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Simple Summary: Sedation has been shown to reduce stress and damage during live fish transporta-
tion. However, there is a lack of information regarding MS-222 alternatives. The present study aimed
at assessing the effects of propofol during a 6-h simulated transportation of Nile tilapia (Oreochromis
niloticus) focusing on physiology, histology, behavior, and meat integrity. Fluctuations in water chem-
istry, glucose, hematological parameters, and behavioral response were found in propofol-treated
animals (although it was normalized after the recovery period). In general, the findings highlight the
potential use of propofol as a beneficial mediator of transportation-induced stress in fish contributing
to improve fish welfare.

Abstract: The use of anesthetics has been suggested as a strategy to hamper live fish transport-
induced stress. Still, there is insufficient data available on the use of alternative anesthetics to
MS-222. This study investigated the use of propofol to mitigate stress in Nile tilapia (Oreochromis
niloticus, 143.8 ± 20.9 g and 20.4 ± 0.9 cm) during a 6 h simulated transport. Individuals (n = 7) were
divided into three groups: control, 40 mg L−1 MS-222, and 0.8 mg L−1 propofol. A naïve group
non-transported was also considered. During the 6 h transport and 24 h after, the response to external
stimuli, opercular movements, water quality parameters, behavior, blood hematology and other
physiological values, the histopathology of the gills, the quality of the fillet, and oxidative-stress
changes in gills, muscle, brain, and liver were evaluated. Propofol increased swimming activity of
fish but decreased opercular movements and responses to external stimuli, indicating oscillations
of the sedation depth. Water pH and glucose levels increased, while hematocrit (HCT) and lactate
decreased in propofol groups at 6 h. At this time-point, MS-222 also induced a decrease in the HCT
and lactate levels while increasing cortisol levels. Despite these effects, the stress-related behaviors
lessened with anesthetics compared to the control group. After the recovery period, physiological
responses normalized in animals from both anesthetic groups, but the control still had high cortisol
levels. Overall, propofol is a good alternative for the transportation of this species, showing efficient
sedation without compromising health or fillet quality. However, further pharmacodynamics and
pharmacokinetics knowledge is required to support its use in aquaculture settings.
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1. Introduction

In recent years, there has been a growing concern related to fish welfare in research
and aquaculture [1]. Consumers have become more demanding regarding the welfare of
production animals and, although slowly, fish are no exception [2,3]. The pressure of public
opinion, scientists, policy makers, and other stakeholders resulted in specific directives
and recommendations to regulate the use of fish for a variety of purposes (mainly research
and aquaculture). Indeed, there is various evidence that this vertebrate taxon can expe-
rience pain [4,5]. In general, handling, transport, and husbandry procedures are the key
stressful events that can have negative impacts on fish welfare [1]. The transport of live
fish, for instance, is a crucial process for various research and aquaculture purposes [6,7].
Many studies have emphasized the physiological stress responses induced by this practice
associated with changes in water quality [6]. The stress response is characterized by the
stimulation of the hypothalamic-pituitary-interrenal axis with the release of corticosteroids
and catecholamines [8–11]. This induces the activation of a cascade of events that may
culminate in deleterious effects on fish health, increasing disease susceptibility and mor-
tality [8,12] and thereby reducing the profitability and welfare of fish. In this view, it is
essential to refine the appropriate transport protocol, inducing the least stress possible.

One of the mitigation strategies that has been implemented to reduce transport-
induced stress is the use of anesthesia [13,14]. Sedation of fish can lower the fish’s
metabolism resulting in improved water quality and can lower stress levels related to trans-
port procedures such as handling, turbulence, and aggressive social interactions [14,15]
while also maintaining meat quality [16]. Among the broad spectrum of fish anesthetics,
the most used is tricaine methanesulfonate (MS-222) [13,14], although species differences in
pharmacokinetics and pharmacodynamics have been described [17]. In addition, a report
has shown this compound to be aversive to some fish species [18], and further studies
demonstrated that MS-222 might elicit immune-biochemical responses (increased cortisol,
altered oxidative status and immune system) in different fish species under transport
conditions [19–21]. In general, MS-222 may compromise the health and welfare of the fish,
requiring further studies to better understand how this and other anesthetics affect welfare
during fish transport.

Anesthetics such as propofol (2,6-diisopropylphenol), a widely used GABAA agonist
for human and veterinary anesthesia, have been evaluated experimentally in different
fish species [22–26]. It is a short-acting, rapid recovery, and fast metabolized anesthetic
agent with a lack of cumulative effects reported in Nile tilapia (Oreochromis niloticus) [24],
the second most farmed fish worldwide [27]. In addition, although recent studies have
characterized propofol induction and recovery in this species [28,29], no thorough research
has been conducted so far using propofol for transport conditions of Nile tilapia, while
it has been validated for the transport of other species [26]. Still, due to between- and
within-species drug responses differences, anesthetics must be investigated on a species-by-
species basis to assure its safe use [30]. Therefore, this study aimed to evaluate the efficacy
of propofol during and after the simulated transportation of Nile tilapia in comparison
to MS-222, considering alterations in physiology, histology, behavior, and meat integrity.
Overall, these will provide information regarding fish welfare/health and, consequently,
productivity and fillet quality following transportation of tilapia under these compounds.

2. Materials and Methods
2.1. Reagents and Solutions

Tricaine methanesulfonate (CAS 886-86-2) was purchased from Sigma-Aldrich (Sin-
tra, Portugal) and was prepared as a stock solution at a concentration of 4000 mg L−1

(~15.30 mM) in deionized water and buffered with sodium bicarbonate to a pH of 7.4. This
solution was kept in an amber bottle and refrigerated until used. Propofol (Propofol-Lipuro
1%, 10 mg mL−1) was purchased from B. Braun (Barcarena, Portugal). Anesthetic solutions
were freshly prepared prior to transport simulation by diluting stock solutions to the
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desired nominal concentration in the system water. Unless stated, all other chemicals were
of the highest grade available and obtained from Sigma-Aldrich (Sintra, Portugal).

2.2. Experimental Animals

This study was carried out at the University of Trás-os-Montes and Alto Douro
(UTAD), Vila Real, Portugal. All the procedures were approved by National authority
DGAV (Direção Geral de Alimentação e Veterinária) through the project license 014703/2017-
06-16 and in agreement with the European Directive on the protection of animals used
for scientific purposes (2010/63/EU) and its transposition to the Portuguese law (Decreto-
lei 113/2013) ensuring minimal animal stress and discomfort. A total of 55 Nile tilapia
(Oreochromis niloticus) (body weight of 143.8 ± 20.9 g and length of 20.4 ± 0.9 cm measured
after euthanasia) raised in UTAD Experimental Research Station (Vila Real, Portugal),
were acclimated for one week at 25 ± 1 ◦C in two 500-L recirculating tanks filled with
dechlorinated Vila Real tap water at a density of 1 fish/15 L with continuous aeration,
biological and mechanical filtration, and maintained under a 14-h light, 10-h dark cycle.
During the acclimation period, fish were fed daily with a control diet (35.8% of protein and
8.3% fat) [31], corresponding to around 1.5% of their weight; 24 h prior to the initiation
of the experiments, fish were starved. The renewal of 50% of the water from the system
and feces removal was performed every five days to minimize the build-up of nitrates and
nitrites and to maintain water quality.

