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Abstract

The linear discriminant analysis (LDA) method is a classical and commonly utilized technique for dimensionality reduction
and classification in brain-computer interface (BCI) systems. Being a first-order discriminator, LDA is usually preceded by the
feature extraction of electroencephalogram (EEG) signals, as multi-density EEG data are of second order. In this study, an
analytic bilinear classification method which inherits and extends LDA is proposed. This method considers 2-dimentional
EEG signals as the feature input and performs classification using the optimized complex-valued bilinear projections.
Without being transformed into frequency domain, the complex-valued bilinear projections essentially spatially and
temporally modulate the phases and magnitudes of slow event-related potentials (ERPs) elicited by distinct brain states in
the sense that they become more separable. The results show that the proposed method has demonstrated its
discriminating capability in the development of a rapid image triage (RIT) system, which is a challenging variant of BCIs due
to the fast presentation speed and consequently overlapping of ERPs.

Citation: Yu K, AI-Nashash H, Thakor N, Li X (2014) The Analytic Bilinear Discrimination of Single-Trial EEG Signals in Rapid Image Triage. PLoS ONE 9(6): e100097.
doi:10.1371/journal.pone.0100097

Editor: Pedro A. Valdes-Sosa, Cuban Neuroscience Center, Cuba

Received December 19, 2013; Accepted May 20, 2014; Published June 16, 2014

Copyright: � 2014 Yu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* Email: mpelixp@nus.edu.sg

Introduction

A rapid development of brain-computer interface (BCI) related

techniques has been seen in the past years. BCI system utilizing

electroencephalogram (EEG) provides a shortcut of communica-

tion channel between the human brain and an external device,

without conventional human’s physical response. Therefore, BCIs

could be the goodwill for physically disabled patients as the

promising neuroprosthetics solutions [1–3]. In addition, due to the

advances in computation and communication, BCIs enable the

new concept of gaming [4] and augment people’s performance in

some applications, one of which is prioritizing images from an

image pool. Fast search of target images (objects) in large-volume

imagery, e.g. aerial imagery, has come to a bottleneck. That is,

limit number of skillful image analysts cannot handle the

increasing volume of imagery in the conventional way. Recently,

the rapid image triage (RIT) technique which leverages human

vision, split-second judgement capability and machine learning for

EEG signal processing, has proven to be a promising solution by

researchers [5–9]. It can be applied in various applications such as

satellite image analysis and image retrieval task.

In one type of RIT, a large-scale imagery is chopped into a

number of images of smaller sizes. These images are then

presented to an image analyst in a sequential order at a fast

speed, which is called rapid serial visual presentation (RSVP)

paradigm [5,9,10]. During the RIT, amongst the images, some

contain objects that are perceived as target objects, and hence are

required to be identified for further detailed analysis [11]. In

contrast, other images being irrelevant to the searching task are

considered as nontargets to be disregarded. The occurrence of

targets is so rare and infrequent that the searching process will

induce the oddball effect [12,13]. That is, the unique event-related

potentials (ERPs) measurable on the scalp will be elicited by a

recognized target image. Among these unique target ERPs, the

P300 which is a prominent positive voltage deflection peaking

around 300 ms after the onset of the target is the major

component differing from nontarget ERPs. Hence, the backbone

of RIT system is to detect, identify and dissociate these two types

of ERPs.

Since ERPs are usually overwhelmed by noise such as

background EEG, it is necessary to resort to various signal

processing methods to improve the signal-to-noise ratio (SNR).

Some of the methods are spatial decomposition based, such as

principal component analysis (PCA) [14], independent component

analysis (ICA) [15] and common spatial pattern analysis (CSP)

[16]. Compared to PCA and ICA which extract uncorrelated/

independent components, CSP is naturally more suitable for the

binary classification task, as it extremizes the ratio of temporal

variance of one condition over the other condition. It has been

successfully applied in abundant BCI applications, including the

motor imagery [17,18], vowel speech imagery [19] and RIT [20].

In order to compensate the deficiency due to the temporal

invariance, a number of CSP variants have been introduced.

