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Abstract
Gastric antrum ulcerations are common disorders occurring in humans and animals. Such

localization of ulcers disturbs the gastric emptying process, which is precisely controlled by

the pylorus. Galanin (Gal) and its receptors are commonly accepted to participate in the reg-

ulation of inflammatory processes and neuronal plasticity. Their role in the regulation of gas-

trointestinal motility is also widely described. However, there is lack of data considering

antral ulcerations in relation to changes in the expression of Gal and GalR1, GalR2, GalR3

receptors in the pyloric wall tissue and galaninergic intramural innervation of the pylorus.

Two groups of pigs were used in the study: healthy gilts and gilts with experimentally

induced antral ulcers. By double immunocytochemistry percentages of myenteric and sub-

mucosal neurons expressing Gal-immunoreactivity were determined in the pyloric wall tis-

sue and in the population of gastric descending neurons supplying the pyloric sphincter

(labelled by retrograde Fast Blue neuronal tracer). The percentage of Gal-immunoreactive

neurons increased only in the myenteric plexus of the pyloric wall (from 16.14±2.06% in

control to 25.5±2.07% in experimental animals), while no significant differences in other

neuronal populations were observed between animals of both groups. Real-Time PCR

revealed the increased expression of mRNA encoding Gal and GalR1 receptor in the pyloric

wall tissue of the experimental animals, while the expression(s) of GalR2 and GalR3 were

not significantly changed. The results obtained suggest the involvement of Gal, GalR1 and

galaninergic pyloric myenteric neurons in the response of pyloric wall structures to antral

ulcerations.
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Introduction
Galanin is a neuropeptide strongly involved in inflammation. Changes in the expression of
galanin and its receptors are commonly observed in inflammatory diseases of different organs,
including the gastrointestinal tract [1]. Neurons of the central and peripheral nervous system
are known to express galanin and its levels are influenced by pathological processes occurring
in the tissues supplied by these nerve cells. In the gastrointestinal tract galanin is expressed by
myenteric and submucosal plexus neurons [2–5] and it is known to play a multiple role in the
regulation of neurotransmission, mucosal secretion and smooth muscles contractions [6–11].
Galanin exerts its biological functions via the activation of three different galanin receptor sub-
types—GalR1, GalR2, GalR3 [12]. Antral ulcerations are common disorders occurring in
human and animals. Such ulcers are localized in the distal part of the stomach which is found
close to the pyloric sphincter. Interestingly, gastric emptying is delayed only in patients with
antral ulcerations, which is an unique occurrence [13] staying in contrast to the accelerated
gastric emptying observed in patients with proximal gastric or duodenal ulcerations [14]. The
pylorus, including its musculature called the pyloric sphincter, plays a key role in the regulation
of gastric emptying. The pylorus is widely innervated by extrinsic and intrinsic nerves [15;16].
According to many authors, intrinsic (intramural) neurons that compose the enteric nervous
system (ENS) are extremely important in the regulation of gastrointestinal motility [17;18].
Intramural gastric neuronal perikarya supplying the pylorus are localized in the myenteric and
submucosal plexuses of the exact pylorus as well as in more proximal parts of the stomach. The
latter ones contribute to so-called gastric descending nerve projections [19].

The gastric ulcerations are pathological processes accompanied by strong inflammatory
reactions. Such pathological processes induce the specific response in the tissues. The response
of neurons to pathological (or physiological) processes is widely defined as neuronal plasticity
[20;21], which is manifested by changes in the expression of neuronal substances and receptors,
among others galanin and its receptors [1;22;23]. These adaptive changes include both up and
down regulation of transmitter expression and the induction of new genes in enteric nerve
cells. They are developed not only to help enteric neurons to survive under pathological condi-
tions but also to help the inflamed part of the gastrointestinal tract to recover. All these tissue
responses are mainly observed in the place of injury or inflammation, however, the neighbour-
ing tissues could be also affected. Interestingly, in the gastrointestinal tract the inflammatory
process occurring in a certain site can influence the other, frequently even quite distant areas
[24]. Antral ulcers, according to their specific localization, are known to influence the number
and distribution of neurons contributing to gastric descending projections to the pyloric
sphincter [25]. It seems to be reasonable to hypothesize that such ulcerations could additionally
induce changes in the chemical coding of gastric intramural neurons (localized exactly in the
pyloric wall and gastric descending projections) innervating the pylorus, and thus the number
of such perikarya expressing galanin could be also changed. Moreover, the reaction of the pylo-
ric wall to the released galanin could be additionally modified by changes in the expression of
distinct galanin receptor’s subtypes. The confirmation of this assumption would clearly dem-
onstrate the involvement of galanin and its receptors in the local gastric neuronal regulation of
the pyloric function in subjects with antral ulcerations. It would also provide evidence that
intrinsic gastric neurons and galanin may contribute to the gastric emptying disorders in indi-
viduals with such localization of gastric ulcers.

Pigs are animals of a great economic value, in which gastric ulcerations are common disor-
ders resulting in a high mortality at the age of 3–6 months or slower growth of animals with
severe gastric ulcerations [26–28]. Such consequences cause huge economic losses in many
countries. Due to several morphological and physiological similarities to human organism,
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especially those regarding the gastrointestinal tract (swine is an omnivorous), the pig is consid-
ered to be the highly valuated animal model in biomedical research [29].

