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Language diversity has become greatly endangered in the past centuries owing

to processes of language shift from indigenous languages to other languages that

are seen as socially and economically more advantageous, resulting in the death

or doom of minority languages. In this paper, we define a new language com-

petition model that can describe the historical decline of minority languages

in competition with more advantageous languages. We then implement this

non-spatial model as an interaction term in a reaction–diffusion system to

model the evolution of the two competing languages. We use the results to

estimate the speed at which the more advantageous language spreads geo-

graphically, resulting in the shrinkage of the area of dominance of the

minority language. We compare the results from our model with the observed

retreat in the area of influence of the Welsh language in the UK, obtaining a

good agreement between the model and the observed data.
1. Introduction
Mathematical and computational models are currently applied to many cross-

disciplinary studies in areas such as ecology [1–3], archaeology [4–6] or

linguistics. In linguistics, studies have been undertaken to model the internal evol-

ution of languages [7,8] as well as the geographical processes of language

competition and replacement [9,10]. In this paper, we focus on the latter problem.

Language evolution takes place at a rather slow rate, with a timescale of

about a thousand years for a single language to evolve into several different

languages [11]. However, language death is a process that takes place at substan-

tially faster rates [12]. Language death usually involves language shift to a new

dominant language [12] (either imposed [11] or acquired from neighbouring

contact [13]), and the language eventually dies with its last speaker [14].

Language birth and death are natural ongoing processes worldwide, but, in

recent times, the processes of language extinction have accelerated, partly owing

to improved communications and globalization processes [15,16]. Currently,

about 4% of the languages are spoken by 96% of the population, whereas 25% of

the languages have fewer than 1000 speakers [14]. In addition, unless current

trends change, linguists estimate that 90% of the about 6000 languages currently

spoken may become extinct, or greatly endangered, by the end of this century [17].

The main driver for the current processes of language shift is the perception

of a potential economic improvement [15,16,18]. This results in speakers of min-

ority languages ceasing to speak their language and, most importantly, to

transmit it to their children, in favour of neighbouring (usually co-official)

languages regarded as socially and economically more advantageous [15–17].

In 2003, Abrams & Strogatz [19] proposed a simple two-language competition

model, with preferential attachment to one of the languages, to mathematically

describe the dynamics of language shift. Their model describes the rate of change

in the population fraction of two linguistic groups, A and B, as follows

dpA

dt
¼ g(spa

A pB � (1� s) pApaB),

dpB

dt
¼ �g(spaA pB � (1� s) pApaB),

9>>=
>>; (1:1)
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where pA and pB are the fractions of the total population corre-

sponding to each linguistic group, with pB¼ 1 2 pA, s [ (0, 1)

is a quantification of the status of language A (and consequently

1 2 s is the status of language B), g is a parameter that scales the

time and a determines the relative importance of language A
over B in attracting speakers [19].

Abrams & Strogatz [19] applied equation (1.1) to explain

historical data on language decline for the Quechua, Welsh

and Scottish languages. In such applications, they chose pA as

the fraction speaking only the high-status language (Spanish

for the first case, and English for the later ones), and pB as

the fraction of the population that can speak the low-status

language (either as monolinguals or bilinguals1), and observed

that the best fit to the historical data, if no external changes

were introduced, yielded the extinction of the low-status

language. Alternatively, Abrams et al. [20] showed that

equation (1.1) can also be applied to model the evolution of

other competing cultural traits, particularly the observed

decline in religious affiliation.

Other authors have extended or taken a different approach

to the study of equation (1.1) when applied to language com-

petition. Mira & Paredes [21] extended the same non-spatial

model by including a similarity parameter to study the evol-

ution of three population groups, two monolingual and one

bilingual, when two similar languages are competing. In

their model, the decrease in monolinguals of the low-status

language is due to an increase of both bilinguals and monolin-

guals of the high-status one. Alternatively, Stauffer et al. [22]

applied a simplified version of equation (1.1), with a ¼ 1,

using an agent-based model, and obtained qualitatively

good agreement with the analytic model except in the case

of socially equivalent languages.

