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Purpose: Deep	 learning	 is	 a	 newer	 and	 advanced	 subfield	 in	 artificial	 intelligence	 (AI).	 The	 aim	 of	 our	
study	is	to	validate	a	machine-based	algorithm	developed	based	on	deep	convolutional	neural	networks	as	
a	tool	for	screening	to	detect	referable	diabetic	retinopathy	(DR).	Methods: An	AI	algorithm	to	detect	DR	
was	validated	at	our	hospital	using	an	internal	dataset	consisting	of	1,533	macula-centered	fundus	images	
collected	 retrospectively	 and	 an	 external	 validation	 set	 using	Methods	 to	 Evaluate	 Segmentation	 and	
Indexing	Techniques	in	the	field	of	Retinal	Ophthalmology	(MESSIDOR)	dataset.	Images	were	graded	by	
two	retina	specialists	as	any	DR,	prompt	referral	(moderate	nonproliferative	diabetic	retinopathy	(NPDR)	
or	 above	 or	 presence	 of	macular	 edema)	 and	 sight-threatening	DR/STDR	 (severe	NPDR	 or	 above)	 and	
compared	with	AI	results.	Sensitivity,	specificity,	and	area	under	curve	(AUC)	for	both	internal	and	external	
validation	sets	for	any	DR	detection,	prompt	referral,	and	STDR	were	calculated.	Interobserver	agreement	
using	kappa	value	was	calculated	for	both	the	sets	and	two	out	of	three	agreements	for	DR	grading	was	
considered	as	ground	truth	to	compare	with	AI	results.	Results: In the internal validation set, the overall 
sensitivity	and	specificity	was	99.7%	and	98.5%	 for	Any	DR	detection	and	98.9%	and	94.84%for	Prompt	
referral	respectively.	The	AUC	was	0.991	and	0.969	for	any	DR	detection	and	prompt	referral	respectively.	
The	 agreement	 between	 two	observers	was	 99.5%	 and	 99.2%	 for	 any	DR	detection	 and	prompt	 referral	
with	a	kappa	value	of	0.94	and	0.96,	respectively.	In	the	external	validation	set	(MESSIDOR	1),	the	overall	
sensitivity	 and	 specificity	was	 90.4%	 and	 91.0%	 for	 any	DR	detection	 and	 94.7%	 and	 97.4%	 for	 prompt	
referral,	respectively.	The	AUC	was.	907	and.	960	for	any	DR	detection	and	prompt	referral,	respectively.	
The	 agreement	 between	 two	observers	was	 98.5%	 and	 97.8%	 for	 any	DR	detection	 and	prompt	 referral	
with	 a	 kappa	 value	 of	 0.971	 and	 0.980,	 respectively.	Conclusion: With	 increasing	 diabetic	 population	
and	growing	demand	supply	gap	in	trained	resources,	AI	is	the	future	for	early	identification	of	DR	and	
reducing	blindness.	This	can	revolutionize	telescreening	in	ophthalmology,	especially	where	people	do	not	
have	access	to	specialized	health	care.
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India	has	 one	of	 the	highest	prevalence	of	diabetes	 in	 the	
world	with	approximately	79	million	people	predicted	to	have	
diabetes	by	2030.[1]	The	prevalence	of	diabetic	retinopathy	(DR)	
in	Indian	diabetics	has	been	reported	to	be	around	18[2]--27%.[3] 
This	 emphasizes	 the	need	 for	proper	diabetic	 screening	 to	
reduce	the	burden	of	DR-related	blindness.	However,	paucity	
of	trained	retinal	specialists	in	India	limits	effective	screening	of	
asymptomatic	patients,	thereby	resulting	in	patients	presenting	
late	with	advanced	diabetic	eye	disease.

Fundus	photograph-based	DR	screening	in	lieu	of	physical	
screening	can	be	performed	using	manual	grading	of	fundus	
images	by	trained	graders	or	retina	specialists.	The	technology	
of	machine-based	learning	to	detect	DR	has	given	a	new	horizon	
for	DR	screening	and	is	improving	rapidly.	Its	application	in	
diagnosing	referable	DR	patients	would	have	a	great	impact	

in	reducing	the	blindness	burden.	Several	studies	have	shown	
that	a	50°	posterior	pole	fundus	image	alone	can	be	used	as	a	
screening	tool	to	identify	DR.[4,5]