Data indicating the significant inhibitory effect of galanin and its receptors on gastrointesti-
nal motility [9;30–32], gastric emptying [33] and sphincteric function [34] as well as those sug-
gesting the considerable engagement of galanin and its receptors in inflammatory processes
[1;23] seem to constitute good reasons to examine changes in the expression of galanin in the
pyloric wall tissue and gastric intramural neurons supplying the pylorus in pigs with antral
ulcerations.

Therefore, the aim of the present study was to verify changes in the expression of galanin in
intramural gastric neurons supplying the pylorus (including the gastric descending neurons) in
pigs with experimentally induced antral ulcerations as well as to quantitatively validate (by the
Real-Time PCR) fluctuations in levels of mRNA encoding galanin and its receptors (GalR1,
GalR2, GalR3) in the pyloric wall tissue in these animals.

Materials and Methods
The handling of animals and all experimental procedures were in accordance with the rules of
the National Ethics Commission for Animal Experimentation (Polish Ministry of Science and
Higher Education). The protocol was approved by the Local Ethics Committee of the Univer-
sity of Warmia and Mazury in Olsztyn (Permit Number 76/2012) affiliated to the National Eth-
ics Commission for Animal Experimentation (Polish Ministry of Science and Higher
Education). All efforts were made to minimize animals suffering in each step of the
experiment.

The study was performed on sexually immature gilts of the Polish Large White breed (body
weight approx. 20 kg) obtained from a commercial fattening farm (14–260 Lubawa, Poland).
Since the present experiment is a part of the wider study, the tissues containing gastric descend-
ing neurons supplying the pyloric sphincter and retrogradely traced with Fast Blue (FB) tracer
were collected during investigations described in the previous article [25]. The tissues of these
animals were signed as tracing subgroup (T, n = 11, Fig 1—blue frame) and samples were col-
lected from the stomach antrum of the control (n = 6) and experimental (n = 5) animals
(detailed description of the methodology enclosed in the earlier article [25]).

The animals used in the current part of the study (n = 24) were divided into control (C,
n = 12) and experimental (E, n = 12) groups. The application of two different types of research
techniques (immunocytochemistry and Real-Time PCR) required two independent subgroups
of animals, tissues of which were differently fixed. As a result, the animals (n = 24) were ini-
tially divided into histochemical (H, n = 12) and molecular (M, n = 12) subgroups. Each of
these subgroups contained control (n = 6) and experimental (n = 6) pigs.

The pigs of the experimental group (n = 12) were pre-treated with azaperone (Stresnil, Jans-
sen Pharmaceutica, Belgium, 0.4 mg/kg b.w., i.m.) and atropine (Polfa, Poland, 0.04 mg/kg b.
w., s.c.) thirty minutes before the main anaesthetic was given. Then, the animals were generally
anaesthetized with xylazine (Vetaxyl, Vet-Agro, Poland, 0.3 mg/kg b.w., i.m.) and ketamine
(Bioketan, Vetoquinol Biowet, 15 mg/kg b.w., i.v., qs). Via the midline laparotomy the stomach
was exposed and bilateral injections of 1 cm3 of 40% acetic acid solution were performed into
the submucosal layer of the stomach antrum (as described in detail previously [25]) to evoke
gastric ulcers (according to the acetic acid ulcer model procedure [35]). Finally, the midline
abdomen incision wound was sutured, and secured by antibiotic (chlortetracycline, Animeda-
zon1 Spray, aniMedica Gmbh, Germany) and micronized aluminum (Alu Spray, Arendonk,
Belgium) spraying. The antibiotic (Betamox L.A., ScanVet, Poland, 15 mg/kg b.w., i.m.) and
meloxicam (Metacam, Boehringer Ingelheim Vetmedica GmbH, Germany, 0.4 mg/kg b.w., i.
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Fig 1. Tissue sampling. Diagram presenting the method of tissue sampling in the tracing (T), histochemical
(H) and molecular (M) animal subgroups. The markings are applied in the picture presenting the interior
surface of the "experimental animal" stomach which was cut along the greater curvature. Ulcers are indicated
by red circles. Photomicrograph presenting the transverse section of the deeply penetrating stomach ulcer
labelled with HE technique is shown in the red frame. Tissues containing Fast Blue (FB) traced perikarya
were collected from the gastric antrum (blue frame) of the tracing subgroup pigs (T) and were cut into 20 μm
thick cryostat consecutive microscopic sections. Tissues of the pyloric orifice wall (green frame) were
collected from the histochemical subgroup of animals (H) and were cut into 20 μm thick cryostat microscopic
sections. Tissues for Real-Time PCR were cut out bilaterally (about 0.5 cm from the torus pylori) from the
pyloric orifice wall (violet circles with letter M) from the animals of the molecular subgroup (M). The circular-
shaped samples, having a diameter of 1 cm, were cut transversally to the stomach wall by the use of a round
cutter and comprised all layers of the pyloric orifice wall (violet frame).

doi:10.1371/journal.pone.0155658.g001
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m.) injections were performed to minimize the pain and suffering. The animals were moved to
individual pens with unlimited access to water and kept for a week. On the next day after the
surgery, the pigs had unlimited access to feed. The animals of the control group (n = 12) were
kept for a week in the parallel pens and feed following the same feeding procedure. Finally all
the pigs were deeply anaesthetized (as described previously) with the overdose of anaesthetic
and sacrificed. The animals of the histochemical (H, n = 12) subgroup were transcardially per-
fused with a 4% solution of paraformaldehyde in 0.1M phosphate buffer (pH 7.4). Subsequent
to perfusions, the stomachs were removed and cut along the greater curvature. All the gastric
parts were thoroughly washed in PBS to remove food debris located on the mucosa. Then, 1
cm thick transverse section sample was taken from the pyloric orifice (Fig 1, green frame) and
post–fixed in the same fixative as used for the perfusion (60 min.), rinsed in PBS for 2 days and
transferred to and stored in 18% buffered (pH 7.4) sucrose solution for 3 weeks. Finally, 20 μm
thick transverse cryostat consecutive microscopic sections were cut and mounted on chrome
alum–gelatine–coated slides, air–dried and stored desiccated at -23°C until further processing.

