblasts (Figures S2 and S3). All 10/10 normal skin samples showed immunostaining for HIF-1α, in
10% of basal epidermal cells. Fibroblasts were negative (Figure 1).
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Table 1. Immunoreactivity scoring of HIF-1α in 35 equine sarcoids.

Location Number of Cases Staining Intensity Score * Percentage Positive Score **

Neck 2 ++ 3
Limb 9 ++ 3

1 + 2
Abdomen 4 ++ 3

2 + 2
Pectoral region 5 ++ 3

3 + 2
Head 5 ++ 3

1 + 2
Paragenital 3 ++ 3

* Staining intensity score: + moderate immunolabelling, and ++ strong immunolabelling. ** Percentage positive
score: 0 (≤10% positive cells), 1 (10–40% positive cells), 2 (40–60% positive cells), and 3 (>60% positive cells).
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Figure 1. Equine normal skin. HIF-1α immunohistochemical staining. Expression in the basal
epidermal cells (arrow) (40×). Scale bar: 100 µm.

2.2.2. Sarcoid Samples

HIF-1α immunostaining was detected in all 35 equine sarcoid samples. In 28/35 sarcoid samples
(80%), a strong immunolabeling was observed as finely granular cytoplasmic staining in >60% of
neoplastic fibroblasts and endothelial cells (score 3; ++) (Figure 2a). Among these samples (score 3,
++), 100% were located on neck (2/2) and paragenital region (3/3), 90% (9/10) on limb, 83% (5/6) on
head, 66% (4/6) were on abdomen, and 62% (5/8) on pectoral region.

The remaining 7/35 sarcoid samples (20%) showed a moderate granular cytoplasmic staining for
HIF-1α in 40–60% of neoplastic fibroblasts (score 2, +) (Figure 2b). Among these samples (score 2, +),
10% (1/10) were located on limb, 34% (2/6) were located on abdomen, 38% (3/8) on pectoral region, and
17% (1/6) on head.
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Figure 2. Equine sarcoid. HIF-1α immunohistochemical staining. (a) Strong immunohistochemical
expression in sarcoid fibroblasts (arrow) (score 3; ++; 40×; Scale bar: 100 µm). (b) Moderate
immunohistochemical expression in sarcoid fibroblasts (arrow) (score 2; +; 20×; Scale bar: 100 µm).

2.3. Statistical Results

The rank correlation analysis showed that the percentage of HIF-1α positive cells was positively
correlated with the percentage of VEGF positive cells found during a previous study by our group
(r = 0.60 p < 0.01) [27].

2.4. Biochemical Results

By Western blot, a band of the expected molecular size for HIF-1α (120 kDa, Figure S4) was
identified in the tested samples, as well as in Hela and K562 cell lines used as positive control
as suggested by antibody datasheet and literature data, confirming the specificity of the antibody
(Figure 3A) [54]. HIF-1α was expressed at higher levels in sarcoid samples with respect to normal skin
samples, where the band was detected at low to undetectable levels, as confirmed by densitometric
analysis (Figure 3A,B).
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Figure 3. (A) Western blotting analysis showing overexpression of HIF-1α in equine sarcoids (S)
compared to normal skin samples (N). Whole cell lysate from Hela cells and K562 cells was run
concomitantly to ensure the specificity of the band. Blot was stripped and incubated with anti-β-actin
antibody to perform normalization. (B) Densitometric analysis was performed with the results
expressed as HIF-1α/actin ratio.
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3. Discussion