The	field	of	artificial	intelligence	(AI)	has	made	tremendous	
strides	since	1950s,	with	the	emergence	of	machine	learning	
by	1980s	and	deep	 learning	by	2010.	Machine	 learning	 is	 a	
subfield	of	AI,	which	does	not	require	the	program	to	perform	
a	specific	task.	It	recognizes	the	patterns	and	learns	to	predict	
automatically.	Deep	learning	is	a	newer	and	advanced	subfield	
in	machine	 learning,	which	 taps	 into	neural	networks	 and	
simulates	the	human	brain	in	decision-making.	It	requires	a	
huge	database	for	training.	A	deep	neural	network	consists	of	
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convolutional	layers	and	pooling	layers	as	shown	in	Fig.	1.	To	
describe	 in	detail	 about	 convolution	and	pooling	 is	beyond	
the	scope	of	this	article	and	suggested	further	reading	can	be	
found	in	the	article	by	Escontrela.[6]

Recent	review	articles	on	AI	based	on	DCCN	in	DR	by	Li	
et al.[7] and Ting et al.[8]	have	also	concluded	that	AI	shows	a	
great	promise	in	ocular	disease	screening,	both	efficiency-wise	
and	affordability-wise.

The	 aim	of	 our	 study	 is	 to	validate	 a	machine	 learning	
algorithm	developed	 based	 on	deep	 convolutional	 neural	
networks	(DCNNs)	as	a	tool	to	detect	referable	DR	to	enable	
accessible,	 affordable,	 and	 accurate	 screening	 in	 the	 fight	
against	avoidable	blindness.	We	herein	present	our	experience	
in	validating	 such	 algorithm	 to	 screen	 fundus	 images	 and	
analyze	its	efficiency	in	detecting	referable	DR.

Methods
Approval	for	the	study	was	obtained	from	the	institutional	review	
board.	 It	was	a	retrospective	exploratory	non-interventional	
study	carried	out	between	April	 2017	and	August	2018.	We	
conducted	the	trial	according	to	the	Standards	for	Reporting	
of	Diagnostic	Accuracy	reporting	guidelines.

Training of AI algorithm
This	algorithm	underwent	a	series	of	training	modules,	i.e.	V1	
(first	version),	V2	(second	version),	and	V3	(third	version).	The	
training	was	started	with	80,000	fundus	images	of	diabetic	patients	
in	V1	and	gradually,	the	training	was	improved	by	feeding	more	
images	in	V2	(96,500)	targeted	to	detect	microaneurysms	and	hard	
exudates.	The	final	version	V3	used	112,489	images.

The	 four	 stage	Convolutional	Neural	Network	 (CNN)	
classifiers	were	trained	and	optimized	to
•	 Stage	1:	Detect	retinal	photographs	from	nonretinal	images

•	 Stage	 2:	Detect	generic	 quality	distortion	 for	 automated	
image	quality	assessment

•	 Stage	3:	Detect	DR	stage
•	 Stage	 4:	 Detect	 and	 annotate	 the	 lesions	 based	 upon	
pixel	 density	 in	 the	 fundus	 images	 -	microaneurysms,	
hard	 exudates,	 cotton	wool	 spots,	 superficial	 and	deep	
hemorrhages,	 neovascularizations	 and	 fibrovascular	
proliferations.

The	 technique	of	Data Augmentation[9] was used to avoid 
overfitting	and	making	the	model	more	robust.	The	training	
dataset	 consisted	 of	 112,489	 deidentified	 fundus	 images	
sourced	from	various	hospitals.	The	images	were	derived	from	
various	fundus	cameras	of	both	mydriatic	and	nonmydriatic	
models	 including	Topcon	TRC	NW8,	Topcon	TRC	NW400	
(TOPCON	Medical	Systems,	Japan),	Bosch	Hand-Held	Fundus	
camera	 (Robert	 Bosch	 Eng.	And	 Business	 Pvt	 Solutions,	
Germany),	 Intucam	Prime,	 Intucam	 45	 (Intuvision	 Labs,	
India)	Trinetra	Classic	(FORUS	Health,	India),	and	Remidio	
(REMIDIO	 Innovative	 Solutions,	 India).	About	 72%	of	 the	
training	images	were	from	mydriatic	and	remaining	28%	were	
from	nonmydriatic	cameras.