On the other hand, some authors have extended equation

(1.1) by including spatial dynamics in the study of language

competition. Patriarca & Leppännen [23] included equation

(1.1) as part of a reaction–diffusion model and studied the

evolution of two languages initially located at two adjacent

regions, obtaining a stable area of coexistence near the

border. This result was possible by assuming a barrier that

restricted linguistic influence of an individual only to the indi-

viduals located at the same region. Later, Patriarca & Heinsalu

[24] extended the analysis of this spatial model by studying the

effect of different initial distributions of the two languages on

which language becomes extinct (without barriers). They also

considered the effect of a barrier that diminishes dispersal

between separated regions (instead of affecting the interaction

as in reference [23]) and found that this kind of barrier also

makes it possible for each language to survive on each side

of the barrier (when the barrier is restrictive enough). By con-

trast, Fort & Pérez-Losada [25] used equation (1.1) in an

integro-difference equation with non-coupled population

growth, and applied it to predict the speed of the Welsh

language replacement, finding reasonably good agreement.

However, the studies mentioned above use some stan-

dard or mean values for the parameters in equation (1.1),

but when one examines explicitly the results for the datasets

in reference [19], one finds that equation (1.1) presents some

limitations when extrapolating these results. As an example,

the best fit for the Quechua population (figure 1b in reference

[19]) is g ¼ 0.147 yr21, a ¼ 1.98, s ¼ 0.74, and these par-

ameter values imply that if in a region the fraction of

Quechua speakers is higher than 75% ( pA , 0.25), it would

be the Spanish speakers who would learn Quechua
(dpA/dt , 0). Obviously, such dynamics would have

avoided the observed replacement of Quechua by Spanish

[16,26]. Similarly, the best fit for the Welsh language

in all of Wales (fig. 1d in reference [19]) is g ¼ 0.144 yr21,

a ¼ 0.92, s ¼ 0.57. Then, according to equation (1.1),

language shift would be reversed (English speakers would

start speaking Welsh, i.e. dpA/dt , 0), once the fraction of

English speakers reaches about 97% of the population

( pA . 0.97). Again, such behaviour disagrees with historical

tendencies [17].

In order to solve this problem, we note that linguistic

studies indicate that language shift happens mainly towards

high-status languages, whereas the speakers of high-status

languages (almost) never learn the minority language

[12,27] (the few who do are often ‘intellectuals from the

city’ [16]). For this reason, in this paper, we develop a simpler

model of language shift, allowing only for speakers of the

low-status language to shift to the high-status one (but not

high-status speakers to shift to the low-status language).

One of the consequences of language replacement through

neighbouring language acquisition is the progressive retreat of

the language frontier, with the consequent shrinkage of the

area where the minority language is spoken [26,28,29]. In this

paper, we apply our new language shift model to describe

such situations and explain the rate at which the higher-status

language expands geographically and replaces the indigenous

language. To do so, we introduce a reaction–diffusion system

to describe the spatial evolution of both competing languages,

including an interaction term to describe the language shift

dynamics. The analysis of this system allows us to infer the

speed at which a more advantageous language overcomes

the dominance of a minority language, leading it to a process

of possible extinction. We apply our new non-spatial model to

the same datasets as in reference [19] to establish its validity,

and then implement it to estimate the speed of linguistic fronts.

We study the sensitivity of the model to the linguistic parameters

using realistic values, and then compare the model predictions

with the observed front of retreat of the Welsh language. Finally,

we discuss the conclusions and implications of our results.
2. Methods
2.1. Limitations of the Abrams – Strogatz model
Before introducing our new approach, we further analyse the role of

the parameters and fixed points in the model by Abrams & Strogatz

[19], equation (1.1), and see the reason for the extrapolation

problems mentioned in §1 from a formal point of view.