2.3. Simulated Transport

For the transport simulation experiment (Figure 1), individual fish were randomly
and rapidly net transferred to plastic boxes of 10 L containing 8 L of system water with con-
tinuous aeration (7.78 ± 0.11 mg O2 L−1) and distributed into three different experimental
groups: control (no sedation), MS-222 (sedated with 40 mg L−1/0.15 mM) and propofol
(sedated with 0.8 mg L−1/0.0045 mM). The tested concentration of MS-222 was related to
the sedation induction previously observed in this species [32], while the concentration
used for propofol was selected based on pilot experiments (data not shown) and on a
previously published work [24]. In all cases, the selected concentrations of the anesthetics
induced light sedation characterized by disorientation, reduced activity, reactivity, and
ventilation rate while maintaining the normal equilibrium [33,34]. A naïve group was also
included which did not receive any treatment during the experiment being maintained
in the 500-L tanks. To simulate transport conditions, the plastic boxes were placed over a
table vibrating at a mean 0.62 ± 0.24 m s−2 and producing a noise of 77.8 ± 0.47 dB, thus
mimicking the conditions observed in the transport of live animals [35–37]. In addition,
Nile tilapia were transport simulated for 6 h to mimic the common duration of short and
regional transportation (range between 4 and 8 h, reviewed in [6]). At the end of the
simulated transport protocol, seven animals from each treatment groups (n = 7) and six
from the naïve group (n = 6) were sacrificed by stunning them with a blow to the head
followed by rapid decapitation. The remaining fish subjected to transport (n = 7) were net
transferred to a 200-L clean-water tank and allowed to recover for 24 h and then euthanized
and sampled as well. Seven animals from the naïve group were also sampled at this time.
No food was supplied during the recovery period, and this was established based on the
complete recovery of physiological functions (no changes in plasma cortisol concentrations)
following acute stress in this species [38].
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Figure 1. Timeline of the experimental design. Nile tilapia s were randomly distributed in naïve 
group (not transported) and into three transported simulated groups for 6 h: control (transported 
without sedation), MS-222 (transported with 40 mg L−1 MS-222) and propofol (transported with 0.8 
mg L−1 propofol). During the transportation different endpoints were evaluated at 0, 0.5, 1, 3, and 6 
h: clinical parameters, animal behavior, and the water chemical changes. At the end of the transpor-
tation and after a recovery period of 24 h, blood analysis, behavioral responses, fillet quality and 
histopathology of the gills were conducted. Different biochemical parameters were also evaluated 
in gills, muscle, liver, and brain. 

2.4. Clinical and Sedation Evaluation 
During the simulated transport conditions described above, the fish from the differ-

ent treatments were monitored for equilibrium and respiratory activity with observations 
at 1 min (assumed hereafter as 0 min), 0.5, 1, 3, and 6 h (n = 7). The equilibrium was eval-
uated as absent or present (0 or 1) while the respiration (opercular movement rate) was 
assessed by counting the opercular movements for 60 s. In addition, reactions to visual 
and vibrational cues (moving the net on the opposite side of the tank) and to tactile stim-
ulus were assessed at these time-points to evaluate the level of consciousness and to con-
firm sedation. The tactile stimulus was characterized by gently touching the dorsal side 
of the animal antero-posteriorly with a plastic tube; if the animal did not respond, a pinch 
in the caudal peduncle was gently applied with forceps. All of these responses were eval-
uated at 0.5, 1, 3, and 6 h by the same person. 

2.5. Water Quality Assessment 
Water samples were collected before the simulated transportation period (baseline 

values) and at 3 and 6 h of transport simulation to monitor some chemical parameters of 
the system water. The pH, temperature, and dissolved oxygen were assessed using a 
multi-parameter water quality analyzer (HQ40d, Hach, Loveland, CO, USA). 

2.6. Behavioral Assessments 
During the simulated transportation (at 0, 0.5, 1, 3 and 6 h), at the end of this transport 

(6.5 h) and after 24 h of recovery, fish (n = 7) were individually video recorded with a 
Canon Full-HD (1920 × 1080 pixels) camcorder (Canon Legria HF R606) placed in front of 
the plastic box and mounted on tripods which were positioned at 1 m from the tanks to 
avoid interferences on the test fish. Each fish was recorded for behavioral responses for 5 
min at each time-point. From these video recording, behavioral data were measured by 
the duration the fish engaged in specific behavior and/or by the number of times (fre-
quency) the specific behavior was observed, according to the implemented ethogram (Ta-
ble 1), based on the most common types of behaviors observed in this species [39]. A sin-
gle-blinded observer for the treatments used the open-source event-logging software Be-
havioral Observation Research Interactive Software (BORIS v7.6 [40] to analyze each fish. 

Figure 1. Timeline of the experimental design. Nile tilapia s were randomly distributed in naïve
group (not transported) and into three transported simulated groups for 6 h: control (transported
without sedation), MS-222 (transported with 40 mg L−1 MS-222) and propofol (transported with
0.8 mg L−1 propofol). During the transportation different endpoints were evaluated at 0, 0.5, 1,
3, and 6 h: clinical parameters, animal behavior, and the water chemical changes. At the end of
the transportation and after a recovery period of 24 h, blood analysis, behavioral responses, fillet
quality and histopathology of the gills were conducted. Different biochemical parameters were also
evaluated in gills, muscle, liver, and brain.

2.4. Clinical and Sedation Evaluation

During the simulated transport conditions described above, the fish from the different
treatments were monitored for equilibrium and respiratory activity with observations
at 1 min (assumed hereafter as 0 min), 0.5, 1, 3, and 6 h (n = 7). The equilibrium was
evaluated as absent or present (0 or 1) while the respiration (opercular movement rate) was
assessed by counting the opercular movements for 60 s. In addition, reactions to visual and
vibrational cues (moving the net on the opposite side of the tank) and to tactile stimulus
were assessed at these time-points to evaluate the level of consciousness and to confirm
sedation. The tactile stimulus was characterized by gently touching the dorsal side of the
animal antero-posteriorly with a plastic tube; if the animal did not respond, a pinch in the
caudal peduncle was gently applied with forceps. All of these responses were evaluated at
0.5, 1, 3, and 6 h by the same person.

2.5. Water Quality Assessment

Water samples were collected before the simulated transportation period (baseline
values) and at 3 and 6 h of transport simulation to monitor some chemical parameters
of the system water. The pH, temperature, and dissolved oxygen were assessed using a
multi-parameter water quality analyzer (HQ40d, Hach, Loveland, CO, USA).

2.6. Behavioral Assessments

During the simulated transportation (at 0, 0.5, 1, 3 and 6 h), at the end of this transport
(6.5 h) and after 24 h of recovery, fish (n = 7) were individually video recorded with a
Canon Full-HD (1920 × 1080 pixels) camcorder (Canon Legria HF R606) placed in front
of the plastic box and mounted on tripods which were positioned at 1 m from the tanks
to avoid interferences on the test fish. Each fish was recorded for behavioral responses
for 5 min at each time-point. From these video recording, behavioral data were measured
by the duration the fish engaged in specific behavior and/or by the number of times
(frequency) the specific behavior was observed, according to the implemented ethogram
(Table 1), based on the most common types of behaviors observed in this species [39].
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A single-blinded observer for the treatments used the open-source event-logging software
Behavioral Observation Research Interactive Software (BORIS v7.6 [40] to analyze each fish.

Table 1. Ethogram of the observed behaviors in adult Nile tilapia at 0, 0.5, 1, 3 and 6 h (0–6 h) of simulated transport and
24 h after the transport ends. The “x” signals the behaviors analyzed on each time-point.