Image quality assessment
Digital	 fundus	 photography	 is	 a	 common	 procedure	 in	
ophthalmology	and	provides	critical	diagnostic	information	of	
retinal	pathologies,	such	as	DR,	glaucoma,	age-related	macular	
degeneration,	and	vascular	abnormalities.	An	algorithm	able	
to	automatically	assess	the	quality	of	the	fundus	image	is	an	
important	preprocessing	step	for	reliable	lesion	detection	for	an	
AI-based	screening	system.	Due	to	factors	like	level	of	operator	
expertise,	type	of	equipment	used	and	patient	conditions,	the	
acquired	retinal	image	might	not	have	the	minimum	quality	
that	would	 facilitate	 feature	 extraction,	 leading	 to	 incorrect	
analytics.

Figure 1: Typical convolutional network showing the sequence of transformations – convolution and pooling
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Validation	of	the	algorithm:
The	accuracy	of	the	algorithm	in	detecting	referable	DR	was	

validated using two datasets; an internal validation set with a 
retrospective	collection	of	fundus	images	sourced	from	patients	
visiting	our	hospital	and	an	external	validation	set	–	MESSIDOR	
1.	AI	results	were	verified	for	consistency	by	running	the	two	
image	sets	for	results	on	three	separate	occasions.	The	results	
seen	were	 identical	 and	 there	were	no	variations	 in	 the	AI	
results for any image over the three test runs.

Data collection method for validation
Internal validation set
Deidentified	fundus	images	were	sourced	from	our	medical	
records	 (Imaged	between	 January	2015	and	 June	2018).	The	
dataset	 consisted	 of	 1533	 independent	 images	 and	 for	 the	
purpose of this study was not assigned patient wise. These 
images did not overlap with the dataset used in training 
the	 algorithm.	All	 images	were	 captured	 using	 Topcon	
TRC-50DX	and	Topcon	DRI	OCT-TRITON	camera	with	50°	
field,	 posterior	 pole-centered	 images.	 This	 included	 both	
dilated	and	undilated	images.	Images	with	media	haze,	over/
under	exposure	were	excluded	from	the	validation	study.

All	 1533	 images	were	 reviewed	by	 two	 retina	 specialists	
(Observer	A	and	Observer	B)	and	disagreements	were	further	
reviewed	by	a	third	grader.	Agreement	between	at	least	two	
graders	was	considered	as	ground	truth	(GT).

External validation set
MESSIDOR	1	online	database	consists	of	1200	fundus	images	

acquired	using	Topcon	TRC	NW6	nonmydriatic	camera	with	a	
45°	field	of	view,	of	which	800	were	acquired	with	pupil	dilation	
and	400	without	dilation.

All	1200	images	were	reviewed	by	our	two	retina	specialists	
and disagreements were mutually reviewed to arrive at a 
consensus	grading.	ICDR	classification	scale	was	used	for	grading.

Traditional Image Quality Assessment Algorithm relies 
on	handcrafted	features[10,11]	that	are	based	on	either	generic	
or	structural	quality	parameters,	such	as	global	histogram	
features,	textural	features,	vessel	density,	local	nonreference	
perceptual	sharpness	etc.,	metric	which	does	not	generalize	
well	on	different	dataset,	camera,	and 	field	of	view	(FOV)	
show	bias.	“Image	Quality	Assessment”	algorithm	is	based	
on	CNN,	which	uses	 a	 custom	 17-layer	CNN	network	 to	
train	 the	 data.	 The	 training	 dataset	 consisted	 of	 103,578	
good	quality	(gradable)	retina	images	and	8911	ungradable	
retina images.

Grading of DR
Images	were	graded	using	the	international	clinical	DR	severity	
scale	(ICDRS)[12]	(for	both	training	and	validation)	as:

No	DR.

NPDR	further	classified	as
•	 Mild	NPDR:	Microaneurysms	only
•	 Moderate	NPDR:	More	than	just	microaneurysms	and	less	

than severe DR
•	 Severe	NPDR:	 Presence	 of	 Intraretinal	microvascular	
abnormalities	(IRMAs) 	or	venous	beading	in	2	+	quadrants,	
or	>	20	hemorrhages	in	each	quadrant.

Proliferative	diabetic	retinopathy	(PDR).

PDR:	Neovascularization	or	preretinal/vitreous	hemorrhage.

Macular	edema	was	defined	as	presence	of	hard	exudates	
with	one	disc	diameter	of	the	macula.

Referable	DR	 (RDR)/prompt	 referral	was	 defined	 as	
moderate	NPDR	or	above	and/or	presence	of	macular	edema.

Sight	threatening	DR	(STDR)	was	defined	as	severe	NPDR	
and	PDR	or	above.