There are CSP variants that make use of spectral filters in

conjunction with spatial filters, such as common spatio-spectral

pattern (CSSP) [21], the common sparse spectral spatial pattern

(CSSSP) [22] and spectrally weighted common spatial patterns

(SPEC-CSP) [23]. There are also methods looking for spatio-
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temporal projections instead of pure spatial filters [8,9,24]. Being

different from spectral filtering and temporal filtering, the recently

proposed CSP variant, namely analytic common spatial patterns

(ACSP), emphasizes on the modulation of the phases of EEG

signals [25,26]. It is accomplished by performing the spatial

filtering in the complex-valued space, where the phase information

is still preserved.

The phase of EEG signals is of rich unexplored implications.

For instance, it has been suggested that the trial-by-trial variability

of performance could be partially attributed to the fluctuation of

the phase of ongoing oscillations, and the measurement of EEG

phase might be useful for the prediction of perceptual and

attentional variability [27]. The pre-stimulus EEG phase was

claimed to affect the magnitude of the following auditory ERPs

[28]. Moreover, phase is also an important property in steady-state

visual evoked potentials (SSVEPs) [29]. In the context of RIT, the

linkage between ERPs and phase is not apparent. However, the

modulation of phase can change the morphology of ERPs in terms

of magnitude and latency. And the RSVP paradigm resembles the

setting of SSVEP as images are shown at specific frequency.

However, it is noteworthy that spatial phase modulation proposed

by ACSP, which has shown superior in classification problems

such as oscillatory EEG [25] and SSVEP [26], may not be optimal

in the scenario of RIT. In RIT, the target ERPs are slow potentials

and can be overlapping with a number of nontarget ERPs due to

the presentation speed. Therefore, a spatio-temporal phase

modulation can be more useful in RIT.

In this paper, a method namely analytic bilinear discriminant

analysis (ABDA) is proposed to address the spatio-temporal

modulation and classification in RIT. The proposed ABDA

method belongs to the linear discriminant analysis (LDA) variants,

which is a traditional dimension reduction and classification

method for low-dimensional feature vector. It finds the projection

that maximizes the ratio of between-scatter matrix over within-

scatter matrix. However, LDA becomes insufficient for handling

2D images as well as high-density EEG signals [30]. Therefore,

2D-LDA was proposed to be adapted for 2D matrix, which derives

a set of orthonormal projections [31]. On the other hand, bilinear

discriminant analysis (BDA) [32] and 2-dimensional linear

discriminant analysis (2DLDA) [33] extend LDA by iteratively

optimizing bilinear projections instead of one LDA projection.

There are also trilinear (or even higher dimensional) methods,

such as parallel factor analysis (PARAFAC) [34] and general

tensor discriminant analysis (GTDA) [35]. These methods usually

require the transformation of EEG signals into the frequency

domain. Moreover, recent advances attempt to address problems

like the limited sample size and doubtful distribution assumption.

For instance, a variant of LDA namely enhanced Bayesian LDA

(EBLDA), enlarges the sample size by incorporating unlabeled

data with high probability into labeled data to refine the

classification [36]. In addition, Z-LDA adaptively adjusts decision

boundary to accommodate the heteroscedastic signal distribution

through z-score [37]. Compared to other methods, the uniqueness

of the proposed ABDA method mainly resides in: 1) exploiting the

complex-valued bilinear projections, i.e. spatial and temporal

projections in a complex-valued space-time domain; 2) The phases

of slow ERPs are both spatially and temporally modulated, which

is useful in the context of discriminating ERPs that are

overlapping; 3) the spatio-temporal phase modulation demon-

strated by ABDA accounts for the spatio-temporal propagation of

slow ERPs. The method evaluation is conducted in the context of

RIT experiments by comparing it with several competitive

methods.

Methods

2.1 Analytic Presentation
For a real-valued signalx(t), the corresponding analytic signal

a(t) is presented as

a(t)~x(t)zjH(x)(t) ð1Þ

where the imaginary part, H(x)(t), is the Hilbert transform of x(t).
The Hilbert transform of x(t) can be given by

H(x)(t)~
1

p
p:v:

ðz?

{?

x(t)

t{t
dt ð2Þ

where p:v: stands for the Cauchy principal value. The effect of

Hilbert transform is to shift the phases of both negative frequency

components and positive frequency components of a signal, but in

different directions, i.e. z900 and{900, respectively. In addition,

j introduces another phase shift ofz900 toH(x)(t). The ultimate

effect is that, the negative frequency components of the analytic

signal x(t) are shifted above 0 Hz. In other words, a(t) contains

only positive frequency components. It is worth noting that the

phases of positive frequency components of a(t) are the equivalent

to the counterparts of x(t).