Behavior Description 0–6 h 24 h

Swimming (S) Fish swims without touching the floor and using the fins (no contact between
abdomen and floor, but fins may touch it). x x

Bottom swimming (BS) Fish swims in contact with the tank floor using the fins. x x

Inactive (I) Fish is in the tank floor without locomotion/movement in space. x x

Erratic movements (EM) Sharp changes in direction or velocity and repeated rapid darting
(fast acceleration in one direction with the use of caudal fin). x x

Air stone breathing (AB) Fish is near/in contact with the air stone with its mouth pointed to this object. x

Turning (T) Fish changes direction of movement. x

Rubbing (R) Rubbing body sides on the sides of the tank (or on the surface of other objects). x

Crossings (C) Number of times the fish crosses a virtual line. The tank was divided in
3 horizontal and 4 vertical zones by 2 and 3 imaginary lines, respectively. x

Mirror stimulation (MS)
Head-butting (pushing head against the sides or bottom of the tank), biting
these surfaces, or chasing own reflection in close contact with the tank sides

or bottom.
x

Interaction with objects (IO) Fish interacts by biting or actively touching the thermostat or thermometer or
other objects inside the tank. x

2.7. Blood Analyses

By the end of the transportation period (at 6 h) and following the recovery period
(24 h post-transport end), blood samples were taken from each animal immediately after
euthanasia through caudal vein puncture using heparinized syringes. The blood was
immediately transferred up to 2/3 of a microhematocrit capillary tube and centrifuged
(Heraeus Pico 17 Centrifuge, Thermo Scientific, Waltham, MA, USA) at 10,000× g for 5 min
and the percentage of hematocrit (HCT) was calculated. An additional portion (10 µL) was
used to determine hemoglobin (Hb) concentrations using the Drabkin’s reagent (0.6 mM
potassium ferricyanide, 0.77 mM potassium cyanide, 1 M potassium dihydrogen phosphate,
0.1% Triton X-100 and pH 7–7.4) [41]. Following dark incubation at 4 ◦C for 1 h, samples
were left for 15 min at room temperature (the method is stable for up to 5 h [41]) followed
by centrifugation at 10,000× g and read at 540 nm. The absorbance of the solution was
further converted to Hb concentration according to the equation previously described [41].
The remaining blood was collected to 2.0 mL microtubes, allowed to clot, and centrifuged
at 5000× g for 10 min (4 ◦C, Sigma model 3K30, Osterode, Germany) to collect the plasma
which was stored at −20 ◦C for later analysis. Cortisol was double extracted with five
volumes of diethyl ether from 100 µL of plasma and agitated for 1 min. Samples were
then centrifuged (2000× g, 5 min) and the organic layer was collected into new tubes.
The organic phase was further evaporated under a fume hood and the dried organic was
reconstituted in 500 µL of phosphate-buffered saline (PBS; pH 7.4). For the analysis of
cortisol levels, 50 µL of the reconstituted samples were used and assayed at 405 nm by
following the ELISA kit instructions (product 500360; Cayman Chemical Company, Ann
Arbor, MI, USA). Serum glucose and lactate concentrations were determined by using an
enzymatic colorimetric test (SpinReact kit nr 1001200 or nr 1001330, respectively, SpinReact,
Girona, Spain) following the manufacturer’s instructions with slight modifications. Serum
samples (10 µL) were mixed with 200 µL of working reagent and incubated for 5 min at
37 ◦C before being read at 340 nm against a standard curve of glucose (0–10.0 mg mL−1)
or at 505 nm against a standard curve of lactate (0–1.0 mg mL−1). Spectrophotometric
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measurements were made on a microplate reader (PowerWave XS2, Bio-Tek Instruments,
Winooski, VT, USA).

2.8. Fillet Quality and Glucose Based-Glycogen Content

The pH, color, redox potential (Eh), and drip loss were evaluated in samples collected
at the end of the transportation period and following the recovery period to assess changes
in the fillet quality. For the redox potential determination, a portable digital potentiometer
(WTW 330i) with a SenTix ORP platinum electrode was used. Measurements were taken
directly in the epaxial body muscle after post-mortem (15 min) and the readings were
taken after 3 min for the stabilization of values. The pH was also measured directly in
the epaxial body muscle (fillet) with a portable digital potentiometer (Hanna HI 98163)
post-mortem (15 min). The color measurements were taken at the same time-point with a
handheld CR-10 colorimeter (Konica Minolta Sensing Inc., Osaka, Japan) used at 90◦ in the
epaxial body muscle to record six different readings per sample to obtain the lightness (L*),
redness (a*), and yellowness (b*) according to the CIELAB system. The a* and b* values
were used to calculate hue (Hab = 180 + tan−1 (b*/a*) and chroma (Cab = (a*2 + b*2)1/2

representing the angular measurement and the expression of intensity and clarity of the
color, respectively. The difference of color between treatments and baseline was calculated
as ∆E = (∆L*2 + ∆a*2 + ∆b*2)1/2 where, in this case, ∆ refers to the differences between
the naïve and the transport-based groups [42,43]. For the drip loss, fillet samples from the
epaxial body muscle were weighed (Wi), vacuum packaged and stored at −20 ◦C for seven
days. Afterward, wiped samples were weighed (Wf), the drip loss (%) was calculated as
[(Wi −Wf)/Wi] × 100. The glucose based-glycogen content was determined, with slight
modifications, as previously described [44]. Briefly, the frozen samples (130 mg) were
solubilised with 1 mL 6.0 N KOH in boiling water for 5 min and precipitation was achieved
by the addition of 1 mL 95% ethanol and 100 µL 10% K2SO4-saturated solution. Following
a centrifugation step (3000 rpm for 5 min), the glucose released was estimated at 540 nm
on a microplate reader (PowerWave XS2, Bio-Tek Instruments, Winooski, VT, USA) by the
5% phenol-sulfuric acid method (1:5 v:v) [45].

2.9. Histological Analysis of the Gills

The gills are responsible for gas exchange and osmoregulation. It is in direct contact
with the anesthetic, constituting a putative target organ for its side effects. To evaluate
this, one gill arch from each side of the body was randomly collected from each fish at
6 h after the beginning of the experiment and at 24 h after transport ended to assess its
integrity by histopathological analysis. Briefly, after euthanasia, gill arches were fixed for
24 h in buffered formaldehyde as previously described [46]. Samples were then dehydrated
with ascending grades of alcohol, cleared in xylene, and embedded in paraffin wax in
a modular tissue embedding center (Leica EG 1160). Sagittal sections (3 µm thick) were
obtained in a rotary microtome (Leica RM 2135), mounted on glass slides, and stained with
hematoxylin and eosin (HE). Slides were further washed in running tap water, dehydrated
in alcohol, cleared in xylene, and mounted with Entellan® (Merck, Germany). Sections were
observed using a Nikon (Tokyo, Japan) 600N light microscope. A qualitative evaluation
was first performed, the histopathological changes grouped in two observed categorical
patterns: circulatory (vasodilatation and oedema) and regressive (epithelial lifting, fila-
ment epithelium proliferation, and lamellar fusion) [47], and the prevalence index was
determined. The magnitude of the histopathological changes was further assessed using a
four degrees semi-quantitative severity gradation scale [48], considering the extent and
severity of each lesion (i.e., the percentage of filaments with that type of lesion in each
fish sampled). In general, the degrees attributed corresponded to: 0—no histopathological
changes, 1—minimal, 2—mild, and 3—moderate pathological alterations. The histological
alteration index (HAI) was further calculated from the sum of the degrees assigned.
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2.10. Oxidative-Stress-Related Responses

Biochemical analyses were carried out by spectrophotometric (PowerWave XS2, Bio-
Tek Instruments, Winooski, VT, USA) or spectrofluorometric analysis (Cary Eclypse, Varian,
Palo Alto, CA, USA) at the end of the simulated transport and 24 h after as previously
described [49,50]. Briefly, gill, muscle, brain and liver from each specimen were homoge-
nized in 500 µL cold buffer (0.32 mM of sucrose, 20 mM of HEPES, 1 mM of MgCl2, and
0.5 mM of phenylmethyl sulfonylfluoride (PMSF), pH 7.4) [51] in a Tissuelyser II (30 Hz
for 30 s—Qiagen, Hilden, Germany). Supernatants were collected after centrifugation at
12,000× g for 10 min at 4 ◦C in a refrigerated centrifuge (Sigma 3K30, Osterode, Germany)
and protein was determined by the Bradford method at 595 nm with bovine serum albumin
(BSA) as a standard [52]. The overall reactive oxygen species (ROS) generation was mea-
sured using the 2′,7′-dichlorofluorescein diacetate (DCFH-DA) probe at 485 nm (excitation)
and 530 nm (emission) [51]. Superoxide dismutase (Cu/Zn-SOD) activity was assayed by
measuring the inhibition of nitroblue tetrazolium (NBT) reduction at 560 nm [53]. Catalase
(CAT) activity was followed by the decrease in the H2O2 absorbance at 240 nm [54]. The
activity of glutathione peroxidase (GPx) and glutathione reductase (GR) was measured
by following the oxidation and reduction, respectively, of NADPH at 340 nm [55]. The
enzymatic activity of glutathione-s-transferase (GST) was measured at 340 nm using CDNB
as substrate [56]. The reduced (GSH) and oxidised glutathione (GSSG) were derivatized
with ortho-phthalaldehyde (OPA) and measured at 320 nm and 420 nm for excitation and
emission wavelengths, respectively [57]. The GSH:GSSG ratio was used to describe the
redox ratio (oxidative stress index, OSI). The content of malondialdehyde (MDA), the
major product of lipid peroxidation, was estimated by the quantification of the MDA-TBA
adducts at 530 nm with a correction for non-specific adducts at 600 nm [58].