Table 1: Distribution of DR staging between two retina specialists for internal and external validation datasets

Internal validation set Weighted Kappa 0.953

Observer B Observer A Total Standard error 0.005

No DR Mild NPDR Mod NPDR Severe NPDR PDR 95% CI 0.944‑0.962

No DR 121 4 0 0 0 125 (8.2%)

Mild NPDR 8 16 6 0 0 30 (2.0%)

Mod NPDR 1 3 468 21 0 493 (32.2%)

Severe NPDR 0 0 11 130 37 178 (11.6%)

PDR 0 0 0 3 704 707 (46.1%)
Total 130 23 485 154 741 1533

External Validation Set Weighted Kappa 0.961

Observer B Observer A Total Standard error 0.006

No DR Mild NPDR Mod NPDR Severe NPDR PDR 95% CI 0.949‑0.972

No DR 538 10 0 0 0 548 (45.7%)

Mild NPDR 6 214 8 2 0 230 (19.2%)

Mod NPDR 1 0 329 5 2 337 (28.1%)

Severe NPDR 0 0 10 50 4 64 (5.3%)

PDR 0 0 0 0 21 21 (1.8%)
Total 545 224 347 57 27 1200

The percentage values in brackets indicate the proportion of cases under each stage of DR
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κ	 value	of	 0.69	 indicates	 “Good”	 strength	of	 agreement	
in	DR	severity	 staging	between	GT	and	AI.	We	noticed	 the	
tendency	of	AI	to	classify	moderate	NPDR	as	severe	and	PDR	
as	severe,	thereby	the	lower	κ	value	as	compared	to	the	strength	
of	agreement	between	the	two	retinal	experts.

AI	 shows	 high	 sensitivity	 and	 specificity	 for	 any	DR	
detection	and	referable	DR	detection	as	shown	in	Table	3.	For	
STDR	though	the	sensitivity	is	high	the	specificity	is	56.38%.	
We	have	observed	a	tendency	of	the	AI	to	overclassify	moderate	
NPDR	as	 severe,	 thereby	 the	 lower	specificity.	However,	of	
the	 898	 STDR	 images,	AI	has	 referred	 897	 images	 thereby	
demonstrating	high	accuracy	in	screening	settings.

κ	value	shows	very	good	agreement	between	GT	and	AI	
results	for	Any	DR	detection	and	referable	DR	detection.	For	
STDR the agreement is moderate.	However,	AI	 identified	
and	considered	all	 images	with	STDR	as	referable.	It	 is	also	
notable	that	AI	has	shown	high	sensitivity	of	97.7%	in	detecting	
STDR,	whereas	the	specificity	is	56.4%	-	this	was	mostly	due	to	
classification	of	moderate	NPDR	as	severe	and	hence	as	STDR.

The	AUC	for	any	DR	detection	was	0.991 and for prompt 
referral was 0.969 as shown in Fig.	2.

External validation set
Of	the	1200	images,	546	had	no	DR	and	654	had	some	form	
of	DR	of	which,	 432	had	 referable	DR	while	 84	had	 sight	
threatening DR.

Comparison	of	consensus	grade	and	AI	derived	grades	is	
given in Table	4.

κ	value	of	0.82	shows	very	good	strength	of	agreement	in	DR	
severity	grading.	However,	49	cases	without	DR	were	classified	
as	mild	NPDR	and	62	cases	with	mild	NPDR	were	classified	as	
no	DR	by	the	AI,	indicating	that	the	algorithm	requires	further	
training	and	validation	 in	detecting	 subtle	 changes	 such	as	
microaneurysms	 and	 thereby	 the	 accurate	 identification	of	
mild	NPDR,	though	this	may	not	be	clinically	relevant	as	no	
specific	treatment	is	indicated	for	mild	NPDR.

As	 observed	 in	 the	 internal	 validation	 set,	AI	 has	
demonstrated	high	levels	of	accuracy	in	detecting	both	referable	
and sight threatening DR for external validation set as well as 
seen in Table	3.

Interobserver agreement
Distribution	of	DR	staging	between	two	retina	specialists	for	
the internal and external validation datasets is shown in Table	1.

Internal	 validation	 set	 -	κ	 value	of	 0.95	 indicates	 “Very	
Good”	strength	of	agreement	between	the	two	graders.	A	total	
of	94	images	were	graded	differently	and	hence	were	reviewed	
by	a	third	grader	to	arrive	at	the	GT.