2.2 Objective Function
Given the band-pass filtered EEG epochs X1 and X2

(channel|time) under two conditions (‘‘1’’ for target condition

and ‘‘2’’ for nontarget condition), the corresponding analytic

presentations are denoted as A1 and A2, respectively. There are

two bilinear projections, i.e. complex-valued spatial projection w
and temporal projection v. The within-class scatter Sw and

between-class scatter Sb of analytic EEG epochs after temporal

projecting using v can be given as

Sw~
X2

c~1

Xnc

i~1

(Ai
cv{�AAcv)(Ai

cv{�AAcv)�

Sb~(�AA1v{�AA2v)(�AA1v{�AA2v)�

ð3Þ

where Ai
c and �AAc stands for the ith epoch and the mean matrix

under condition c, respectively. And :� represents conjugate

transpose operator.

Similarly to LDA, the objective of ABDA can be written as

J(w,w � ,v,v � )~Argmax
w � Sbw

w � Sww
ð4Þ

It has been shown that there is no analytical solution to a real-

valued biquadratic equation [8,32], which is a similar case for a

complex-valued biquadratic equation like (4). However, there

exists a sub-optimal solution, using the iterative learning.

Suppose that v is already given, e.g. v is initialized to be an

identity matrix in this work. Then Sw and Sb become also known

and (4) can be solved by calculating the derivation by the complex-

valued w�. Specifically, (4) can be rewritten as

J(w,w � )w � Sww~w � Sbw ð5Þ

In order to maximize J(w,w � ), LJ=Lw and LJ=Lw� shall be set to

zero. Since LJ=Lw and LJ=Lw� are complex conjugate transpose
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of each other, only one of them, e.g. LJ=Lw�, needs to be

calculated:

LJ

Lw�w � Swwz2J(w,w � )Sww~2Sbw ð6Þ

Let LJ=Lw� be zero, (6) can be further simplified to

S{1
w Sbw~Jw ð7Þ

(7) is exactly the same to the eigenvalue problem in LDA, the

solution to which will be

w~S{1
w (�AA1v{�AA2v) ð8Þ

On the other hand, the within-class scatter ~SSw and between-

class scatter ~SSb of analytic EEG epochs after spatial projecting

using w can be expressed as

~SSw~
X2

c~1

Xnc

i~1

(Ai
c � w{�AAc � w)(Ai

c � w{�AAc � w)�

~SSb~(�AA1 � w{�AA2 � w)(�AA1 � w{�AA2 � w)�

ð9Þ

And the corresponding objective function is

J(w,w � ,v,v � )~Argmax
v � ~SSbv

v � ~SSwv
ð10Þ

By inserting (9) into (10) and inserting (3) into (4), it can be

shown that (10) and (4) are actually equivalent. Therefore, after w
is obtained according to (8), (10) can be used to derive v similarly

by letting LJ=Lv� be zero, which is

v~~SS{1
w (�AA1 � w{�AA2 � w) ð11Þ

By iteratively using (8) and (11), the optimal complex-valued

bilinear projections w and v can be obtained when the ratio of

between-class scatter to within-class scatter, i.e. J(w,w � ,v,v � ),
converges.

It is noteworthy that, as w, v and A are all complex-valued, the

projected data, i.e. p~w � Av, is also a complex value, which

however cannot be directly used to get decision boundary. Here, p

is decomposed to a 2-element vector p, the elements of which are

the real part and imaginary part of p. The classical LDA method is

used to find a projection z that separates p1 from p2.

2.3 Classifier
Unlike the LDA which handles the m-dimension to one-

dimension discrimination issue [38], the proposed ABDA tackles

the m|n-dimensional classification problem. The classifier makes

use of bilinear projections, LDA projection and the biasb, as

indicated in

Figure 1. The experimental paradigm. Consecutive bursts each of which contained 50 images were serially presented and separated by a resting
period. Some of the bursts contained target images.
doi:10.1371/journal.pone.0100097.g001
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p~w � ½XzH(X)�v

y~z0½real(p)imag(p)�0zb
ð12Þ

where :0 denotes the transpose operator. Moreover, real(p) and

imag(p) represent the real part and imaginary part of p,

respectively.

Generally, the bias b shall be chosen such that the posteriors in

the projected dimension of two conditions will be equal [38].

Appropriate selection of b could be important if the sample size of

one condition is significantly different from that of the other,

which is the unbalanced classification problem.