2.11. Statistical Analysis

Sample size calculation was performed in G*Power 3.1 (University of Düsseldorf,
Düsseldorf, Germany), assuming a two-tail analysis, type II error probability of α = 0.05,
a power of 0.85, and an effect size of 0.8. As naïve group was sampled at the same time of the
day, although at different days, data were merged into a single dataset for further analysis.
The statistical analysis was performed using GraphPad Prism 8 (GraphPad Software,
La Jolla, CA, USA). Normal distribution of the data and homogeneity of variances were
assessed by the Shapiro–Wilk test and Brown–Forsythe test, respectively. In general, two-
way or repeated measures (RM) analysis of variance (ANOVA) was employed to identify
differences between groups and effects over time. The Greenhouse-Geisser correction
against unequal variances was applied for RM ANOVA analysis and reported degrees of
freedom were rounded to the nearest whole number. In the event of a significant interaction,
the simple main effects were determined by Tukey’s (post hoc) pairwise comparisons.
When data were not normally distributed, the Kruskal-Wallis H test followed by Dunn’s
multiple comparison test was used for differences between groups, while differences over
time were tested using the non-parametric Friedman test, the Wilcoxon matched-pairs
signed-ranks test or the Mann-Whitney U test. Also, the Chi-square test was used to
analyze binary data, followed by the Bonferroni type pairwise comparison as post-hoc.
Outliers were detected using the ROUT outlier test with an average false discovery rate of
1% [59] and removed from the analysis.

3. Results
3.1. Propofol Reduced the Responses to External Stimuli

Overall, no mortalities were observed during or after the simulated transportation
procedure, independently of the treatment. The temporal changes in the respiratory rate
of fish from the different tested groups are shown in Figure 2. The RM ANOVA revealed
that there was an effect of time (F(2.56,15.36) = 39.54, p < 0.0001), groups (F(2.32,13.91) = 24.12,
p < 0.0001) and there is an interaction between the two factors (F(3.80,21.23) = 8.775, p < 0.0001),
thus simple effects of factors were analyzed. Thus, at 0 h, all the groups had a higher
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respiratory frequency in relation to the naïve group (p < 0.001). The fish exposed to
MS-222 showed a 16% decrease in the respiratory rate in comparison to the control fish
(p = 0.005) but this was not different from the propofol-exposed individuals. At 0.5 h,
the respiratory rate of the animals exposed to MS-222 and propofol decreased to values
similar to the naïve fish. However, a 34% increased rate was observed in the control
fish compared to the naïve group (p = 0.008). Also, the propofol-treated animals had
significantly lower opercular movements compared to the control (p = 0.005). After 1 h
and 3 h of the transportation, the control fish remained with higher opercular movements
in relation to the naïve (p = 0.002; p < 0.001), MS-222 (p = 0.021; p < 0.001) and propofol
(p < 0.001) treated animals. By the end of the transportation period, the respiratory rate of
the propofol-exposed fish was lower than that of the control (p = 0.003). Regarding time,
control, MS-222 and propofol-exposed fish significantly decreased respiratory rate from
0 h to the other time-points (p < 0.001, p = 0.040 and p = 0.007, respectively). In addition,
as shown in Table 2, the response to the visual stimulus at 0.5 h revealed a significant
difference among the three tested groups (X2(3) = 8.143, p = 0.017) with propofol-treated
animals showing a decrease in the response to this stimulus in comparison to the control
fish (p = 0.005). The Bonferroni post hoc comparisons showed that these differences were
maintained during the simulated transportation without statistical differences between
the MS-222 and the control animals. When touch stimulation was analyzed, statistical
differences (X2(3) = 14.13, p = 0.0009) were detected at 0.5 h with the propofol-treated
animals showing no response to the touch on the lateral side (p = 0.0002) in comparison
to the control and the MS-222 fish. These differences between groups were maintained in
the following analyzed time-points. Regarding the caudal pinch, which was only applied
when no response to the touch stimulus was observed, more than 50% of the propofol
sedated animals responded in all time-points, while all control and MS-222 animals tested
reacted to this stimulus (p < 0.05).
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Figure 2. Opercular movement rate per minute of Nile tilapia during the simulated transport in
the different experimental groups. Data are presented as mean ± SD of seven fish from each group.
Different lowercase letters indicate differences between groups at a specific time-point, and capital
letters represent statistical differences for the same group over time (p < 0.05).
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Table 2. Number of fish responding to different external stimuli and water chemistry (pH, dissolved oxygen) from the three
tested groups during the simulated transport procedure.

Timepoint (h) Groups
Response to Stimulus Water Chemistry

Visual 1 Touch 1 Pinch 1 pH O2 (mg L−1)

0 7.33 ± 0.24 AB 7.72 ± 0.03 AB

0.5 Control 7/7 (100%) a 7/7 (100%) a 0/0(100%) a

MS-222 5/7 (71%) ab 4/7 (57%) a 3/3(100%) a

Propofol 2/7 (29%) b 0/7 (0%) b 4/7 (57%) b

1 Control 7/7 (100%) a 7/7 (100%) a 0/0(100%) a

MS-222 6/7 (86%) ab 5/7 (71%) a 2/2(100%) a

Propofol 2/7 (29%) b 0/7 (0%) b 4/7 (57%) b

3 Control 7/7 (100%) a 7/7 (100%) a 0/0(100%) a 7.03 ± 0.22 a,A 7.21 ± 0.52 A

MS-222 6/7 (86%) ab 5/7 (71%) a 2/2(100%) a 7.62 ± 0.53 b,A 7.54 ± 0.20 A

Propofol 2/7 (29%) b 0/7 (0%) b 4/7 (57%) b 7.17 ± 0.25 ab,A 7.10 ± 0.46 C

6 Control 6/7 (86%) a 7/7 (100%) a 0/0(100%) a 7.49 ± 0.27 a,B 7.55 ± 0.30 B

MS-222 5/7 (71%) ab 5/7 (71%) a 2/2(100%) a 7.81 ± 0.22 b,A 7.62 ± 0.18 A

Propofol 1/7 (14%) b 0/7 (0%) b 5/7 (71%) b 7.74 ± 0.11 ab,C 7.69 ± 0.08 A

1 Parameters quantified as the number of animals reacting to the stimulus per total of animals tested in each group and the respective
percentage (%) of response; pinch was only tested in animals not responding to the touch stimulus. The binomial data presence/absence
of response were analyzed statistically (n = 7). For the other parameters, data from the same independent replicates were expressed as
mean ± SD for parametric data distribution. Statistical analysis was performed using repeated measures ANOVA followed by Tukey’s
multiple-comparison test. Different lowercase letters indicate significant differences between groups while capital letters represent statistical
differences between time within the same group (p < 0.05).