External	 validation	 set	 -	Of	 the	 1200	 images,	 the	 two	
observers	agreed	with	1152	image	grades	(96%	agreement)	with	
a κ	value	of	0.96	showing	“Very	Good”	strength	of	agreement.	
And	 48	 variance	 images	were	 reviewed	 between	 the	 two	
graders	to	arrive	at	the	consensus	grading	(GT).

Statistical analysis
Statistical	 analysis	was	 done	 using	Microsoft	 excel	 2016	
and	MedCalc	 Statistical	 Software	version	 18.11.6	 (MedCalc	
Software	bvba,	Belgium,	2019).	Sensitivity	and	specificity	for	
identification	of	any	DR,	identification	of	referable/prompt	DR	
and	sight	threatening	DR	was	calculated.	AUC	was	calculated	
for the same.

Cohen’s	κ	was	run	to	determine	the	agreement	between	the	
two	graders	and	between	GT	and	AI	results	on	the	presence	
and	severity	of	DR	in	the	validation	dataset.	Classification	of	
Cohen’s	kappa	(κ)	was	used	as	per	guidelines	from	Altman	
(1999):[13]	 <0.20	 poor,	 0.21--0.40	 fair,	 0.41--0.60	moderate,	
0.61--0.80	good,	and	0.81--1.00	very	good.

Results
Performance	of	the	AI	in	detecting	“any	DR,”	“Referable	DR,”	
and	“Sight	Threatening	DR”	was	 evaluated	 in	 comparison	
with	the	GT.	Sensitivity,	specificity,	positive	predictive	value	
(PPV),	negative	predictive	value	(NPV),	accuracy,	ROC,	and	
Cohen’s	κ	was	derived.	The	performance	of	the	AI	was	also	
compared	with	that	of	the	two	primary	graders	to	understand	
if	 the	AI	 can	perform	at	par,	 below	par,	 or	better	 than	 the	
human experts.

Internal validation set
Of	the	total	1533	images,	1399	images	had	some	form	of	DR	and	
134	had	no	DR.	The	distribution	of	the	grades	in	comparison	
with GT and the AI output is shown in Table	2.

Table 2: Distribution of DR staging between Ground Truth grading and AI results for the internal validation dataset

AI_Grade Consensus grade (GT) for internal validation set Total

No DR Mild NPDR Mod NPDR Severe NPDR PDR

No DR 132 3 1 0 0 136 (8.9%)

Mild NPDR 1 11 12 0 1 25 (1.6%)

Mod NPDR 1 7 189 11 10 218 (14.2%)

Severe NPDR 0 0 273 131 269 673 (43.9%)

PDR 0 0 4 9 468 481 (31.4%)
134 (8.7%) 21 (1.4%) 479 (31.2%) 151 (9.8%) 748 (48.8%) 1533

Weighted Kappaa 0.688

Standard error 0.013
95% CI 0.663-0.713
aLinear weights. The percentage values in brackets indicate the proportion of cases under each stage of DR
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Table 4: Distribution of DR staging between Ground Truth grading and AI results for the external validation dataset

AI Grade Consensus grade (GT) for external validation set Total

No DR Mild NPDR Mod NPDR Severe NPDR PDR

No DR 497 62 1 0 0 560 (46.7%)

Mild NPDR 48 141 22 0 0 211 (17.6%)

Mod NPDR 1 19 246 7 0 273 (22.8%)

Severe NPDR 0 0 78 52 8 138 (11.5%)

PDR 0 0 1 1 16 18 (1.5%)
Total 546 (45.5%) 222 (18.5%) 348 (29.0%) 60 (5.0%) 24 (2.0%) 1200

Weighted Kappaa 0.82173

Standard error 0.01013
95% CI 0.80187-0.84159
aLinear weights. The percentage values in brackets indicate the proportion of cases under each stage of DR

Table 3: Performance of AI in comparison to Ground Truth for internal and external validation sets

Internal validation set

Any DR detection Referable DR detection Sight threatening DR detection

Sensitivity 99.71% 99.27%-99.92% 98.98% 98.30%-99.44% 97.55% 96.32%-98.46%

Specificity 98.50% 94.71%-99.82% 94.84% 90.08%-97.75% 56.31% 52.35%-60.21%

AUC 0.991 0.985-0.995 0.969 0.959-0.977 0.77 0.747-0.790

PPV 99.86% 99.44%-99.96% 99.42% 98.86%-99.70% 76.00% 74.34%-77.58%

NPV 97.06% 92.53%-98.87% 91.30% 86.16%-94.65% 94.20% 91.43%-96.10%
k 0.975 0.956-0.995 0.922 0.890-0.954 0.572 0.532-0.612