The pigs of the molecular subgroup (M, n = 12) were deeply anaesthetized (as described pre-
viously) with the overdose of anaesthetic and exsanguinated. The stomach was dissected out,
cut along the greater curvature. All the gastric parts were thoroughly washed in PBS. Then, two
circular-shaped samples, having a diameter of 1 cm, were cut-out by use of a round cutter from
all layers of the pyloric orifice wall (Fig 1, violet frame). The samples were taken from bilateral
sidewall, about 0.5 cm from the torus pylori (Fig 1, violet circles with “M”). Afterwards, they
were immersed in 4°C RNAlater1 (Ambion, USA) overnight and finally stored at -80°C until
processing.

Immunocytochemistry
Immunocytochemical stainings were performed on the pyloric wall (Fig 1—green frame) tissue
slides collected from the pigs of subgroup H (n = 12), and on selected stomach antrum (Fig 1—
blue frame) tissue slides collected from the animals of the subgroup T (n = 11) [which con-
tained Fast Blue traced gastric neurons supplying the pyloric sphincter]. In order to provide
certainty that none of the immunostained cell was counted twice, the slides processed were sep-
arated from each other by a minimum distance of 80 μm (greater than dimensions of the larg-
est intramural perikarya). Next, the sections were double immunostained with a mixture of
primary antibodies against pan-neuronal marker PGP 9.5 (mouse anti-PGP 9.5, dilution 1:600,
code 7863–2004, clone 31A3, AbD Serotec) and galanin (rabbit anti-galanin, dilution 1:2500,
code T4330, Peninsula Laboratories) and corresponding secondary antibodies (AlexaFluor
488, goat anti-mouse, dilution 1:500, code A11001 and AlexaFluor 555, goat anti-rabbit, dilu-
tion 1:500, code A-21428, Invitrogen, USA). The primary antibodies used in the study were
recommended for application in the porcine tissues. All staining procedures and controls were
performed according to the previously described protocol [36].

Tissue slides of the pyloric wall (Fig 1—green frame) collected from the pigs of the subgroup
H were analysed under a fluorescent microscope equipped with a filter set for AlexaFluor 488/
AlexaFluor 555. To determine the percentages of the myenteric and submucosal galanin-
immunoreactive perikarya, at least 400 of PGP 9.5-positive cell bodies from each neuronal
group in each animal stomach were analysed. The results were presented as average
percentages ± SEM. The differences in the number of galanin-immunoreactive cells between
the control and experimental animals as well as submucosal and myenteric plexuses were sta-
tistically analysed by the Student t-test, and considered to be significant at P< 0.05.

The dimensions of myenteric and submucosal Gal-positive perikarya were determined by
confocal laser microscopy software measurements (Zen 2009, ver. 5.5.0.282, Zeiss) at a group
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of 50 PGP 9.5/Gal-immunoreactive neuronal somata (with a visible nucleus). The dimensions
were measured perpendicularly and longitudinally to the longest axis of each perikaryon ana-
lyzed using fluorescence channel for PGP 9.5 staining (green). The results were presented as
the average dimensions ± SEM.

Stomach antrum (Fig 1—blue frame) tissue slides collected from the pigs of the subgroup T
were analysed under a fluorescent microscope equipped with a filter set for Fast Blue (to recog-
nize the traced perikarya) and AlexaFluor 488/AlexaFluor 555 (to verify the expression of PGP
9.5 and galanin in the FB-positive neurons). To determine the percentages of galanin-immuno-
reactive traced perikarya at least 150 FB-positive neuronal somata from each animal stomach
were analysed. The results were presented as average percentages ± SEM. The differences in the
number of galanin-immunoreactive traced cells between the control and experimental pigs
were statistically analysed by the Student t-test, and considered to be significant at P< 0.05.
All statistical analyses were performed using GraphPad Software Inc., USA, ver. 6.

Finally, the selected slides were photographed with a confocal laser microscope (LSM700,
Zeiss).

The Haematoxylin and Eosin stainings of the transverse sections of the pyloric wall tissue and
ulcer tissue were carried out according to Ehrlich (Fluka; code 03972), and the slides were photo-
graphed by means of a stereo microscope (SteREO Discovery V8, Zeiss) equipped with a camera.

Real-Time PCR
In order to obtain representative tissue samples from each animal stomach, 300 μg of every col-
lected circular-shaped pyloric section, taken perpendicularly from all pyloric wall layers (Fig 1
—violet circles and frames), was homogenized with 600 μl of fenozolone. Then, the appropriate
volume of the liquid homogenate containing 50 μg of the tissue sample was used to isolate total
RNA with a Total RNAMini Plus kit (A&A Biotechnology, Poland). This has provided cer-
tainty that total RNA was isolated from all the pyloric wall layers in each sample of all the ani-
mals and that the samples were unified.