3.2. Water pH Changed over Time

The chemical characteristics of the water were evaluated during the transport proce-
dure and the results are shown in Table 2. The RM ANOVA of the pH results revealed that
there was no significant effect of time (F(1.04,6.29) = 5.119, p = 0.062) nor between groups
(F(1.09,6.52) = 5.211, p = 0.057), but there was a significant interaction between both factors
(F(1.36,8.13) = 6.863, p = 0.024). Thus, the simple effects were analyzed to avoid the influence
of each factor. Regarding time effect within each exposed group, the water pH of the control
fish significantly increased at 6 h compared to the levels at 3 h (p = 0.023) while at 6 h the
levels of water pH of the propofol-treated fish increased in relation to the levels of the
beginning of the experiment (p = 0.023) and at 3 h (p = 0.010). Regarding treatment effect
within each time, the MS-222-sedated animals had lower water pH levels at 3 h (p = 0.018)
and 6 h (p = 0.028) compared to the control. Relative to the dissolved oxygen during the
simulated transport, changes over time were observed (F(1.14,6.81) = 15.91, p = 0.005) while
no effects were observed regarding the treatments (F(1.57,9.42) = 1.580, p = 0.252) and their
interaction (F(2.13,12.78) = 3.241, p = 0.070). In this context, an increase of about 6% was
observed in the control group between 3 and 6 h (p = 0.029) while dissolved oxygen levels
remained similar for MS-222 group. However, a decrease of about 8% was observed in the
propofol-treated fish at 3 h in relation to the beginning of the transport (p = 0.024) while at
6 h the levels were similar to 0 h and different from the previous time-point (p = 0.041).

3.3. Propofol Induced an Increase in the Swimming Activity during Transport

During the simulated transport, different categorized behaviors (Table 1) were ob-
served, and the results are shown in Table 3. Overall, swimming was affected at 0.5, 1 and
6 h (X2(2) = 10.60, p = 0.002, X2(2) = 7.117, p = 0.022 and X2(2) = 11.94, p = 0.0006, respec-
tively) in the MS-222 and propofol-treated fish, which swam less often in comparison to the
control fish (p < 0.05); no time effects were observed. Notwithstanding, propofol-treated an-
imals showed a higher duration of this behavior at 0.5, 1, 3 and 6 h (X2(2) = 11.52, p = 0.0008,
X2(2) = 11.45, p = 0.0009, X2(2) = 8.00, p = 0.013, and X2(2) = 13.07, p = 0.0002, respectively)
in comparison to the MS-222 group. Relative to the effects over time, at the end of the
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exposure period, propofol-treated animals showed a significant increase in the duration of
this behavior (XF

2(5) = 12.34, p = 0.015) in comparison to the beginning of the experiment
(p = 0.024). Post hoc tests for the incidence of bottom swimming behavior using the Bonfer-
roni correction showed statistical differences between groups at 0.5 and 6 h (X2(2) = 8.00,
p = 0.013, and X2(2) = 13.07, p = 0.0002, respectively) (p < 0.05). Propofol-treated animals at
0.5 h (p = 0.017) and 6 h (p = 0.026) and MS-222-exposed animals at 6 h (p = 0.020) showed
a less incidence of this behavior in comparison to the control animals. Also, differences
throughout time were detected for the control and MS-222 groups (XF

2(5) = 11.50, p = 0.022
and XF

2(5) = 10.66, p = 0.031, respectively). Although no significant changes were observed
between groups for the duration of this action (p > 0.05), MS-222 treated fish (XF

2(5) = 14.43,
p = 0.006) swum less in the bottom at 6 h than at 0.5 h (p = 0.024). Relative to the inactive
frequency, at 0 h no significant changes were observed. Yet, at the following time points,
significant changes were observed between groups (X2(2) = 8.304, p = 0.010, X2(2) = 6.781,
p = 0.027, X2(2) = 13.47, p < 0.0001, and X2(2) = 13.81, p < 0.0001, respectively for 0.5, 1, 3
and 6 h) with propofol showing less manifestation of this behavior in comparison to the
control group (p < 0.041). At the end of the exposure period, MS-222-sedated animals also
showed a decreased occurrence of this behavior compared to the control group (p = 0.043).
MS-222 fish also showed less time inactive at 6 h than at 0.5 h (p < 0.05). Regarding the
duration of the inactivity state, animals under propofol showed fewer periods of inactivity
in comparison to the remaining groups at all time points (p < 0.05). Additionally, propofol
animals spent less time inactive at 6 h than at 0 h (XF

2(5) = 17.94, p = 0.001). Control animals
did more erratic movements than MS-222 (p = 0.0271) and propofol (p = 0.038) fish at 1 h.
Propofol animals at 0 h (p = 0.015) and 1 h (p = 0.032), and MS-222 animals at 1 h (p = 0.028)
spent less time doing erratic movements than the control group (X2(2) = 7.844, p = 0.014 for
0 h, and X2(2) = 8.889, p = 0.007 for 1 h). Almost no erratic movements were detected for
the MS-222 and propofol sedated individuals at 1 h, while the control animals decreased
their reaction over time (XF

2(5) = 13.54, p = 0.009) to almost no erratic movements after
3 h of the transportation process (p < 0.041). The analysis demonstrated that no changes
were observed for the air stone breathing behavior while the incidence of turning behavior
was affected by the treatments at 0.5 (X2(2) = 6.977, p = 0.024) and 1 h (X2(2) = 9.753,
p = 0.004) with propofol-treated animals showing less incidence at both time-points in
comparison to the control animals (p = 0.025 and p = 0.017, respectively). At 1 h, MS-222
also decreased the frequency of turns relative to the control fish (p = 0.025). MS-222 treated
animals also showed a decrease in this behavior over time (XF

2(5) = 16.16, p = 0.003) with
significant changes observed between the first and last time-point of analysis (p = 0.005).
Rubbing behavior was not different between groups, but it was decreased (XF

2(5) = 11.48,
p = 0.022) at 3 h relatively to the starting point in the control group (p = 0.041). Relative
to the recovery period (Supplementary Table S1) there were no differences in none of the
parameters studied, except at 6.5 h (X2(2) = 6.738, p = 0.037), when propofol-treated fish
interacted more often with the objects (tubes, resistance, air stone, etc.) inside the tank than
the control fish (p = 0.036).
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Table 3. Frequency per min (#) and duration in seconds (time) of the behaviors analyzed during the simulated transport. Five min of recordings were analyzed in each time-point.

Timepoint (h) Groups
S BS I EM AB T R

# Time # Time # Time # Time # Time

0 Control 1.6 (0.2–4.7)
h 60 (16–110) 0.6 (0.4–2.4)

AB 25 (5–74) 0.8 (0.6–1.8) 172 (85–232) 0.6 (0.2–1.8) 21 (15–30)
a,A 0.0 (0.0–0.2) 0 (0–60) 2.6 (0.8–7.1) 2.6 (1.4–3.6)

A

MS-222 0.6 (0.4–2.4) 30 (4–70) 0.8 (0.0–2.2)
AB 53 (0–80) AB 0.8 (0.2–2.0)

AB
213

(114–275) 0.4 (0.0–1.2) 16 (0–33) ab 0.0 (0.0–0.2) 0 (0–13) 2.2 (1.0–5.7)
A 1.8 (1.0–3.6)

Propofol 0.8 (0.2–3.9) 47 (3–113) A 0.2 (0.2–2.7) 6 (2–113) 0.6 (0.2–2.2) 240 (46–277)
A 0.2 (0.2–2.3) 10 (8–19) b 0.0 (0.0–0.6) 0 (0–6) 1.4 (0.8–5.0) 0.8 (0.2–5.2)

0.5 Control 2.4 (1.2–4.8)
a

86 (47–145)
ab

2.2 (0.4–2.6)
a,A 44 (4–86) 1.8 (0.8–2.2)

a
151 (95–210)

a 1.0 (0.0–1.8) 10 (0–42) AB 0.0 (0.0–0.8) 0 (0–30) 2.0 (0.6–5.9)
a

2.0 (0.2–6.3)
AB

MS-222 1.2 (0.2–2.4)
ab 24 (5–139) a 1.6 (0.4–2.4)

ab,A
53 (29–101)

A
1.6 (0.8–2.0)

ab,A
205 (57–275)

a 0.4 (0.0–0.8) 4 (0–17) 0.0 (0.0–0.6) 0 (0–15) 1.4 (0.0–3.0)
ab,AB 1.2 (0.2–2.8)

Propofol 0.2 (0.0–2.2)
b

134 (0–301)
b,AB

0.2 (0.0–1.9)
b 15 (0–237) 0.4 (0.0–1.7)

b
9 (0–141)

b,AB 0.0 (0.0–0.8) 0 (0–10) 0.0 (0.0–0.2) 0 (0–30) 0.4 (0.0–1.6)
b 0.0 (0.0–3.5)