External validation set

Any DR detection Referable DR detection Sight threatening DR detection

Sensitivity 90.37% 87.84%-92.52% 94.68% 92.12%-96.60% 91.67% 83.58%-96.58%

Specificity 91.03% 88.31%-93.29% 97.40% 96.01%-98.40% 92.92% 91.26%-94.36%

AUC 0.907 0.889-0.923 0.96 0.948-0.971 0.923 0.906-0.937

PPV 92.34% 90.22%-94.04% 95.34% 92.99%-96.93% 49.36% 43.84%-54.90%

NPV 88.75% 86.17%-90.90% 97.02% 95.62%-97.98% 99.33% 98.65%-99.67%
k 0.812 0.779-8.845 0.922 0.899-0.945 0.606 0.531-0.680

Any DR=Stage 1, 2, 3, 4; Referable DR=Stage 2, 3, 4; Sight threatening DR=Stage 3 and 4

κ value for STDR shows moderate agreement with a sensitivity 
of	91.67%	and	specificity	of	92.92%.	Of	the	84	images	with	STDR,	
AI	has	classified	77	as	STDR	and	the	remaining	7	as	moderate	
NPDR,	i.e.	AI	has	identified	and	referred	all	instances	of	STDR.

The	AUC	for	any	DR	detection	was.	907	and	for	prompt	
referral	was.	960	as	shown	in	Fig.	3.

Discussion
From	our	study,	we	can	observe	that	this	AI	algorithm	showed	
a	very	good	sensitivity	and	specificity	for detection	of	any	DR,	
i.e.,	99.7%	and	98.5%	and	for	prompt	referral,	i.e.	98.9%	and	
94.84%,	respectively,	comparable	 to	 the	existing	algorithms,	
thus	suitable	as	a	very	good	screening	tool.	AI	has	been	shown	
to	have	a	 sensitivity	 close	 to	 90%	 to	detect	 referable	DR	 in	
the	studies	so	 far	performed.	The	sensitivity	and	specificity	
of	AI	improves	as	the	machine	sees	more	and	more	images.	
One of the greatest advantages of the algorithm used in our 
study	is	that	it	has	been	developed	using	fundus	images	from	
multiethnic	populations,	 thus	diverse	disease	presentations	

were used for training. The large training data sets with wide 
spectrum	of	 clinical	 findings	 help	 the	 algorithm	 to	 better	
understand	the	varied	presentation	of	the	disease.	The	second	
advantage is that the validation set images in our study were 
retrieved	directly	 from	clinic	 rather	 than	online	datasets	 as	
in several other studies.[14-16] Third, the fundus images in the 
training	set	have	been	retrieved	from	a	wide	variety	of	fundus	
cameras	including	smart	phone-based	fundus	cameras,	thus	
helping	to	train	AI	in	a	very	robust	way	with	a	heterogeneous	
set of images. Fourth, unlike in other studies[16] where the 
training	set	itself	has	been	used	for	validation,	we	have	used	
a	distinct	set	for	validation	so	as	to	reduce	the	training	bias	in	
the	output	 results.	Fiftth,	 the	algorithm	under	 study	differs	
from	others,	 as	 it	 not	 only	 identifies	 referable	DR	but	 also	
annotates	the	lesions;	and	thus,	lesion	identification	helps	the	
ophthalmologist	understand	what	 the	AI	 is	comprehending	
and	also	to	assess	progression	of	the	disease	on	follow-up.	It	
also helps in making the patient understand the severity of 
the	DR	 for	better	understanding	of	 the	 eye	problem,	better	
counseling,	and	in	turn	better	compliance	for	the	management	
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and	follow-up.	When	used	in	screening,	it	will	aid	in	accurate	
identification	of	the	lesions	by	the	nonophthalmologists	and	
thus	the	referrals	can	also	be	clarified	as	immediate	or	urgent	
or emergent depending upon the stage of DR. An example of 
the	output	with	lesion	identification	is	shown	in	Fig.	4.