Experimental Setup

RIT experiments were conducted under the approval by the

National University of Singapore Institutional Review Board

(NUS-IRB). After providing written consent forms for participat-

ing in the experiment, 22 healthy participants, all right-handed,

with normal or corrected-to-normal sight, completed the RIT

experiments.

3.1 Experiment Design
The experiment included one training session and one testing

session. In each session, aerial images were sequentially presented

to a participant, following the standard RSVP paradigm [5,9,10]

(see Figure 1). Each image lasted for 150 ms on the centre of the

screen and then was replaced by the next one. There was a

temporary break between every 50 images. The duration of the

break was self-controlled by the participant but was caped to

10 seconds. These aerial images were of 4006400 pixels. A small

amount of them (approximately 72) containing objects of interest

were defined as targets, while others (over 4400) were considered

as nontargets. The participant was informed that he/she should

neglect nontargets but was obliged to immediately respond to the

appearing targets by pressing a button.

3.2 Acquisition and Preprocessing
For every participant, 62-channel EEG signals were collected at

250 Hz, using an ANT amplifier (ANT B.B., Enschede, Nether-

lands). EEG signals were referenced to linked ears and grounded

to the forehead. The 4th order Butterworth filter was adopted, with

the pass-band from 1 Hz to 25 Hz. The filtered signals were

segmented into epochs, the time window of which starts from the

onset of each image to 500 ms after the onset.

In RIT experiments, sometimes there could be a few bad

channels (malfunctioning channels) and these bad channels might

deteriorate the performance. Hence, ahead of training the

classifier using data collected in training session, bad channels

were automatically identified, which would be excluded from both

training data and testing data. This was accomplished by

monitoring each channel across all epochs in training session.

For instance, if the absolute difference between the maximum

value and the minimum value (or the mean value) is significantly

large for a particular channel over 30% of total epochs, this

channel would be labeled as the bad channel.

It is worth noting that the removal of identified bad channels

was based on training data. However, there could be more bad

channels in testing session. Thus, an additional measure was

introduced. That is, every epoch was examined whether there

were any suspected abnormal channels. These suspected channels

would be replaced by spherical spline interpolation using

neighboring functioning channels [39].
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Evaluation

With complex-valued bilinear projections, ABDA is assumed to

be able to modulate the phases and the magnitudes of signals in

the manner that target ERPs and nontarget ERPs become more

differentiable in the context of RIT. This assumption was verified

by comparing the proposed ABDA with CSP, ACSP and BDA

which omits the phase modulation. All methods were applied to

the EEG data collected from 22 participants in RIT experiments

on a single-trial basis. The classifiers were derived using target

epochs and nontarget epochs of training data, and the single-trial

classification results for comparison were obtained from testing

data. It is noteworthy that 4 features were extracted by CSP/

ACSP using the most discriminative filters that had been derived

and these features were fed to the conventional FLD classifier. The

performance measure adopted was the balanced accuracy (BA)

[9], which accommodates the unbalanced sample sizes between

targets and nontargets. BA is defined as.

Figure 2. The ratios of between-class scatter to within-class scatter with respect to the iteration steps for 22 participants.
doi:10.1371/journal.pone.0100097.g002

Figure 3. The spatial maps of Participant P22’s normalized spatial projections using BDA and ABDA methods. By Euler’s identity, a
complex value could be interpreted as a combination of a magnitude component and a phase component.
doi:10.1371/journal.pone.0100097.g003
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balanced accuracy

~
1

2
(
correctly classified targets

targets
z

correctly classified nontargets

nontargets
)
ð13Þ

Results and Discussion

The classification results are shown in Table 1. It can be seen

that ABDA outperformed other methods for 18 out of 22

participants. The average BA achieved by ABDA was close to

90% and was 5.9% higher than CSP, 3.9% higher than ACSP and

2.5% higher than BDA, respectively. The better performance of

ABDA over BDA was statistically significant in paired t-test, with

p-value,0.05, which however is not significant (p-value = 0.017) in

the t-test with Bonferroni correction which is conservative.

Moreover, ABDA significantly surpassed CSP and ACSP,

respectively, with p-value,0.001 in both paired t-test and t-test

with Bonferroni correction. On the other hand, though BDA

significantly outperformed CSP (p-value,0.01), its advantage over

ACSP was insignificant (p-value.0.15) in t-test with Bonferroni

correction.