1 Control 2.0 (0.4–4.6)
a

105 (7–188)
ab

1.2 (0.8–2.8)
A 48 (16–62) 1.4 (0.8–3.0)

a
124 (53–238)

a
0.6 (0.0–2.8)

a
13 (0–52)

a,AB 0.0 (0.0–1.0) 0 (0–112) 2.2 (1.0–4.2)
a

1.2 (0.6–4.4)
AB

MS-222 0.0 (0.0–2.2)
b 0 (0–153) a 0.0 (0.0–2.6)

AB 0 (0–68) AB 0.4 (0.2–1.8)
ab,AB

300 (79–300)
a

0.0 (0.0–0.4)
b 0 (0–5) b 0.0 (0.0–0.2) 0 (0–11) 0.0 (0.0–2.0)

b,AB 0.0 (0.0–1.8)

Propofol 0.2 (0.2–1.0)
b

135 (6–301)
b,AB 0.2 (0.0–2.0) 62 (0–258) 0.4 (0.0–1.4)

b
4 (0–187)

b,AB
0.0 (0.0–0.6)

b 0 (0–11) b 0.0 (0.0–0.2) 0 (0–6) 0.4 (0.0–1.6)
b 0.4 (0.0–3.6)

3 Control 2.0 (0.4–3.0) 68 (28–208)
ab

0.4 (0.0–1.6)
B 18 (0–40) 1.4 (1.2–2.4)

a
201 (51–259)

a 0.2 (0.0–1.2) 2 (0–22) B 0.0 (0.0–0.4) 0 (0–220) 1.0 (0.2–2.8) 0.6 (0.0–2.4)
B

MS-222 0.6 (0.0–2.6) 28 (0–95) a 0.6 (0.0–2.4)
AB 28 (0–76) AB 1.0 (0.2–2.0)

ab,AB
257

(119–301) a 0.2 (0.0–0.8) 1 (0–10) 0.0 (0.0–0.4) 0 (0–33) 1.0 (0.0–1.6)
AB 0.6 (0.0–1.4)

Propofol 0.8 (0.0–2.0) 239 (0–301)
b,AB 0.4 (0.0–1.2) 9 (0–62) 0.0 (0.0–0.4)

b
0 (0–300)

b,AB 0.0 (0.0–1.2) 0 (0–78) 0.0 (0.0–1.2) 0 (0–76) 0.4 (0.0–6.0) 0.4 (0.0–6.0)

6 Control 2.0 (0.8–3.5)
a 58 (40–81) ab 1.0 (0.4–3.1)

a,AB 22 (5–82) 1.4 (1.0–2.9)
a

215 (93–238)
a 0.2 (0.0–2.3) 2 (0–39) B 0.0 (0.0–0.6) 0 (0–123) 0.8 (0.2–4.2) 0.8 (0.0–2.7)

AB

MS-222 0.2 (0.0–1.0)
b 16 (0–292) a 0.0 (0.0–1.0)

b,B 0 (0–33) B 0.2 (0.0–1.2)
b,B

267 (0–300)
a 0.0 (0.0–0.4) 0 (0–11) 0.0 (0.0–0.0) 0 (0–0) 0.0 (0.0–1.0)

B 0.4 (0.0–1.6)

Propofol 0.4 (0.2–1.4)
b

298 (4–300)
b,B

0.0 (0.0–1.2)
b 0 (0–243) 0.0 (0.0–0.8)

b 0 (0–51) b,B 0.2 (0.0–0.8) 2 (0–15) 0.0 (0.0–0.4) 0 (0–182) 2.0 (0.0–5.4) 0.4 (0.0–4.0)

Swimming (S), bottom swimming (BS), inactive (I), erratic movements (EM), Airstone breathing (AB), turning (T), and rubbing (R) obtained from seven independent replicates and expressed median and
interquartile ranges. Statistical analyses were performed using the Kruskal–Wallis test followed by Dunn’s multiple-comparison post-hoc tests analysis while the effect of time was tested by Friedmann. Different
lowercase letters indicate significant differences between groups while capital letters represent statistical differences between time within the same group (p < 0.05).
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3.4. General Stress Indicators Were Affected by Both MS-222 and Propofol

The changes in HCT (A) as well as the response of cortisol (B), glucose (C), and lactate
(D) to the simulated transport are shown in Figure 3. The two-way ANOVA revealed
an interaction between time and groups (F(3,25) = 8.630, p = 0.0004) and an effect of time
(F(1,25) = 15.99, p = 0.0005) but no effect of group (F(3,25) = 1.821, p = 0.169) on the HCT, and
thus simple effects were analyzed. Regarding time, the HCT increased 27 and 47% for MS-
222 and propofol, respectively, between the end of the transportation (6 h) and the recovery
period (24 h) (p = 0.014 and p < 0.0001). At 6 h, the control fish had higher HTC compared
to MS-222 (p = 0.013) and propofol animals (p = 0.009). In addition, the propofol sedated
fish also presented lower levels than the naïve animals (p = 0.034). No differences between
groups were observed at 24 h post-transport. Despite these differences in the HCT, no
significant changes were observed for the hemoglobin levels between groups (Supplemen-
tary Figure S1). Regarding cortisol levels, no significant effects were observed over time
(F(1,42) = 1.386, p = 0.246). However, an interaction between time and groups (F(3,42) = 2.983,
p = 0.042) and a significant effect was detected between groups (F(3,42) = 7.184, p = 0.0005)
with MS-222 showing higher mean levels of cortisol in comparison to the naïve (p = 0.010)
and propofol (p = 0.048) groups at 6 h. At 24 h, only the control group showed increased
cortisol levels compared to the naïve group (p = 0.012). Regarding the serum glucose levels,
there was an interaction between the treatment and time (F(3,29) = 8.292, p = 0.0004), and
an effect of time (F(1,29) = 22.94, p < 0.0001) and treatment (F(3,30) = 6.369, p = 0.002); thus
simple effects were analyzed. In this context, both control and propofol animals showed
increased mean glucose in comparison to the naïve (p = 0.023 and p = 0.005, respectively),
and the propofol fish had higher values than the MS-222 fish (p = 0.024) at 6 h. Also,
control and propofol animals had higher levels of glucose at 6 h than after recovery at 24 h
(p = 0.0003 and p = 0.026, respectively), where all groups had similar levels. Related to
the serum lactate levels, an interaction between time and groups (F(3,28) = 5.865, p = 0.004),
an effect of time (F(1,28) = 14.58, p = 0.0007) as well as an effect of group (F(3,30) = 4.024,
p = 0.016) was observed, with both MS-222 and propofol showing reduced lactate levels
relative to the naïve group (p = 0.002 and p = 0.025, respectively) at 6 h. The values were
similar between groups 24 h post-transport. In addition, both MS-222 and propofol-treated
animals increased their lactate levels from 6 to 24 h (p < 0.007).
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Figure 3. Hematocrit (HTC) (A), cortisol (B), glucose (C), and lactate (D) levels at the end of the
simulated transport (6 h) and at the end of the recovery period (24 h). Data are presented as mean
± SD (A,B) or as median and interquartile ranges (C,D) from at least five independent replicates.
Different lowercase letters indicate differences between groups at a specific time-point while capital
letters represent statistical differences for the same group over time (p < 0.05).
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3.5. The Quality of the Fillet Was Not Affected by the Treatments

At the end of the transportation period and 24 h after, the quality of the fish fillet was
assessed, and the results are shown in Supplementary Table S2. The pH was maintained
similar among groups at all the timepoints evaluated. Still, statistical differences were
found between time points (F(1.36,25.17) = 92.4, p < 0.0001), as pH fillet decreased in the MS-
222 and propofol sedated animals from 6 to 24 h. No significant changes were determined
among groups nor between time-points for the redox potential, the color of the muscle
fillet, the drip loss, and for the glucose-based glycogen content.