The	 initial	 breakthrough	 study	using	AI	 for	DR	was	by	
Gulshan et al.[14]	 from	 the	Google	AI	Healthcare	 group	 in	
2016.	The	most	robust	study	till	date	by	Ting	et al.,[17] where 
the	deep	learning	system	(DLS)	was	developed	and	validated	
using	 images	 from	various	multiethnic	populations	 along	
with	their	Singapore	national	DR	screening	program,	showed	
a	sensitivity	and	specificity	of	90.5%	and	91.6%	respectively	
for	referable	DR	in	primary	validation	set.	Li	et al.[18] have also 
developed	a	multiethnic-based	DLS	which	showed	a	sensitivity	
and	 specificity	 of	 97%	 and	 91.4%	 for	 sight	 threatening	
referable	DR.	They	also	highlighted	the	characteristics	of	false	
positives and false negatives when using AI in their study. 
The	DLS	developed	by	Abramoff	et al.,[19]	has	 	received	U.S.	
FDA	approval	in	April	2018	for	diagnosis	of	DR,	which	has	a	
sensitivity	and	specificity	of	87.2%	and	90.7%,	respectively.	A	
brief	summary	of	various	studies	and	their	results	are	shown	
in Table	5.[14-17,20,21]

In	the	present	scenario,	every	diabetic	patient	needs	to	be	
referred	to	a	retina	specialist	for	diagnosis	and	treatment	of	DR.	
If	an	automated	software	is	able	to	identify	sight	threatening	DR	
as	precisely	as	a	clinician,	it	would	greatly	reduce	the	burden	

of	screening	on	vitreoretinal	(VR)	surgeons.	It	would	also	help	
to	reduce	the	financial	burden	on	the	patient.	Kanagasingam	et 
al.	have	also	tried	AI-based	algorithms	to	detect	DR	in	primary	
health	care	setting.[22]

A	study	by	Keel	et al.[23]	to	evaluate	the	feasibility	and	patient	
acceptability	of	AI-based	DR	screening	in	endocrinology	clinics	
showed	96%	of	the	patients	were	satisfied	with	the	automated	

Figure 3: AUC of external validation set

Figure 4: Fundus image with lesion annotations by the AI algorithm

Figure 2: AUC of internal validation set
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DR	 screening	model	 and	78%	 reported	 that	 they	preferred	
automated	over	manual	screening	with	the	mean	assessment	
time	of	only	6.9	minutes.	The	algorithm	in	the	present	study	
takes	an	average	of	5	s	per	image	for	detecting	DR	and	marking	
lesions,	which	is	as	good	as	a	clinician.

Shortcomings	of	AI	in	the	current	scenario	are	as	follows:
1.	 False	positives	if	the	image	has	artefacts	due	to	poor	image	
capturing;

2.	 Difficulty	in	distinction	between	mild	and	moderate	NPDR	
in	the	absence	of	hard	or	soft	exudates,	since	presence	of	dot	
hemorrhages	alone	can	mimic	microaneurysms.	This	would	
not	have	a	great	clinical	significance	as	such	patients	would	
not	require	any	treatment	although	they	fall	into	moderate	
NPDR	group	according	to	ICDRS

	 As	mentioned	by	Krause	et al.[24] in their study of grader 
variability	 in	machine	 learning	models,	most	 common	
discrepancies	were	due	to	missing	microaneurysm,	artifacts,	
and	misclassified	hemorrhages.

3.	 Sharply	delineated/hard	drusen/pigments	can	sometimes	
give false positive results.

4.	 False	negatives	due	to	inability	to	identify	cystoid	macular	
edema	in	the	absence	of	hard	exudates;

5.	 False	negatives	in	inactive	peripheral	lasered	PDR	cases.

Limitations of our study
Although	we	 have	 only	 used	 images	 obtained	 from	 the	
Topcon	fundus	camera	in	the	internal	validation	set,	we	were	
able	to	obtain	similar	results	with	the	external	validation	set	
(MESSIDOR	1).

Also,	we	are	conducting	an	ongoing	DR	screening	study	
where	we	 are	 trying	 to	 validate	 the	 software	 on	different	
fundus	cameras	in	a	real-world	outreach	screening	program.	
The	sensitivity	to	identify	referable	DR	from	its	pilot	study	also	
showed	promising	results	(unpublished	data).