The parameter g in equation (1.1) is a scale factor and, as

such, it does not play a role in determining the final outcome

in the linguistic competition, but it modifies only the rate at

which the evolution takes place.

The final outcome of the linguistic competition defined by

equation (1.1) is determined by the fixed points (or equilibrium

points), which depend then on the values of s and a. The fixed

points p*A are those that fulfil the equation dpA/dt ¼ 0. The

values p*A ¼ 0 and p�A ¼ 1 (p�B ¼ 0) are trivial solutions of this

equation, and thus fixed points. In addition, when a = 1, there

is a third fixed point given by

p�A ¼
1

1þ (s/(1� s))1=(a�1):
(2:1)

This expression can be obtained using the fact that pB ¼ 1� pA

in the condition dpA/dt ¼ 0.
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Figure 1. Variation of the fraction of speakers of the high-status language for the linguistic model by Abrams & Strogatz (equation (1.1) and reference [19]) for
different values of the parameter a. (a) Shows the behaviour when a ¼ 1, (b) when a . 1 (a ¼ 1.2), and (c) when a , 1 (a ¼ 0.8). Circles correspond to
the fixed points, with stable points represented by filled circles, and the unstable ones by empty circles. The arrows show the natural evolution of pA towards or
away from the fixed points. In all cases, s ¼ 0.6 and g ¼ 1 yr21.
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If we now look at the stability, then a fixed point is stable

when, if the system is perturbed away from this fixed point,

then it returns to it (see arrows in figure 1). Therefore,

d

dpA

dpA

dt

� �����
p�A

¼ g{spa�1
A [a(1� pA)� pA]þ (1� s)(1� pA)a�1

� [a pA � (1� pA)]}j p�A , 0,

(2:2)

where, again, we have used that pB ¼ 1 2 pA. We have different

stability scenarios depending on the value of a.

(i) If a ¼ 1, then the system has only two fixed points p�A ¼ 0

and p�A ¼ 1 (in this case, equation (2.1) has no solution)

and the stability condition, equation (2.2), is reduced to

d

dpA

dpA

dt

� �����
p�A

¼ g{(1� 2s)[ pA � (1� pA)]}j p�A , 0: (2:3)

Then, we see that when s . 0.5—that is, when A has a higher

status—p�A ¼ 1 is stable (it fulfils the condition in equation

(2.3)) and p�A ¼ 0 is unstable. Therefore, for any initial distri-

bution of population fractions, group A eventually gains all

the speakers and B becomes extinct (this scenario is shown in

figure 1a). The opposite happens when s , 0.5, with p*A ¼ 0

being the stable point. If s ¼ 0.5, then both linguistic

groups are socially equivalent, and the population fraction

does not change over time.

(ii) If a . 1, then we can see that equation (2.2) holds for both

p�A ¼ 0 and p�A ¼ 1, for any value of s. Therefore, they are

both stable fixed points and the third fixed point, given by

equation (2.1), is necessarily unstable (figure 1b). Then,

the extinction or prevalence of group A depends on

whether the initial population fraction pA is lower or

higher than the unstable fixed point respectively.

(iii) If a , 1, p�A ¼ 0 and p�A ¼ 1 are both unstable points for

any value of s. This can be observed more easily if the

stability condition is written as

d

dpA

dpA

dt

� �����
p�A

¼

g s
[a(1� pA)� pA]

p1�a
A

þ (1� s)
[a pA � (1� pA)]

(1� pA)1�a

( )�����
p�A

, 0,

(2:4)

where we can see that for both extreme values the sum

within the curly brackets in equation (2.4) is þ1. Then,
the third fixed point given by equation (2.1) is necessarily

stable (figure 1c), and therefore this is the final population

fraction for group A, for any initial distribution with

presence of individuals of both groups.