The insufficient levels of cellular oxygen, a condition also known as hypoxia, were demonstrated in
many tumors [55] and were associated with a structural and functional abnormality of vessels or to an
increase of oxygen consumption caused by the rapid proliferation of neoplastic cells [56]. HIF-1α has a
relevant role in oxygen homeostasis, and experimental evidence has indicated that it is a major regulator
of normal and tumor cell adaption to hypoxic stress [52,53,55,57]. HIF-1 is a heterodimeric protein
composed of a constitutively expressed HIF-1β subunit and an O2-regulated HIF-1α subunit [58].
HIF-1α is degraded by the ubiquitin-proteasome pathway [59] under normoxic conditions, while it
is protected from ubiquitination and proteasomal degradation under hypoxic-conditions [42]. After
PHD inhibition, HIF-1α dimerizes in HIF-1β to form HIF-1, which is responsible for the transcription
of genes encoding glucose transporters, glycolytic enzymes, and VEGF [40–42]. HIF-1α and VEGF
are major regulators of angiogenesis [60] in the tumor microenvironment and have a crucial role in
tumor progression [60–62]. As VEGF [27,29,32,34,60], HIF-1α is overexpressed in a large variety of
tumors [60,63], and its association with unfavorable prognosis has been reported, as it activates genes
that play a relevant role in angiogenesis, invasion, and metastasis [57,59,64].

In this study, we have observed, by immunohistochemistry and biochemical analysis, HIF-1α
expression levels in BPV positive equine sarcoids, located in different body regions [27], and we have
evaluated the correlation between HIF-1α and VEGF expression, previously analyzed in a study
of ours.

In our samples, surprisingly, HIF-1α showed a cytoplasmic expression, while the antibody used by
us (#ab114977, Abcam) was reported to have a nuclear expression. We hypothesize that the abnormal
upregulation and accumulation of HIF-1α in the cytoplasm could be related to the inhibition of
prolyl-hydroxylation (PHD) under hypoxia and to the consequent suppression of HIF-1α degradation,
leading to its rapid accumulation in the cytoplasm [65]. HIF-1α shuttling between cytoplasm and
nucleus is a complex process regulated by numerous factors [65], and it was already reported its
cytoplasmic expression in a broad spectrum of tumors [66,67].

All normal skin samples showed negative immunostaining for HIF-1α in fibroblast, while a weak
immunostaining was observed in the basal epidermal cells, where HIF-1α is known to be constitutively
expressed. Moreover, 80% of sarcoid samples showed a strong and finely granular cytoplasmic staining
for HIF-1α in >60% of sarcoid fibroblasts and endothelial cells, while in remaining samples (20%)
the intensity of immunostaining was moderate and observed in 40–60% of neoplastic fibroblasts and
endothelial cells.

Although the samples located on the neck, paragenital region, and limb showed higher intensity
staining and percentage positive score (see Table 1), no correlation could be demonstrated.

In a previous study [27] including the same samples, we have reported VEGF overexpression
in most keratinocytes, sarcoid fibroblasts, and endothelial cells. Moreover, we have recently shown
that, even if small blood vessels were numerous, they showed irregularity in shape, and their lumina
appeared indistinct. Taken together, these data strongly suggest that in sarcoid tissue, there could be a
hypoxic condition in which HIF-1α would have a crucial role, leading to the upregulation of VEGF
and an increase in the vessels’ number. However, despite the increase of vessels, they didn’t appear
sufficiently mature, possibly inducing worse or persistent hypoxia, which in turn could induce the
upregulation of HIF-1α and then of VEGF. This strict relationship between HIF-1α and VEGF was
also, in part, evidenced in our statistical analysis results, which showed a positive correlation between
HIF-1α and VEGF expression (r = 0.60; p < 0.01). Our results seem to suggest that HIF-1α not only
could regulate VEGF expression but also contributes to the formation of a complex proangiogenic
microenvironment in equine sarcoids, thereby affecting vessels’ morphology and, ultimately, the
vessels’ function [68].

Numerous studies reported that HIF-1α synthesis, or its decreased degradation, can be modulated
by different tumor suppressor genes and oncogenes, among which there are many proteins encoded
by transforming viruses [58,69]. There is strong evidence that human papillomaviruses (HPV)
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oncoproteins can promote tumor angiogenesis via the upregulation of HIF1/VEGF pathways, specifically
manipulating aspects of the cellular hypoxic response [70,71]. HPV E6 and E7 were shown to increase
independently the induction of HIF-1α [65] or to interfere with HIF-1α degradation, leading to the
inactivation of proteasomal degradation and to HIF-1α stabilization [39,72,73]. Moreover, built upon
these evidences, and in light of the common biological functions of papillomavirus oncogenes [74],
we may speculate that BPV oncoproteins could play a relevant role in regulation of HIF-1α pathway,
contributing, at least in part, to the development of equine sarcoids by promoting HIF1α/VEGF
mediated tumor angiogenesis.