Conclusion
The	advantage	of	AI	would	be	in	its	ability	to	detect	DR	without	
the	need	for	a	trained	retina	specialist,	remote	screening,	and	
ability	to	rapidly	screen	large	numbers.	This	can	revolutionize	
telescreening	in	ophthalmology,	especially	where	people	have	
poor	 access	 to	 specialized	health	 care.	With	 the	 increasing	
diabetic	population	and	the	growing	demand	supply	gap	in	
trained	resources	for	disease	screening,	AI	can	be	the	future	for	
early	identification	of	DR	and	thereby	reducing	the	blindness	
burden.	Integrated	into	fundus	cameras,	an	optometrist	or	a	
trained	 technician	can	 screen	diabetic	patients	much	earlier	
using	portable	nonmydriatic	cameras.	Easier	accessibility	of	
these	software	and	their	integration	with	more	portable	fundus	
camera	devices,	which	can	be	operated	by	a	technician	alone,	
will	give	a	huge	scope	for	even	a	nontrained	health	professional	
in	screening	DR.	This	would	especially	benefit	in	developing	
countries	where	penetration	of	 specialized	ophthalmic	 care	
is poor.
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Commentary: Artificial intelligence–A 
game changer

Artificial	 intelligence	(AI)	has	become	popular	 in	 the	recent	
years	due	to	the	increase	in	the	computing	power	of	devices,	
availability	of	massive	amounts	of	training	data	via	the	Internet,	
and	availability	of	 less-expensive	 cloud	data	 storage.	With	
the	emergence	of	autonomous	vehicles,	face	recognition,	and	
language	processing,	artificial	intelligence	has	revolutionized	
our lives.

In	this	manuscript,	the	authors	have	described	a	very	robust	
AI	 algorithm	 for	DR	 screening	with	 good	 sensitivity	 and	
specificity	using	different	 fundus	 cameras	 to	 eliminate	bias	
using	predominantly	mydriatic	Fundus	images.[1]

Deep	 learning	 (DL)	 has	 the	 ability	 to	 identify	 intricate	
structures	in	datasets	without	the	need	to	specify	rules.	DL	is	
a	neural	network	with	multiple	layers	between	the	input	and	
output layers.[2]

The	steps	for	building	an	AI	model	include	preprocessing	
image data, training, validation, testing, and evaluation of the 
trained	model’s	performance.

Artificial	 intelligence	would	help	us	 by	 increasing	 the	
compliance	of	the	patients	for	regular	screening	and	it	would	
decrease	 the	dropout	 rate	as	 the	cost	of	 screening	would	be	
lowered;	 it	would	 also	 save	 time	by	nonmydriatic	 fundus	
imaging.	Fundus	cameras	with	built-in	AI	could	be	installed	in	
shopping malls, railway stations, and temples where patients 
could	be	screened.	AI	would	help	in	optimizing	the	workflow	

for	a	busy	ophthalmologist	by	 screening	all	 the	patients	 for	
retinopathy	and	referring	only	cases	with	the	pathology,	thereby	
enabling	the	retina	specialist	to	evaluate	only	the	referable	cases.

As	 a	part	 of	 “Digital	 India”	 campaign,	 even	 the	 Indian	
government	has	shown	interest	 to	adopt	AI	across	different	
sectors	in	healthcare.	However,	there	are	certain	challenges	in	
implementing	AI	on	a	large	scale	as	the	need	of	huge	amount	
of	data	 remains	 the	most	 fundamental	problem.	Although	
recent	AI	algorithms	with	multiple	accessible	datasets	 such	
as	 EyePACS,	Messidor,	 and	Kaggle’s	 dataset	 can	make	
breakthroughs	on	 the	different	ophthalmic	diseases,	having	
more	number	of	 images	of	 the	same	disease	pathology	and	
severity	will	 not	 help	 to	 increase	 the	AI	 sensitivity	 and	
specificity.[3,4]

A	research	group	carried	out	the	work	of	applying	DL	to	
automatically	detect	different	 retinal	diseases	with	 fundus	
photographs.	When	only	normal	and	DR	fundus	images	were	
involved	 in	 the	DL	model,	 the	 classification	 accuracy	was	
87.4%.	However,	the	accuracy	decreased	to	30.5%	when	all	10	
categories	were	included.[5]

When	 data	 is	 to	 be	 shared	 between	 different	 centers,	
regulations	and	state	privacy	rules	need	to	be	considered.	These	
usually	vary	between	different	countries	and	while	they	are	
aimed	to	ensure	patients’	privacy,	they	sometimes	form	barriers	
for	research	initiatives	and	patient’s	care.[6]

To	 enhance	 the	 application	 of	AI	 in	 clinical	 practice,	
there	 should	 be	more	 efforts	 to	 build	 intelligent	 systems	
that	can	detect	various	retinal	diseases	with	high	sensitivity.	
Multimodal	clinical	images	such	as	slit	lamp	and	fundus-based	
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