So, if we now go back to the real population data from reference

[19] mentioned in §1, then we see that for the Quechua population

(a¼ 1.98, s¼ 0.74), there is an unstable fixed point at p�A ¼ 0:256

(given by equation (2.1)). Therefore, according to the model, only

if the initial population fraction of Spanish speakers is higher

than this value will their relative fraction grow, which we have

seen to be historically unreasonable. On the contrary, for the case

of the Welsh language (a¼ 0.92, s ¼ 0.57), p*A¼ 0.971 is a stable

fixed point. This would signify a long-term coexistence of both

linguistic groups once the fraction of Welsh speakers is around

3%. Even though we cannot deem it impossible, such behaviour

seems historically unreasonable without segregation or application

of linguistic policies, which are not included in the model.
2.2. Basic model
In this paper, we want to model the language shift between two

competing languages, A and B, with language A being regarded

as socially and economically more advantageous and attractive

than the other language (B). We define the population fraction

pA as monolingual speakers of the high-status language A, and pB

corresponds to the fraction of the population able to speak language

B. pB can include both monolingual or bilingual speakers of

language B (as in the data used in reference [19]).

We use a two-language population model, such as in references

[19,22–25], rather than explicitly including bilingual populations

[21,30,31], because we consider that dividing the population between

speakers and non-speakers of the low-status language can provide a

good enough scenario of the health and evolution of endangered

languages. Besides, often, there is no official information on multi-

lingual speakers to compare with a more sophisticated model

(such as in the Peruvian census [32]).

We want to define a model that can be applied to current-day

situations where minority regional languages are in competition

with (often co-official) languages that have a higher status, and

usually a wider area of influence. Therefore, in accordance with

historical data [17], we assume a simplified situation where the

language shift can happen only towards the high-status language.

This would correspond to a scenario where the relative status

does not change significantly over time (e.g. no efficient language

policies are applied).
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We propose, then, the following model with which we have

found the best agreement with historical data

dpA

dt
¼gpa

Apb
B,

dpB

dt
¼� gpa

Apb
B,

9>>=
>>; (2:5)

where g is a time-scaling parameter, and a, b � 1 are two par-

ameters related to the attraction or perceived value of both

languages: we may regard a � 1 as a measure of the difficulty

of language A to attract speakers (recall that pA � 1), and b � 1

as the resistance of language B to lose speakers. In this new

model, the right-hand side is the same for both languages, but

they have opposed signs. Therefore, language A gains the same

number of speakers that language B loses per unit time.

If, similar to §2.1, we analyse the fixed points in this new model,

we can see that only p�A ¼ 0 and p�A ¼ 1 (p�B ¼ 0) can be fixed points,

i.e. can fulfil the condition dpA/dt ¼ 0. Because equation (2.5) only

allows for pA to increase over time and pB to decrease, the only

stable point in this case is p*A ¼ 1. Therefore, in this model, the com-

munity speaking language B will eventually disappear in benefit of

the monolingual speakers of language A.

We have fitted our model to the experimental data in reference

[19] by integrating equation (2.5) using a fourth-order Runge–

Kutta method [33]. We have determined the best set of parameters

using a least-squared error approach (see §3.1).

2.3. Reaction – diffusion model and numerical
integration

In order to model the geographical dynamics of both languages

and estimate the expanding speed of the language replacement

front, we have applied equation (2.5) as an interaction term in a

reaction–diffusion system. To reformulate this term for population

densities, we have applied that pi ¼ ni/(nA þ nB) for i ¼ A, B
(where nA and nB are, respectively, the population densities of

speakers of languages A and B) and assumed that the variation

of the total population density over time can be neglected when

compared with the variation of each subgroup (this is a realistic

assumption at least for the Welsh, Scottish Gaelic and Quechua

populations considered in this paper [16,35]). This yields

@nA

@t
¼ DrnA þ anA 1� nA þ nB

K

� �
þ g

(nA þ nB)aþb�1
na

Anb
B,

@nB

@t
¼ DrnB þ anB 1� nA þ nB

K

� �
� g

(nA þ nB)aþb�1
na

Anb
B:

9>>>=
>>>;
(2:6)

The first term on the right-hand side is the diffusive term,

with D the diffusion coefficient. The second term is a logistic

growth term for two competing populations, where the limiting

term takes into account the presence of the other population,

because they share the same space and resources and have the

same carrying capacity K [24,34]. The last term is the language

shift term from equation (2.5) for population densities rather

than population fractions, as required in order to model diffusion

[34] (left-hand side and first term on the right-hand side).