3.6. Gill Functionality Was Not Affected by the Anaesthetics’ Exposure

The microscopical evaluation of the gills, at 6 and 24 h, showed the presence of some
histopathological changes (Figure 4A) in all fish, although with varying prevalence. The
circulatory disturbances (vasodilatation (Vas) and oedema (OE)) were the most remarkable
changes observed being recorded in over 50% of fish, at both 6 and 24 h (Figure 4B), without
significant changes between groups (p > 0.05). Epithelial lifting (EL), filament epithelium
proliferation (FEP) and lamellar fusion (LF) were regularly registered in around 15% of
the evaluated specimens. Based on these observations, the HAI was calculated, and the
results are shown in Figure 4C. Overall, the control group presented the highest average
HAI value in comparison to the naïve group, although not significantly different and below
the point at which the functionality of the organ would be compromised (HAI < 10).
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Figure 4. Representative histopathological changes observed in the gill epithelia of fish from the
different groups (A). Gill filaments, lined by a stratified epithelium evidencing the presence of
oedema (**), mainly in the deeper region of the epithelium and nearby lamellar vascular axis,
showing some vasodilation (Vas) in its base (first image). Gill filaments with high severity level of
oedema (**) that sometimes conducted to epithelial lifting (EL) (second image) and gill filaments
showing filament epithelium proliferation (FEP) that, in some cases, led to lamellar fusion (LF)
(third and fourth image) and higher severity of vasodilatation, that extended through the entire
lamellar vascular axis; aneurisms (An) were sporadically observed (third figure). Haematoxylin-eosin
staining; scale bar: 100 µm. Prevalence (%) of histopathological changes in gills over time in the
different experimental groups (B) Vas, vasodilatation; OE, oedema; EL, epithelial lifting; FEP, filament
epithelium proliferation; and LF, lamellar fusion. Histopathological alteration index (HAI) of Nile
tilapia gills after transportation and after the recovery period (C). Data are presented as mean ± SD
of seven fish. No statistical differences were observed between experimental groups at any of the
analyzed time-points.
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3.7. Propofol Reduced ROS and GST Activity in Gills and GR Activity in Liver

At the end of the simulated transport and after the recovery period, different oxida-
tive stress-related parameters were evaluated in the gills, muscle, brain, and liver. The
significant differences between treatments at each specific time-point are presented in
Figure 5 and all the results are shown in Supplementary Table S3. Propofol-treated animals
showed reduced levels of ROS (Figure 5A) in the gills in comparison to the control group
(p = 0.008) at 6 h (X2(3) = 10.37, p = 0.016), while no differences were observed after the
recovery period nor over time. The GST activity (Figure 5B) was higher in the control group
relative to the naïve (p = 0.010) and propofol-treated animals (p = 0.026) at 6 h (X2(3) = 11.76,
p = 0.008) while no changes were detected at the end of the recovery period nor between
both collection time-points. Regarding the glutathione levels in the muscle, GSH levels
were similar among groups, but significantly higher levels (F(1,45) = 6.939, p = 0.012) were
observed in the control fish at 6 h compared to the ones at 24 h (p = 0.023). Regarding the
OSI, a significant effect of time (F(1,11) = 5.860, p = 0.034) and an interaction between time
and group was detected (F(3,11) = 6.021, p = 0.011), but no effect of group was found. The
OSI decreased from 6 h to 24 h in the control group (p = 0.007). Regarding oxidative evalu-
ation in the brain, there were no significant differences for the GR activity between time
and groups but a significant interaction was determined between factors (F(3,13) = 4.577,
p = 0.021). GR activity increased at the end of the recovery period in comparison to the
6 h period in the naïve group (p = 0.005, Table S3). The GSSG levels (Figure 5C) were also
affected at 6 h (F(3,23) = 5.766, p = 0.004) with control animals showing higher activity in
relation to the naïve (p = 0.007) and propofol-treated (p = 0.006) animals. Regarding time
effect (F(3,13) = 4.868, p = 0.015), propofol animals had higher GSSG levels after the recovery
period when compared to the 6 h values (p = 0.025) (Table S3). Despite these differences,
the OSI was similar. As for the liver analysis, there was an effect of time (F(1,34) = 4.594,
p = 0.039) on the catalase activity with a decrease observed between 6 h and 24 h for the
naïve fish (p = 0.037, Table S3). In addition, there was an effect in the glutathione reductase
activity at 6 h (X2(3) = 8.596, p = 0.035, Figure 5D) with the control group showing higher
activity in comparison to the naïve group (p = 0.035), albeit these differences were abolished
by 24 h.
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Figure 5. Changes in ROS levels (A), and GST activity (B) in the gills, GSSG levels (C) in the brain, GR
activity (D) in the liver at the end of the simulated transport (6 h). Data are presented as median and
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lowercase letters indicate differences between groups (p < 0.05).

4. Discussion

The transport refinement of live fish is a crucial process for the survivability, animal
welfare, and profitability of fish in aquaculture. Many studies emphasize the physiological
stress responses and their consequences induced by the common transport procedures.
The use of anesthetics is a relatively new research subject in live-fish transport, with the
use of MS-222 potentially compromising the health of fish species such as crucian carp
(Carassius auratus) [19], gilthead sea bream (Sparus aurata) [20] and striped bass (Morone
saxatilis) [21]. Yet, anesthetics induce species-specific responses [18] that require further
tests. On this subject, the objective of this study was to evaluate, for the first time, propofol



Biology 2021, 10, 1309 15 of 21

as an alternative anesthetic to Nile tilapia submitted to a simulated transport for 6 h, as
it has been described as suitable for the transportation of other species [26]. In general,
propofol induced oscillations in sedation depth of the animals, while the control ones
exhibited more erratic movements. By the end of the transportation, propofol decreased
hematocrit (HCT) and lactate levels while increased glucose levels. Comparing with the
naïve animals, MS-222 transported animals had a decreased HCT and lactate levels while
cortisol levels increased. Cortisol levels also increased in the control animals and were
still high 24 h later. Additionally, propofol induced a decrease in the gill ROS levels
and GST activity by the end of the transportation when compared to the control group.
Nevertheless, the quality of the fillet and the histopathology of the gills were unaltered in
all tested groups.

Transported fish showed increased opercular movements immediately after immer-
sion. These were normalized after a few seconds in the groups transported under sedation
while respiratory movements of the control group were always higher, corroborating the
light sedative anesthetic profile of these compounds for this species and transportation
procedures [33,34]. Control fish had higher opercular movements than naïve animals,
which may indicate stress induction during the simulated transportation procedure, ex-
cept at 6 h, probably due to habituation to the surrounding conditions. In addition, in
several time-points, control animals performed more erratic movements than animals
treated with anesthetics, which advocates for the use of these compounds during trans-
port, although the sedative effects can also contribute to this difference. In this context,
animals transported under MS-222 showed no significant behavioral changes, while under
propofol sedation, different responses were observed. Behavioral changes are of particular
value for the welfare assessment of animals [60]. Propofol is a widely used anesthetic that
targets the gamma-aminobutyric acid A (GABAA) receptors in the fish brain following
rapid absorption through the gills into the arterial blood circulation [28,61,62]. It has
recently been tested as an anesthetic for Nile tilapia [28] without reported side effects in
this species [24]. Yet, in the current study, the fish transport simulated under propofol
showed a decreased frequency of swimming and bottom swimming but spent more time
swimming than the MS-222 group and were less inactive (frequency and duration of inac-
tivity). These data contradict the observations of a lower opercular rate and less response
to external stimuli, suggesting a variation in depth of sedation. This may be due to the
propofol pharmacological properties or due to the fact that this compound is formulated
as a lipidic oil-in-water emulsion [63], which may be not equally distributed throughout
the water column, even if the solution is vigorously stirred prior to use [25]. Besides, there
are reports of a paradoxical excitation with low doses of propofol characterized by a state
of unexpected excitement of varying degrees, which may result from interactions between
GABAA receptor and intrinsic membrane potentials [64,65]. The meaning of this potential
paradoxical excitation for the fish welfare is not clear, but it could actually be beneficial to
the fish as, by maintaining a residual activity, fish can avoid physical damage from collision
with objects or conspecifics during transportation. However, further pharmacodynamics
and pharmacokinetics analysis are needed.