Further investigations are needed to clarify the specific role of BPV in the regulation of
HIF-1α/VEGF pathway, and to evaluate if there could be any correlation in equine sarcoid between
HIF-1α and glucose transporter 1 (GLUT1), which is known to be the rate-limiting enzyme for
glycolysis [75]. In hypoxic conditions, neoplastic cells have been reported to increase GLUT1 expression
under the positive regulation of HIF-1α, leading to increase cellular glucose uptake, and support the
aerobic glycolysis of cancer cells [75].

We believe that new knowledge of equine sarcoid pathogenesis would be necessary in order to
gain new insights into the development of novel therapies for this pathology.

4. Materials and Methods

4.1. Tumor Samples

We analyzed 10 normal skin samples and 35 equine sarcoids. The normal skin samples, located
on head (n = 3), abdomen (n = 2), neck (n = 2), limb (n = 2), and pectoral regions (n = 1), were obtained
during necropsy from healthy horses. The equine sarcoids, located on the limbs (n = 10), pectoral region
(n = 8), head (n = 6), abdomen (n = 6), paragenital (n = 3) and neck (n = 2) (Table 1), were surgically
excised from affected horses, using best practice of veterinary care, according to Directive 2010/63/EU
(art. 1), and processed for routine diagnosis and treatment. Each owner consented to use tissues for
research purposes, according to the ethical guidelines of the Anatomic Pathology Diagnostic Service of
the Department of Veterinary Medicine and Animal Production (University of Naples Federico II). All
samples were 10% formalin-fixed, paraffin-embedded for routine histological processing, and stained
with hematoxylin and eosin (HE). Four sarcoids (S26, S27, S28, S29) and 2 normal skin samples (N6–N7)
were immediately frozen at −80 ◦C and analyzed by Western blotting. Al sarcoid samples, the same as
those previously used [27], were BPV positive, while normal skin samples were BPV negative [24].
Moreover, no previous treatments with topical or intra-tumoral therapy prior to excision were used.

4.2. Immunohistochemistry

Sections (5 µm) were processed for immunohistochemistry using the streptavidin-biotin-
peroxidase method. All sections were deparaffinized in alcohol decreasing solutions, and endogenous
peroxidase activity was blocked by incubation in 0.3% H2O2 in methanol for 20 min. Antigen retrieval
was performed by pre-treating with microwave heating (twice for 5 min each at 750 W) in citrate buffer,
pH 6.0. The slides were washed three times with phosphate buffered saline (PBS, pH 7.4, 0.01 M), then
incubated for 1 h at room temperature with normal goat serum (Santa Cruz Biotechnology, Santa Cruz,
CA, USA) diluted at 20% in PBS. As primary antibody, a polyclonal rabbit anti-human (predicted to
cross-react with horse) to anti-HIF-1α (#ab114977, Abcam; 775–826 amino acids at C terminal) diluted
1:100 in PBS was used and applied overnight at 4 ◦C. Control sections (equine normal skin and sarcoid)
were incubated with PBS instead of the primary antibody and with rabbit IgG (Purified Rabbit IgG
P120-201-Bethyl Laboratories, Inc.) at the same concentration as the primary antibody. Equine kidney
sections were used as positive control and incubated with anti-HIF-1α antibody (#ab114977, Abcam;
775–826 amino acids at C terminal).

Then, sections were incubated with MACH 1 probe (Biocare Medical, LLC, Concord, CA, USA)
for 20 min at room temperature and with MACH-1 Universal HPR-Polymer (Biocare Medical, LLC,
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Concord, CA, USA) for 30 min at room temperature. Sections were counterstained with hematoxylin,
and the immunolabelling was revealed with diaminobenzidine tetrahydrochloride.