Because the frontier between competing languages, at least

for the cases considered here, is mostly planar shaped (see

maps in references [16,17,28,30]), we can assume planar fronts.

Then, we can choose the x-axis parallel to the front speed, and

therefore pA(x, y, t) does not depend on y. This simplifies

equation (2.6) into the following one-dimensional system

@nA

@t
¼D

@2nA

@x2
þ anA 1�nAþnB

K

� �
þ g

(nAþnB)aþb�1
na

Anb
B,

@nB

@t
¼D

@2nB

@x2
þ anB 1�nAþnB

K

� �
� g

(nAþnB)aþb�1
na

Anb
B:

9>>>>=
>>>>;

(2:7)
In order to study the system evolution, we have discretized

and integrated numerically the system (2.7) on the nodes of a

grid, by using an implicit method [33]. This requires specify-

ing the initial conditions. Thus, we have assumed that initially

the two-dimensional region corresponding to an interval of x
(e.g. one-fifth of the complete range of x, located at the left-

hand side) is occupied only by speakers of language A (nA ¼ K
and nB ¼ 0), and the rest of the space is occupied by speakers

of language B (nA ¼ 0 and nB ¼ K ). The numerical integration

of the set of equations (2.7) displays a front of A-speakers that

expand their range into the region of B-speakers, and travels

together with a retreating front of B-speakers. This allows us to

find the front position at each timestep (defined, for example,

as the value of x such that nA � K/2). The slope of the front

position versus time yields the front speed.

For modern examples of language substitution, populations

display fairly constant densities in time (near the carrying

capacity). Then, if we assume that the total population density

is at approximately the carrying capacity, nA þ nB � K, the popu-

lation growth term (second term in equations (2.6) and (2.7))

becomes negligible (and in fact, our numerical integrations

yield the same results with or without this term). Therefore, we

obtain a much simpler system that, after dividing both equations

by the carrying capacity K, can be written as follows

@pA

@t
¼ D

@2pA

@x2
þ gpa

Apb
B,

@pB

@t
¼ D

@2 pB

@x2
� gpa

Apb
B,

9>>>=
>>>;

(2:8)

where the system is now expressed in terms of the population

fractions (thus now pi ¼ ni/K for i ¼ A, B).
2.4. Variational analysis and bounds for the front speed
Besides the results from the numerical integration, it is possible

to derive analytical bounds for the front speed. To do so, we

first generalize equation (2.8) by using dimensionless variables

t� ¼ gt and x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
(g/D)

p
x. In addition, because we are now

using population fractions we can apply that pB ¼ 1 2 pA and

we can describe the system with a single equation

@ pA

@t�
¼ @

2 pA

@x� 2
þ f ( pA), (2:9)

where f ( pA) ¼ pa
A(1� pA)b. As f 0(0) ¼ 0, we cannot apply linear

or marginal stability analysis [36], but it is still possible to find

some constrains to the front speed by resorting to variational

analysis. Using the variational approach described by Benguria

and Depassier, it has been shown that, if f ( pA) . 0 for

pA [ (0, 1), the following expression provides a lower bound

for the front speed (see reference [37], equation (10))

c� � 2

Ð 1
0 ghfdpAÐ 1

0 gdpA
, (2:10)

where g( pA) is and arbitrary positive function and h ¼ �g0.
Because equation (2.10) must hold true for any function g, the

one that yields a larger lower bound is the best one [38]. As

usual, we consider the set of lower bounds given by the series

of trial functions g ¼ p1�d
A , with d [ (0, 1) [38,39]. Solving the

integrals in equation (2.10) for these trial functions and

f ( pA) ¼ pa
A(1� pA)b, we find the following lower bound for the

front speed of the language expansion

c�L ¼ max
d[(0, 1)