In addition to behavior, water quality is also an important factor to evaluate fish
health during transportation procedures [6,14]. The transportation of Nile tilapia under
MS-222 resulted in an increase in the water pH compared to the control group. Although
ammonia levels were not measured representing a limitation of this study, increases in
pH are associated with an increase in ammonia toxicity [66] with the accumulation of
un-ionized ammonia, which is critical for transportation of fish [67]. Still, a recent study has
shown a decrease of the total ammonia nitrogen (TAN) in a marine species (Scophthalmus
maximus) transported for 6 h under the same MS-222 concentration [68]. In addition, the
optimal water pH for the culture of this species varies between 5.5 and 9.0 [69,70] and the
small variations observed might have no direct influence on the welfare of the animals.
The hematocrit was decreased by the anesthetics after the end of the transportation, which
could be an indicator of a decreased oxygen-binding capacity, associated with changes in
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pH [71,72]. However, no changes in hemoglobin were observed and the pH alterations
were minor. Thus, the reduced hematocrit value observed was certainly not related to the
pH changes. Nevertheless, a reduction of the hematocrit has previously been reported in
Nile tilapia anaesthetized with propofol concomitant with a reduction in red blood cells
and hemoglobin levels [28]. Still, similar and contradictory results have been reported
in other fish species in which hemoglobin levels were both increased or decreased by
propofol [73,74], warranting further clarification. MS-222 anesthesia has been described to
increase hematocrit, but at higher concentrations than the one used in this study [33].

Notwithstanding, propofol induced an increase in glucose levels, while both propofol
and MS-222 resulted in decreased lactate levels, which normalized, in both cases, after the
recovery period. Furthermore, while control animals showed non-significant increased
cortisol levels, animals from the MS-222 group had significantly higher cortisol values
compared to those observed in the naïve group at 6 h. Cortisol and glucose are two
of the most common stress indicators [75] and a stress response has previously been
associated to anesthesia with MS-222 in this species [76]. The release of cortisol into the
blood by interrenal cells of the head kidney following the activation of the hypothalamic-
pituitary-interrenal (HPI) axis [77] triggers a wide range of secondary responses associated
with energy homeostasis, growth, and osmoregulation [78]. In this regard, increased
serum glucose is usually mediated by the action of cortisol in response to most stressors
through the mobilization of energy reserves to cope with the energetic demands of the
situation [79]. Although cortisol was not changed by propofol in the current study and
despite glucose control and regulation varying greatly between organisms [80], the increase
in glucose levels has been described as a common hallmark of propofol anesthesia in
aquatic organisms [26,74,81,82]. Also, although not described for propofol, transport
studies have shown a negative and delayed correlation between cortisol and glucose
concentrations in blood plasma, with the cortisol peak being reached immediately after the
stressful situation while glucose increased over time [83]. However, recent reports have also
suggested a similar trend between cortisol and glucose plasmatic levels in the transport of
Nile tilapia [84]. The increase of glucose at the end of transport could indicate stress caused
by propofol. However, in addition to the lack of cortisol level alterations, and reduction of
lactate values, no stress-related behaviors were observed. Overall, and although further
clarification of these physiological changes is required, the data obtained support a non-
stressed profile in the propofol group. MS-222 has been described to induce aversion in
fish [18], and the less depth of sedation compared to the propofol group may induce some
stress related to the confinement on these fish, thus showing increased cortisol levels at 6 h.
However, the secondary and the tertiary stress response were not observed [85]: glucose
levels were maintained at naïve levels, lactate levels decreased, and no relevant stress-
related behaviors were identified. Thus, the fish exposed to MS-222 may not be aware of
the cortisol increase, thus not suffering from stress. Nevertheless, the decreased lactate may
be related to its anesthetic properties (i.e., the sodium-channel blockade effect [86]), which
induces a lower muscle activity and, consequently, lower lactate plasmatic levels [87]. All
groups recovered to levels similar to the ones from the naïve tilapia, except the cortisol of
control groups that remained higher, showing, once more, the benefits of using anesthetics
to minimize the stress resulting from transportation procedures.

Despite these changes, the organs’ functionality and the quality of the fillet were
not affected by any of the treatments, supporting the use of both anesthetics for the
transportation of this species. In accordance, a previous study has also shown no changes
in tilapia (Oreochromis aureus) fillets following exposure for 30 min or euthanasia by carbon-
dioxide anesthesia [16], further supporting the use of anesthesia for maintaining the quality
of the final product. In the event of induced stress by the anesthetics supported by the
changes in glucocorticoids, irregular oxidative responses would be detected in response to
the activation of the HPI axis [88]. However, and similarly to what was previously reported
under a comparable 6 h transportation of Sparus aurata [20], MS-222 did not interfere with
the gills’ enzymatic antioxidant defenses, showing that the increase detected in cortisol
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may not have been problematic. Transport under propofol sedation induced a decrease in
ROS levels and GST activity in the gills compared to control, while the muscle enzymatic
defenses were irresponsive to both treatments. No differences were observed following
the recovery period. Nevertheless, the decrease in ROS levels could be explained by the
propofol antioxidant activity which has already been demonstrated both in vitro [89] and
in vivo [90] due to its phenolic structure similar to that of alpha-tocopherol, a natural and
potent antioxidant. Regarding the GST activity, a contrary study has found an increased gill
GST activity following a 6 h sedation using a similar propofol concentration (0.8 mg L−1) in
another aquatic animal [91], which was accompanied by an increase in SOD activity. GST
plays an important role in the detoxification of xenobiotics thus protecting the cell from
oxidative stress [92]. The decreased GST activity would be suggestive of a decline of the
gills’ detoxification capacity which could be a consequence of the emergence of oxidative
damage [93] or could be associated with a possible mechanism to compensate the ROS
impact [94], but none of these were observed under propofol sedation. In this regard, the
decreased GST activity might be justified by possible conformational changes of the protein
following binding of propofol reducing GST conjugation ability. Although this has not
been previously described in fish, propofol has been shown to inhibit this enzyme at high
concentrations by this mechanism [95,96], further supporting this hypothesis. Despite this,
oxidative stress parameters were not significantly affected by the anesthetics in the muscle,
and minor alterations without physiological support were observed in the brain and liver
of Nile tilapia transport simulated, in contrast to what has been previously reported for
other species [20]. In general, there was no deleterious impact of sedation with these
anesthetics on the antioxidant defenses of animals transported under this experimental
setup. In fact, both anesthetics prevented the increase of the GST activity in the gills, the
GSSG levels in the brain, and the GR activity in the liver observed in the control fish.

5. Conclusions

Overall, the few behavioral alterations and increase in glucose plasma levels observed
at the end of the transport in fish treated with propofol could be associated with alterations
of the sedative depth throughout the simulated transport, although the functionality of
the organs and the welfare of the fish did not seem to be affected. However, propofol
pharmacokinetics and solubility/stability need to be better studied for the live transport of
cultured fish. In conclusion, the use of propofol sedation improved the transport conditions
of Nile tilapia reducing stress-related responses and did not compromise its health, welfare,
or fillet quality, providing a win-win situation to the animal, producers, and consumers,
having potential implications for the aquaculture sector.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology10121309/s1. Figure S1: Haemoglobin (Hb) concentration in blood from Nile tilapia
transported in the different experimental conditions for 6 h and after a 24 h recovery period; Table S1:
Frequency per min (#) and duration in sec (time) of behaviours analysed during 5 min at the recovery
period, 24 h after the simulated transport; Table S2: Effects of the different treatments on the pH, redox
potential (Eh), colour, drip loss and glucose-based glycogen content at the end of the transportation
(6 h) and at the end of the recovery period (24 h); Table S3: Biochemical parameters evaluated in
different organs at the end of the simulated transportation (6 h) and after the recovery period (24 h).
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