Reverse transcription was performed with 1.5 μg of total RNA and Maxima First Strand
cDNA Synthesis Kit for RT-qPCR (code K1672, Thermo Fisher Scientific). Then, from each
cDNA sample Real-Time PCRs were performed for the following genes: Gal, GalR1, GalR2,
GalR3 and porcine glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the housekeeping
gene, each in triplicate. The primers were designed with Primer-BLAST software (http://ncbi.
nlm.nih.gov) and their detailed descriptions are enclosed in our previous study [37]. Sequences
of primers are shown in Table 1. Composition of PCR mix was as follows: 10 μl of SYBR1

Table 1. Sequences of primers used in Real-Time PCR.

Gene Sequences of primers Start position Stop position Product length Sequence of origin (in Gene Bank)

GAPDH Forward: TTCCACCCACGGCAAGTT 244 261 70 NM_001206359.1

GAPDH Reverse: GGCCTTTCCATTGATGACAAG 293 313 70 NM_001206359.1

Gal Forward: TGGGCCACATGCCATCGACA 356 375 94 NM_214234.1

Gal Reverse: CGGCCTGGCTTCGTCTTCGG 430 449 94 NM_214234.1

GalR1 Forward: AGGATCACGGCGCACTGCCT 853 872 127 XM_003480426.2

GalR1 Reverse: GGGATTCCTTGCCAATGTGGCACT 956 979 127 XM_003480426.2

GalR2 Forward: GCCAAGCGCAAGGTAACGCG 688 707 126 XM_003484313.1

GalR2 Reverse: GTAGGTGGCGCGGGTAAGCG 794 813 126 XM_003484313.1

GalR3 Forward: GCACCACGCGCTCATCCTCT 750 769 122 XM_003355348.2

GalR3 Reverse: AGACCAGCGGGTTGAGGCAG 852 871 122 XM_003355348.2

doi:10.1371/journal.pone.0155658.t001
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Select Master Mix (Thermo Fisher Scientific), 8 μl of ultra-pure DNase/RNase-free distilled
water, 1 μl of cDNA preparation and 1 μl of 5 mM primer mix (reverse and forward, Sigma,
USA). The PCR reaction was performed in 7500 fast Real-Time PCR system (Applied Biosys-
tems, USA) with the thermal profile consisting of: initial denaturation 10 min at 95°C, denatur-
ation 15 s at 95°C, and annealing 1 min at 60°C for 40 cycles. The data for galanin and its
receptors expression were normalised against GAPDH using software 7500 v. 2.0.2 (Applied
Biosystems, USA). Finally, data for each targeting gene were statistically compared between
control and experimental animals with GraphPad Software Inc., USA, ver. 6 using the Student
t-test, and were considered to be significant at P< 0.05.

The primers were designed using sequences of origin available in Gen Bank and Primer-
BLAST software (http://ncbi.nlm.nih.gov).

Results
Post-mortem examination of the stomach tissues collected from the experimental pigs revealed
the presence of bilateral ulcers localized in the gastric antrum about 0.5–1.0 cm from the pylo-
ric orifice (Fig 1 –red circles). The ulcers were of about 1.0–2.1 cm in a diameter and deeply
penetrated into the muscular layer of the stomach wall (Fig 1—red frame).

The analysis of the pyloric wall (Fig 1—green frame) sections taken from the pigs of sub-
group H and double immunostained with antibodies against PGP 9.5 and galanin revealed that
most of the myenteric plexus ganglia containing Gal-immunoreactive perikarya were localized
deep at different levels of the circular muscle layer (Fig 2a and 2a’). The pattern of galanin
immunofluorescence visualized under high microscopic magnifications was very characteristic
(Fig 2b’, 2b”, 2c’ and 2c”), Although the intensity of the galanin staining was differentiated, it
was impossible to categorize the neurons in this respect because besides the very intensely or
very weakly stained nerve cells many neuronal somata represented the diverse transitional
forms.

The dimensions, shapes and immunoreactivity patterns of Gal-positive perikarya in corre-
sponding groups of neurons in control and experimental animals were mostly similar. Most of
the Gal-positive cells in the myenteric plexus ganglia (Figs 2b, 2b’, 2b”, 3a, 3a’, 3b, 3b’, 3c, 3c’
and 3c”) were round or oval in shape and measured 26.9 ± 1.06 x 17.12 ± 0.66 μm in a diame-
ter, while submucosal neurons (Fig 3d, 3d’, 3e and 3e’) were mostly oval and had about
19.45 ± 0.65 x 11.33 ± 0.38 μm in a diameter. Most of the Gal-immunoreactive cells exhibited
medium to strong immunofluorescence in both groups of the pigs. However, some cells in the
myenteric plexus of the experimental animals seemed to exhibit less intense galanin immuno-
fluorescence and/or were larger in a diameter (Figs 2c, 2c’, 2c”, 3b, 3b’, 3c, 3c’ and 3c”).

Quantitative analyses revealed that in the control animals 16.14 ± 2.06% of myenteric plexus
neurons (Fig 4a, 4a’ and 4a”) exhibited immunoreactivity to Gal (Fig 4a’), while in experimen-
tal pigs (Fig 4b, 4b’ and 4b”) this number amounted to 25.5 ± 2.07%, and the difference was sta-
tistically significant (Fig 5). The number of the pyloric wall submucosal Gal-immunoreactive
perikarya was 64.84 ± 2.74% in the control (Fig 4c, 4c’ and 4c”) and 68.16 ± 2.49% in experi-
mental (Fig 4d, 4d’ and 4d”) animals, and this difference was not statistically significant (Fig 5).
Statistical comparison of the number of PGP 9.5/Gal-positive submucosal and myenteric peri-
karya revealed significantly greater number of submucosal galaninergic neurons in both groups
of animals (Fig 6).