According to (4) and (10), mi and v are the desirable projections

that maximize the objective function. Although the derivations of

w and v were complex-valued calculation, the ratios

J(w,w � ,v,v � ) obtained during every iteration were real values

(see Figure 2), as Sw and Sb (~SSw and ~SSb) were semi-definite

matrices. In Figure 2, it can be seen that for all the 22 participants,

J(w,w � ,v,v � ) initially increased and would quickly converge to a

constant value after several iteration steps. This indicates that the

iterative learning was useful, and there always existed a pair of

complex-valued bilinear projections which fulfilled the objective

function. And most importantly, these projections could be

consistently and reliably obtained for all participants.

The obtained ABDA spatial and temporal projections contained

real parts and imaginary parts. According to Euler’s formula, a

complex value has a corresponding complex exponential function

consisting of two variables, i.e. magnitude and phase. In particular,

the normalized spatial projection for P22 was plotted and

compared to the counterpart, i.e. the BDA spatial projection, in

Figure 3. It can be seen that the phases of BDA spatial projection

were binary. That is, they could only be either 0u or 180u,
indicating positive or negative sign, respectively. In contrast, there

was more flexibility in the ABDA spatial projection. As manifested

in Figure 3, the ABDA phases ranged from 2180u to 180u. This

freedom allowed a delicate modulation of the phases of temporal

signals in each channel. The phase modulation is very useful, as it

can change the morphology of signals, including amplitude and

latency, to improve classification. For instance, the P300, a major

signature in this RIT task, propagates from frontal to parietal areas

on the scalp [40]. Such latency differences among these spatially

distributed EEG channels could be estimated and utilized for

denosing [20]. It can also be applied to other EEG signals such as

steady-state visual evoked potentials (SSVEPs) [41]. Modulating

phases of every individual channel led to the increase in the

number of channels that were important for discrimination. As can

be seen in Figure 3, there were much more channels of high

magnitude (high weight) for ABDA in comparison to BDA. In

Figure 4. The average ERPs of Participant P22 after spatial projection using BDA and ABDA method. (a) shows the projected signals of
target condition. (b) shows the projected signals of nontarget condition. ABDA-real is the real part of the projected signals, while ABDA-imag is the
imaginary part of the projected signals.
doi:10.1371/journal.pone.0100097.g004

Figure 5. The temporal courses of Participant P22’s normalized
temporal projections using BDA and ABDA methods. ABDA-real
is the real part of the ABDA temporal projection, while ABDA-imag is
the imaginary part of the ABDA temporal projection.
doi:10.1371/journal.pone.0100097.g005

(13)
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addition, these critical channels were broadly spread such as

midline, which is in accordance with the fact that P300 is

measurable widely on the scalp.

The modulation offered by ABDA has a noticeable conse-

quence which can be observed in Figure 4. After being spatial

projected, both real part and imaginary part of target ERPs

showed a more prominent P300 component, as compared to that

in the scenario of BDA. For nontarget ERPs, the real part and

imaginary part were weaker than BDA, although the difference

seemed to be less significant as those in Figure 4A. Therefore, the

enlarged difference between target ERPs and nontarget ERPs in

Figure 4 might imply that target condition and nontarget

condition became more separable by the ABDA method.

However, the overall performance is determined not only by the

spatial projection but also the temporal projection.

The normalized temporal projections of BDA and ABDA were

plotted in Figure 5. Both BDA and ABDA temporal projections

appeared to contain high frequency components. It may be due to

the fact that, the temporal resolution (time point) was higher than

the spatial resolution (the number of electrodes) and a regulari-

zation term was not adopted during the iteration learning. From

the perspective of the waveform, BDA imposed heavier weights on

the first half of the time window, i.e. between 0 ms and 350 ms.

These weights could be meaningful. As can be seen in Figure 4A,

the projected target ERPs (blue line) peaked at 350 ms, which

matched the corresponding weights in Figure 5, indicating a

linkage between BDA temporal projection and BDA spatial

projection. On the other hand, the ABDA method focused mainly

on the late stage of the target ERPs, i.e. 400 ms, and the waveform

looked very clean before 200 ms. This is in line with the work of

Gerson et al. [5], where the prominent discriminating activities

were observed after 350 ms. It also followed the peak of spatially

projected signals in Figure 4A, in particular the ABDA-imag

(green line).