4.3. Scoring of Immunoreactivity

For the evaluation of HIF-1α expression, a semiquantitative score was applied by two independent
observers (Martano M. and Maiolino P.) under blinded conditions. Briefly, for each sample, we have
established the number of immunolabeled cells by counting 1000 cells in 10 fields at 400×magnification
(40× objective 10× ocular), and we have expressed results as percentage and scored as follows: 0 (≤10%
positive cells); 1 (10–40% positive cells); 2 (40–60% positive cells); 3 (>60% positive cells). Moreover, the
intensity of immunostaining was graded, as performed in a previous study [27]: n.a. (not assessable),
− (negative staining), +/− (weak immunostaining), + (moderate immunostaining), and ++ (strong
immunostaining) (Table 1).

4.4. Statistical Analysis

Pearson correlation test was used to correlate the percentage of HIF-1α positive cells with the
percentage of VEGF positive cells reported in a previous study [27].

4.5. Protein Extraction and SDS PAGE/Western Blotting

Tissue samples homogenization, protein extraction, denaturing polyacrylamide gel electrophoresis
(SDS-PAGE), and WB was performed as previously described [27]. The membranes were subjected
to blocking by using Tris buffered saline (TBS: 10 mM Tris-HCl, pH 7.4, 165 mM NaCl) added with
0.1% Tween 20 (TTBS) and 5% non-fat dry milk, at room temperature for 1 h. The anti-HIF antibody
(#ab114977, Abcam) at 1:1000 dilution was incubated overnight at 4 ◦C.

Following four washing steps of 10 min in TTBS, donkey anti-rabbit secondary antibody conjugated
with peroxidase was employed at 1:2000 dilution for 1 h at room temperature. After additional washing
steps, bound antibody was visualized by enzyme chemiluminescence with Clarity™Western ECL
Blotting Substrate (Bio-Rad Laboratories, Milano, Italy). The blots were stripped and reprobed for
β-actin (CP01, Calbiochem, San Diego, CA, USA) (1:500) as a loading control in order to perform
normalization. Protein quantization and normalization were performed as reported in a previous
study [27].

5. Conclusions

Finally, in our study, we have demonstrated for the first time the increase of HIF-1α expression
in equine sarcoid, and we hypothesized that HIF-1α, together with VEGF, could have a role in
sarcoid development.

Recent advances in cancer biology at the cellular and molecular levels highlighted the HIF-1α
pathway as a crucial survival pathway for which novel strategies of cancer therapy could be
developed [76]. We hope that in the future, hypoxia-inducible factor-1 (HIF-1) could be an important
cancer drug target for equine sarcoid, since not all sarcoids are responsive to therapy, despite the
numerous treatment choices available.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-0817/9/1/58/s1.
Figure S1: Equine kidney used as positive control showed strong immunostaining for HIF-1α in tubular epithelial
cells; Figure S2: Equine normal skin showed staining for Purified Rabbit IgG (P120-201-Bethyl laboratories-INC)
in cells at the base of the epidermis but not in fibroblasts; Figure S3: Equine sarcoid showed staining for Purified
Rabbit IgG (P120-201-Bethyl laboratories-INC) in cells at the base of the epidermis but not in fibroblasts; Figure S4:
Full length membrane of Western blotting for HIF-1 α from Figure 3, demonstrating detection of a band at the
expected molecular size (~120 kDa) in equine tissue samples, Hela and K562 cell lines. Molecular markers (M) are
shown, molecular weights in kDa are indicated on the left of each M band.

The data sets supporting the results of this article are included within the article and its additional files.
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Abbreviations

BPV-1 Bovine papillomavirus type-1
BPV-2 Bovine papillomavirus type-2
BPV-13 Bovine papillomavirus type-13
HPVs Human Papillomaviruses
HIF1 Hypoxia-Inducible Factor-1 alpha (HIF-1α)
VEGF Vascular Endothelial Growth Factor
IHC Immunohistochemistry
WB Western Blotting
N normal skin
PDGFβ-r Platelet-Derived Growth Factor βeta-receptor
MMPs Matrix Metalloproteinase
ECM Extracellular Matrix
PHD Prolyl Hydroxylases
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