The analysis of the gastric antrum sections (Fig 1—blue frame) taken from the pigs of sub-
group T revealed that the traced cells supplying the pylorus were localized exclusively in the
myenteric plexus. Double immonolabeling with the mixture of anti-PGP 9.5/Gal antibodies
revealed that in the control animals 20.3 ± 2.163% of Fast Blue positive cells simultaneously co-
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Fig 2. Localization of the myenteric plexus ganglia (containing Gal-immunoreactive perikarya) within the deep layers of the pyloric
circular muscles. Set of microphotographs at different magnifications of the pyloric wall cross-section comprising myenteric plexus ganglion
with PGP 9.5/Gal-immunoreactive neurons. The section was taken from the experimental pig of the subgroup H and double-immunolabeled
with antibodies against PGP 9.5 (b, c) and galanin (b’, c’) [pictures (a, a’, b”, c”) present overlap of both fluorescence channels]. Low
magnification picture (a, red frame) shows a myenteric plexus ganglion localized deep within the pyloric circular muscle layers [cm]. Medium
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expressed immunoreactivity to PGP 9.5 and Gal (Fig 7a, 7b, 7c and 7d), while in the experi-
mental pigs (Fig 7e, 7f, 7g and 7h) this number amounted to 23.06 ± 6.232% and the difference
was not statistically significant (Fig 8).

The analysis of the control staining sections did not reveal any positive signal in none of the
control tissue slide what confirmed the specificity of the staining procedure.

Because of some information on the erroneous and uncertain reaction of antibodies against
galanin receptors [38] and due to the specificity of the species studied (there are no specific
antibodies designed to porcine receptors), the authors decided to verify changes in the galanin
receptors expression (in the pyloric wall tissue of the subgroup M animals) only by using the
precise and reliable Real-Time PCR technique.

The results of quantitative Real-Time PCR revealed statistically significant increase in the
expression of mRNA encoding galanin (Fig 9a) and GalR1 receptor (Fig 9b) in the pyloric wall
tissues (Fig 1—violet circles and frames) of the experimental animals in subgroup M, while the
expression of GalR2 (Fig 9c) and GalR3 (Fig 9d) receptors was not changed in a statistically sig-
nificant way.

Discussion
The present results have revealed for the first time that gastric antral ulcerations are associated
with plastic changes dealing with the expression of galanin in gastric enteric neurons and gala-
nin receptors in the gastric tissue in a mammalian species, the pig. In the animals with antral
ulcerations the number of galanin-immunoreactive myenteric neurons localized within the
pyloric wall was increased in relation to that found in the control pigs, while the number of
Gal-positive myenteric gastric descending neurons supplying the pyloric sphincter remained
unchanged. Most of the myenteric plexus neurons were localized deep in muscular layers of
the porcine pyloric sphincter wall, what is in agreement with earlier data reporting similar dis-
tribution of myenteric neurons in the pyloric orifice wall [15]. Interestingly, there were also no
statistically significant differences in the number of pyloric wall Gal-positive submucosal neu-
rons between both groups of the animals. The specific pattern of galanin immunoreactivity
observed in the neurons seems to correlate with the cytoplasmic vesicles and Golgi apparatus
subcellular localization of the studied protein [39]. Real-Time PCR technique revealed that in
the pyloric wall tissue of the experimental pigs mRNAs encoding galanin and GalR1 receptor
were up-regulated, while differences in the expression of GalR2 and GalR3 receptors were not
statistically significant.

Peptides are crucial for the regulation of inflammatory processes [40]. Galanin as well as its
receptors, especially GalR1, are undoubtedly key players in the cross-talk between the neuroen-
docrine and immune systems [23]. Changes in the expression of galanin and its receptors have
been observed in neurons of the central as well as the peripheral nervous system in many
inflammatory experiments [1]. Although the great majority of studies have indicated the upre-
gulation of galanin in peripheral tissues covered by the inflammatory processes [41–46],
including the tissues of the porcine gastrointestinal tract [47–51], there are also some contribu-
tions reporting its downregulation [44;52]. The increased number of galanin-positive neurons
in the myenteric plexus of the pyloric wall observed in the present experiment clearly indicates

magnification picture (a’) of the selected area [dotted line boarder from the picture (a)] presents Gal-immunofluorescent perikarya (arrows).
High magnification pictures (b, b’, b’, c, c’, c”) showmedium (b, b’, b”) and large (c, c’, c”) in a diameter PGP9.5/Gal-immunoreactive perikarya
(arrows). The characteristic pattern of Gal-immunoreactivity observed in the neurons (b’, c’) blurred the outlines of the perikarya, precluding
accurate measurements of the cell bodies using red channel [Gal immunostaining]. Thus, all the measurements of Gal-immunoreactive nerve
cells were performed using the green channel [PGP 9.5 staining (b, c)]. Scale bars are included in the pictures.

doi:10.1371/journal.pone.0155658.g002
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the influence of antral ulcers on these distanced pyloric perikarya. The authors assume that the
weaker immunofluorescence observed in occasional myenteric perikarya in the experimental
animals might result from the fact that some larger neurons had already started galanin pro-
duction and thus cellular levels of the peptide were low. It should be emphasized that