2d
ffiffiffiffiffiffiffiffiffiffiffi
1� d
p G(1þ b/2)G(a=2þ d� 1/2)

G(1=2þ a=2þ b=2þ d)
, (2:11)

where the gamma function is defined by the following integral

G(x) ¼
Ð1

0 tx�1e�tdt, for x . 0 [40].

It has been shown that it is possible to find a function ĝ
(which is not analytically manageable) for which the equality
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in equation (2.10) holds, thus the front speed is [38,39]

c� ¼ max
g

2

Ð 1
0 ghfd pAÐ 1

0 gd pA
: (2:12)

We can now use equation (2.12) to obtain an upper bound for the

front speed by applying Jensen’s inequality and integrating by

parts [38,39], which yields the following expression (see reference

[38], last equation for f ¼ 0; or reference [39], equations (27)–(28)

for a ¼ 0)

c�U ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sup

pA[(0, 1)

df
dpA

s
: (2:13)

And when applying equation (2.13) to our interaction term,

f ( pA) ¼ pa
A(1� pA)b, we obtain that the upper bound for the

linguistic front speed is given by

c�U ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sup
pA[(0, 1)

[apa�1
A (1� pA)b � bpa

A(1� pA)b�1]
r

: (2:14)

With these two analytic expressions, equation (2.11) and

(2.14), we obtain a range that contains the exact speed for the lin-

guistic front (the exact speed can be estimated by the numerical

integration, as described in §2.3). For given values of a and b, the

explicit result for the lower bound is obtained by searching for

the maximum value of the right-hand side in equation (2.11)

for values of d within the interval (0, 1), and the upper bound

is found analogously with equation (2.14) and values of pA

within the interval (0, 1).

Note that this same analysis would not yield a lower or an

upper bound for the Abrams–Strogatz model (equation (1.1)),

because this technique requires that f ( pA) . 0 for pA[(0, 1) and
as seen in §2.1 and figure 1, this condition is not always fulfilled

for equation (1.1).
3. Results
3.1. Non-spatial model
In this paper, we have proposed a new interaction term to model

the dynamics of language competition, equation (2.5). Figure 2

shows the results of fitting this model to the decline of three

languages in the four following regions (data from the plots in

reference [19]): (i) Scottish Gaelic in Sutherland, Scotland,

(ii) Quechua in Huanuco, Peru, (iii) Welsh in Monmouthshire,

and (iv) Welsh in all of Wales. As defined in equation (2.5), pB

in figure 2 corresponds to the population fraction able to speak

the minority language (either as monolinguals or bilinguals).

In particular, for the languages spoken in the UK, figure 2a,c,d,

pB corresponds mostly to bilinguals, because monolingual

speakers are very low in number and become extinct during

the considered period (see, e.g., the supplementary material in

reference [30]). In the case of the data on the Quechua language,

the number of bilinguals is not recorded officially [32]; however,

it is considered to be low, and bilinguals tend to insist in their

children becoming Spanish monolinguals [41], thus preventing

an effective increase of bilingual individuals.

The parameter values that yield the best fit for each language

dataset are indicated in figure 2. The value of the sum of squared

errors, x2, is presented in each plot as an estimation of the fitting

error. Figure 2 shows that the new model provides a good fit

to the experimental data, as shown by the low values of x2.
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Our model (equation (2.5)) has three adjustable parameters (g, a

and b). Similarly, the model by Abrams and Strogatz

(equation (1.1)) also has three adjustable parameters (g, a

and s). However, the sums of squared errors x2 for our model

(figure 2) never exceed those obtained from fitting the

Abrams–Strogatz model to the data (the best fits of the data

to the Abrams–Strogatz model yield x2
(a) ¼ 9:63� 10�4,

x2
(b) ¼ 10:84� 10�4, x2

(c) ¼ 1:46� 10�4, x2
(d) ¼ 1:66� 10�3).