With the temporal projections as shown in Figure 5, the

projected spatial topographies of two conditions were obtained in

Figure 6. For both methods, the magnitude difference between

target condition and nontarget condition were apparent, suggest-

ing a strong discriminating capability of the temporal projection.

With respect to the comparison between BDA and ABDA, there

was a similar observation in Figure 3. That is, ABDA seemed to

exploit a larger region for classification, from frontal, central to

parietal and occipital, which was demonstrated by the magnitude

mappings of BDA and ABDA under target condition. Further-

more, it is interesting to note that the phase mapping of ABDA

under target condition partially showed the gradual propagation

pattern of target ERPs, e.g. P300. It is known that the latency of

P300 is shorter over frontal areas and longer over parietal areas

[42]. At the first glance, it seemed that there was a noticeable

phase gap between frontal areas (dark red) and central areas (dark

red). However, it is noteworthy that phase is periodic and 180u is

equivalent to 2180u. Therefore, the phase difference between the

frontal and the central areas was actually small. In general, it could

be said that the color-coded phases of ABDA in Figure 6

progressively changed from dark red, dark blue to yellow color

along the scalp, resembling the P300 latency changes. The phase

mapping in Figure 6 indicated the phase difference between the

signals in EEG channels in a quantitative manner. Unlike ABDA,

BDA did not account for the ERP propagation. For instance, in

Figure 6 under target condition, all phases in the frontal and

central areas were 180u (negative), and the rest were 0u (positive).

Figure 6. The average EEG spatial maps of Participant P22 after temporal projection using BDA and ABDA methods. By Euler’s
identity, a complex value could be interpreted as a combination of a magnitude component and a phase component.
doi:10.1371/journal.pone.0100097.g006
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Figure 7. The plotting of average ERPs of Participant P22 and the outcomes after the spatio-temporal projection by the BDA and
ABDA methods. The first row shows the target ERPs and nontarget ERPs along all the 62 channels, and are under the scale of [25 5]. The other
three rows are the element-wise products of ERPs (or the corresponding analytic representation) and the spatio-temporal projection. The scale is [2
0.1 0.1]. ABDA-real is the real part of the ABDA element-wise products, while ABDA-imag is the imaginary part of the ABDA element-wise products.
doi:10.1371/journal.pone.0100097.g007
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Since there is an inherent relation between the iteratively

optimized spatial projection and temporal projection, evaluating

the spatial projection and temporal projection in a separate way

may be insufficient for viewing the big picture. Figure 7 illustrates

the combined effect of bilinear projections. Given the ERPs (see

the first row in Figure 7), the element-wise product for ABDA was

calculated using.

EP~conj(w)conj(v � )0A ð14Þ

where conj(.) stands for the conjugate function and 0 represents

the element-wise product multiplication operator. The formula for

BDA was simpler:

EP~wv00X ð15Þ

It is worth noting that the summation of all the elements of EP is

equivalent to p in (12). According to the EP of ABDA and EP of

BDA in Figure 7, it can be seen that ABDA mainly relied on the

late stage of target ERPs, whilst the early ERP components were

favored by BDA. Moreover, a larger number of channels and time

points were ‘highlighted’ by ABDA to distinguish target condition

from nontarget condition. On the other hand, BDA depended on

relatively limited spatio-temporal signal segments. Additionally,

there is a kind of ‘texture’ at the first row of Figure 7, which can be

attributed to the propagating process of ERPs on the scalp. Such a

texture is also observable in the EP of BDA (the second row),

which however, became absent in the EP of ABDA. The absence

of this texture should be the result of the phase and magnitude

modulation introduced by the complex-valued bilinear projec-

tions, which counteracted the latency differences among channels.

Conclusions

In this study, ABDA, the analytic bilinear discriminant analysis,

a linear discriminant analysis originated method, is proposed and

has been applied to the development of the RIT system. The

results showed that, without transforming into frequency domain,

the ABDA method is capable of modulating the phases and

magnitudes of slow ERP signals that are overlapping with other

ERPs, using the coupling of complex-valued spatial projection and

complex-valued temporal projection. The complex-valued bilinear

projections accommodated the spatio-temporal phase variations of

ERPs, and consequently enabled a better usage of high-density

EEG measurement to perform the classification task. With the

ABDA, the RIT tests have showed an average accuracy increase of

2.5% over that with the BDA method and also outperformed CSP

and ACSP.
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