Fig 3. Typical characteristics (shapes, immunofluorescence) of Gal-immunoreactive perikarya. Set of photomicrographs showing
shapes and patterns of immunofluorescence observed in the typical Gal-positive (single arrows) myenteric (a, a’, b’ b’, c, c’, c”) and
submucosal (d, d’, e, e’) perikarya of the pyloric orifice wall in the control (a, a’, d, d’) and experimental (b, b’, c, c’, c”, e, e’) pigs of the
subgroup H. In both groups of the animals most of the myenteric neurocytes immunoreactive to galanin (arrows) were round (a, c’) or oval
(b, c’) and expressedmedium to strong immunoreactivity. In the experimental animals (b, b’, c, c’, c”) some of Gal-positive perikarya
(double arrows) seemed to express weak immunofluorescence and/or were larger in a diameter. Most of the submucosal neurocytes
immunoreactive to Gal (arrows) in the control (d, d’) and experimental (e, e’) animals were oval and measured about 19.45 ± 0.65 x
11.33 ± 0.38 μm. Scale bars are included in the pictures.

doi:10.1371/journal.pone.0155658.g003
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Fig 4. Double immunolabeled (PGP 9.5 and Gal) perikarya of the pyloric orifice wall. Set of microphotographs showing
sections of the pyloric orifice wall taken from the control and experimental pigs of the subgroup H and double-immunolabeled
with antibodies against PGP 9.5 (a, b, c, d) and galanin (a’, b’, c’, d’). Some of the myenteric plexus perikarya (arrows) of the
control (a, a’, a”) and experimental (b, b’, b”) animals simultaneously co-expressed immunoreactivity to PGP 9.5 (a, b) and
galanin (a’, b’). The number of PGP 9.5+/Gal+ neurons was higher in the experimental animals and the difference was
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publications cited above reported the upregulation of galanin in the nerve structures found in
the inflamed gastrointestinal tract tissues, while the present results indicate the upregulation of
galanin in the neurons localized in tissues which were not directly covered by the inflammatory
process. The upregulation in the galanin mRNA expression in the pyloric wall tissue of the
experimental animals revealed by Real-Time PCR technique is indicative of the reaction of
cells in the distant pyloric tissue to the antral ulcers. The mechanism of activation of the pyloric
myenteric neurons (to induce galanin upregulation) by antral ulcerations should be elucidated,
however, based on the available information the following possibilities could be hypothesized.
First, the activation of the myenteric neurons could be accomplished by cytokines released
from immune cells that follow to the ulcer’s inflammatory site [53]. The ENS neurons are
known to express receptors for pro-inflammatory cytokines which can affect these cells [54]
thus resulting in galanin upregulation. The other possibility of myenteric cells activation could
be the involvement of extrinsic nerve reflexes, which are known to participate in the intestinal
inflammatory interactions [55]. The stomach [16;56] including the pylorus [15;36;57;58] are
known to be widely innervated by extrinsic nerves which originate exactly in the nodose gan-
glia, dorsal motor nuclei of the vagus nerve as well as in the coeliac superior mesenteric gan-
glion. Since the experimental vagal deafferentiation was followed by a significant delay in the
gastric emptying in pigs [59] and vagal activation promoted the transpyloric flow by reducing
the pyloric resistance [60;61], the involvement of extrinsic vagal neural reflexes in the pyloric
wall myenteric neurons activation seems to be quite possible. Moreover, the extrinsic innerva-
tion was submitted to control the release of galanin from the ileum [62] and adrenal glands
[63] in pigs, what can be directly linked with upregulation of Gal in myenteric neurons

statistically significant. Some of the submucosal neurons (arrows) of the control (c, c’, c”) and experimental (d, d’, d”) animals
simultaneously co-expressed immunoreactivity to PGP 9.5 (c, d) and galanin (c’, d’), and these percentages did not differ
significantly between both groups of animals. Pictures (a”, b”, c”, d”) show the overlap of both fluorescence channels (PGP 9.5
—green, Gal—red). Scale bars are included in the pictures.

doi:10.1371/journal.pone.0155658.g004

Fig 5. Percentages of myenteric and submucosal PGP+/Gal+ perikarya in the pyloric wall tissue.Graph
showing percentages of the myenteric and submucosal PGP+/Gal+ perikarya in the pyloric wall samples collected
from the control and experimental animals of the subgroup H. Statistically significant differences between the
control and experimental animals are marked by asterisks, ** P� 0.005.

doi:10.1371/journal.pone.0155658.g005
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observed in our experiment. The finding that the expression of galanin was unchanged in the
gastric descending neurons supplying the pyloric sphincter further supports the idea of extrin-
sic reflexes participation in the precise activation of myenteric pyloric neurons to induce alter-
ations in their chemical phenotype. It seems to be reasonable to assume, that pro-
inflammatory cytokines released by immune cells infiltrating the ulcer would also activate the
gastric descending myenteric neurons, which incidentally, are localized closer to the patholog-
ically changed area (in the stomach antrum). Gastric descending neurons are known to have
inhibitory function to the pyloric sphincter [64]. Although, the number and distribution of gas-
tric descending nerve cells supplying the pyloric sphincter were significantly changed in pigs
with antral ulcerations [25], the present results seem to exclude the direct participation of gala-
nin in these descending nerves plasticity. Finally, the possibility that some of the galanin-posi-
tive myenteric neurons localized within the pylorus are ascending nerve cells projecting to the
antrum and they are activated directly by the ulcer wound cannot be excluded. However, physi-
ological experiments clearly demonstrated that direct focal electrical stimulation of myenteric
neurons and muscles in the pylorus induced considerably greater responses of sphincteric mus-
cles than those evoked by the stimulation of ascending and descending neurons in the gastric
antrum [64]. This observation clearly suggests the overriding role of myenteric neurons local-
ized within the exact pylorus in the regulation of the sphincteric muscle activity and contrib-
utes to the idea that the vast majority of Gal-positive neurons found in the myenteric plexus of
the pyloric wall supply the sphincteric musculature. Galanin released from peripheral nerve
endings of these activated Gal-positive myenteric neurons can directly influence smooth mus-
cles of the pyloric sphincter. Data on the direct response of gastrointestinal smooth muscles to
galanin are vague, which seems to be associated with the species studied and the part of the gas-
trointestinal tract explored. Although galanin has been found to relax [65–68] or contract
[8;9;65;69–74] gastrointestinal smooth muscles, or even inhibit circular and excite longitudinal

Fig 6. Differences between the percentages of myenteric and submucosal PGP+/Gal+ perikarya in the
pyloric wall tissue.Graph presenting differences between the percentages of myenteric and submucosal PGP
+/Gal+ perikarya in the control and experimental pigs of the subgroup H. The number of galaninergic submucosal
neurons was significantly higher in both groups of animals. Statistically significant differences between numbers of
myenteric and submucosal neurons are marked by asterisks, **** P� 0.0001.

doi:10.1371/journal.pone.0155658.g006

The Influence of Gastric Antral Ulcerations on Galaninergic Innervation of the Pylorus

PLOS ONE | DOI:10.1371/journal.pone.0155658 May 13, 2016 13 / 22



smooth muscle cells (as found in the porcine ileum [75]), its direct interactions with smooth
muscles of the gastrointestinal tract are still uncertain. More recent studies have reported the
presence of GalR2 receptor (which is the only excitatory galanin receptor subtype) in gastroin-
testinal smooth muscles cells, and suggested the contractile effect of its activation by galanin
[76;77]. In view of gastric emptying problems occurring in patients with antral ulcers and con-
sidering the present results, further physiological studies on the sphincteric muscles response
to galanin seem to be of particular interest.

Despite the fact that the population of submucosal pyloric neurons was numerous in both
groups of animals, interestingly, they did not respond with the increased expression of galanin
to antral ulcerations.

Earlier studies performed in different species [43;45;46], including the pig
[47;48;50;51;78;79] have demonstrated an increased number of myenteric and submucosal
galanin positive neurons in animals with gastrointestinal inflammation, what might result
from the direct reaction of the mucosa (and its innervation) to pathological processes. Our dis-
crepant findings could be explained by the type of the tissue damage induced in the present
experiment and the remoteness of the pyloric tissue from the site of injury. The ulcer tissue

Fig 7. FB-positive neurons of the stomach antrum double-immunostained for PGP 9.5 and Gal. Set of microphotographs showing
stomach antrum sections with FB-positive neurons (a, e) from the animals of subgroup T and double-immunostained with antibodies
against PGP 9.5 (b, f) and galanin (c, g). Some of FB-positive perikarya (solid arrows) in the control (a) and experimental (e) animals
simultaneously co-expressed immunoreactivity to PGP 9.5 (b, f) and galanin (c, g), while the other traced neuronal somata (empty arrows)
were devoid of galanin immunoreactivity. Differences in the number of FB+/PGP 9.5+/Gal+ neurons did not differ significantly between both
groups of the animals. Pictures (d, h) show the overlap of all three fluorescence channels (FB—blue, PGP 9.5—green, Gal—red). Scale
bars are included in the pictures.

doi:10.1371/journal.pone.0155658.g007
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damage evoked in the present study was restricted to the surface area of 1–2.1 cm in diameter
and deeply penetrated into the muscular layers, without affecting the large areas of the mucosa,
as found in other studies, in which inflammatory processes were induced chemically [45] or by
infection with enteric pathogenic bacteria [48;50;51;78;79]. What is more, the deeply penetrat-
ing ulcers extensively damaged the muscular layer. The destruction of muscular tissues of the
gastrointestinal tract strongly influenced the activity of myenteric neurons [54], what can be
linked to the upregulation of Gal exclusively in the myenteric neurons in our experiment.

The results of the Real-Time PCR technique with primers designed to porcine GalR1,
GalR2 and GalR3 receptor subtypes revealed a statistically significant increase in the expression
of only GalR1 in the pyloric wall tissue of the experimental pigs in relation to that found in the
control animals, while the differences in the expression of GalR2 and GalR3 were not statisti-
cally significant between both groups.

Considering the gastrointestinal tract, GalR1 is mainly expressed by extrinsic [31;80] and
intramural [6;30;32;81–84] neurons as well as by enterochromaffin-like and epithelial cells
[84;85]. The GalR1 is suggested to facilitate galanin actions on gastrointestinal functions (such
as motility and secretion) mainly by modulation of other neurotransmitters release [86]. Its
expression has been frequently observed in myenteric cholinergic neurons (immunoreactive to
acetylcholine transferase and vesicular acetylcholine transporter), which are known to be the
intramural excitatory neurons [30;32;84]. This receptor has been proposed to mediate many
inhibitory actions of galanin [80;87]. GalR1 pathways are strongly involved in the gastric [31]
and jejunal [32] motility regulation. The expression of GalR1has been found to be upregulated
in peripheral tissues in almost all experimental inflammatory models [1], what is in agreement
with results obtained in our study. However, some differences seem to be worth of notice.
Firstly, most of the gastrointestinal experiments described by Lang and Kofler (2011) were
related to the intestines, but not to the stomach. Secondly, all these inflammatory processes
were induced by infections with enteric pathogens or application of chemical compounds, and
such procedure certainly affected the wide areas of the mucosa. On the other hand, the

Fig 8. Percentages of FB+/PGP+/Gal+ perikarya in the myenteric plexus of the stomach antrum.Graph
presenting percentages of FB-positive neurons supplying the pyloric sphincter in the control and
experimental animals of the subgroup T which simultaneously co-expressed immunoreactivity to PGP 9.5
and Gal. The differences between the control and experimental animals were statistically insignificant.

doi:10.1371/journal.pone.0155658.g008
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upregulation of GalR1 was found to be confined to the epithelial cells of the affected mucosa
[85;88–91]. In our experiment, the pyloric mucosa was not directly affected by the acute
inflammatory process what suggests a minor participation of epithelial cells in the receptor
upregulation.

Interestingly, in the previous study we have observed a significant decrease in the expression
of galanin, GalR1, GalR2 and GalR3 receptors (in the mucosa, tunica muscularis and lympho-
cytes) in the porcine descending colon wall affected by dysentery associated colitis [37].
Although both of our experiments were conducted in pigs, the colonic tissues examined in the
previous study were directly affected by severe inflammation and deep destruction of the
colonic wall tissue was observed. Thus, some structures expressing the peptide and its receptors
could had been destroyed, what might be the reason for such divergent results obtained in our
both contributions. Furthermore, the divergent reaction of porcine intestinal circular and lon-
gitudinal muscles to galanin [75] indicates the complexity of the galanin associated actions in
swine gastrointestinal tract under physiological and pathological conditions. All these facts

Fig 9. Expression of mRNA encoding Gal, GalR1, GalR2, GalR3 in the pyloric wall tissue. Expression of Gal (a), GalR1 (b), GalR2 (c) and
GalR3 (d) mRNA in the pyloric wall tissue collected from the control and experimental animals of subgroup M. Levels of Gal, GalR1, GalR2, GalR3
mRNA were measured by Real-Time PCR. The data obtained from each sample were normalized to GAPDH. Relative quantities (RQ) of mRNA
were analysed using the comparative Ct method. Each cDNA sample was amplified in triplicate and all data are expressed as the mean ± S.E.M.,
**** P� 0.0001; ** P� 0.005 (vs the control animals).

doi:10.1371/journal.pone.0155658.g009
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suggest the need for further studies on GalR1 function in the gastrointestinal tract in the pig, a
highly valuated animal.

Galanin receptor 2 is the only excitatory receptor, the activation of which results in direct
gastrointestinal smooth muscle contractions [76;77]. Its expression was determined in each
part of the gastrointestinal tract, however, the highest levels of the mRNA were detected in the
stomach [6]. Besides the smooth muscle cells [76;77], the GalR2 was also found to be present
in myenteric neurons of the canine and sheep stomach [83], and in some sensory neurons [92–
94]. Peripheral GalR2 is additionally considered to play a role in modulation of pain [95;96]
and vagal afferent mechanosensivity [80]. Although we have not observed statistically signifi-
cant changes in the expression of GalR2 in the pyloric wall tissue of the experimental pigs, its
participation in the regulation of the pyloric activity during ulcer disease cannot be excluded.
Since GalR2 is the only excitatory galanin receptor subtype and the only receptor mediating
direct smooth muscles contractions in the gastrointestinal tract [76;77], its activation by
increased amounts of galanin in the pylorus of the experimental animals could be directly
related with the gastric emptying problems in patients with antral ulcerations, but the role of
this phenomena needs to be explained in further investigations.

Galanin receptor 3, similarly as Gal R1, mediates inhibition of adenyl cyclase activity and
activates an inward of K+ current [97]. Although data concerning the distribution and function
of GalR3 are sparse, there are some publications describing its expression in the gastrointestinal
tract [6;97;98] including myenteric neurons of the stomach [83]. It should be noted, that most
of these reports have underlined the low or extremely low concentrations of GalR3 mRNA in
the gastrointestinal tissues. Studies on the involvement of GalR3 in inflammatory processes are
occasional and only its role in the regulation of microvasculature and oedema formation in
dermatitis has been described [99]. The present study has not revealed statistically significant
changes in GalR3 expression in the pyloric wall tissues of the experimental pigs. The lack of
data on the involvement of GalR3 in the smooth muscle activity and inflammatory processes in
the gastrointestinal tract suggests its minor role in the pyloric wall response to antral ulcers.

It can be assumed that the changes in the galanin and GalR1 receptor expressions in the
pyloric wall tissue observed in the animals with antral ulcerations could have different ethology
and significance from those described in other gastrointestinal inflammatory experiments. The
increased expression of mRNA encoding galanin and GalR1 as well as the increased number of
the myenteric neurons immunoreactive to Gal in the pyloric wall tissue distant from the ulcer
injury, undoubtedly demonstrate the participation of galanin in the plasticity of sphincteric
nerve regulation in subjects with antral ulcerations. The neuronal “galaninergic” regulatory
process seems to be highly specialized, which is supported by the lack of changes neither in the
number of Gal-positive submucosal perikarya localized within the pylorus nor in the gastric
descending neurons supplying the pyloric sphincter. Furthermore, the GalR2 and GalR3 recep-
tors seem to be not directly involved in such “galaninergic” tissue regulation. The present
results provide new insights into the participation of galanin in the neural regulation of the
pylorus function in mammals with ulcerative disease. The relationship between galanin and
GalR1 upregulation, and the function of the pyloric sphincter should be further studied in
terms of gastric emptying problems in patients with antral ulcerations.
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