Therefore, the model given by equation (2.5) agrees with the

observed data at least as well as the Abrams–Strogatz model

(equation (1.1)). Our model, however, does not present the limit-

ations detailed in §2.1 when predicting the language shift with

no protection policies—namely the need in some cases of a sig-

nificantly large fraction of high-status speakers for the shift to

happen, or the prediction of a rather improbable equilibrium

situation when a minority language is nearly extinct.

Comparing the values of the parameters obtained in figure 2,

we see that we obtain similar values for the three datasets for

Celtic languages in the UK (figure 2a,c,d), whereas the parameter
values for the Quechua language differ significantly from them

(figure 2b). This is a rather reasonable result, because Scottish

Gaelic and Welsh have evolved in rather similar conditions,

which may easily differ from the situation of the Quechua

language. There is, however, a remarkable difference in the

value of a in the region of Monmouthshire and when consider-

ing the whole of Wales, which shows a higher resistance to

change in the area of Monmouthshire. This may be due to the

fact that, at least nowadays, Monmouthshire is a rather rural

area (as most of Wales). By contrast, the data for all of Wales

also include the most densely populated areas and big cities

(with a 50% of the total population residing in a 10% of the

total area of Wales [42]), where the language shift tends to take

place at a faster rate [14].
3.2. Language replacement fronts
Figures 3 and 4 show the results of computing the speed of

the linguistic front for several values of a (figure 3) and b



Table 1. Parameter values and predicted dimensionless and dimensional speeds of linguistic fronts. Dimensional speed c(1) corresponds to a D ¼
5.08 km2 yr21, and c(2) to D ¼ 6.72 km2 yr21. The language labels correspond to the same labels used in figure 2.

minority language a b g (yr21) c* c(1) (km yr21) c(2) (km yr21)

(a) Scottish Gaelic, Sutherland 1.73 1.56 0.099 0.742 0.526 0.605

(b) Quechua, Huanuco 8.93 6.26 426.32 0.0065 0.302 0.348

(c) Welsh, Monmouthshire 2.23 1.76 0.237 0.508 0.557 0.641

(d) Welsh, all of Wales 1.00 1.48 0.029 2.00 0.768 0.883
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(figure 4). In both plots, the lines correspond to the lower

(solid) and upper (dashed) bounds for the front speed, calcu-

lated with equations (2.11) and (2.14), respectively. The

symbols are the results of the numerical integration of

system (2.7) and they fall, as expected, within the analytic

range. All of the speeds have been computed using dimen-

sionless units (left axis), and the right axis corresponds to

the dimensional speed (c ¼ c�
ffiffiffiffiffiffiffi
gD
p

) for an example with g ¼

0.1 yr21 (figure 2a) and D ¼ 5.08 km2 yr21. This value of the

diffusion coefficient has been estimated from D ¼ kD2l/4T
[43] and observed values from modern populations for the

generation time (T ¼ 25 yr [25]) and the mean-squared displa-

cement (kD2l ¼ 508 km2 [44,45]). The latter was obtained from

modern human populations in the Parma Valley, Italy, during

the twentieth century, and is therefore coetaneous with the

data in the studied period (figure 2).

In figures 3 and 4, we study the sensitivity of the model

to the parameters a and b. In figure 3, the results have been

computed using a fixed value of b ¼ 2.77, the mean of the

values obtained from the fits in figure 2, and for the range of

a also obtained from the best fits in figure 2, a [ (1, 9). Simi-

larly, in figure 4, the results have been plotted for the mean

value a ¼ 3.47 and the range b [ (1, 7), also obtained from

figure 2. For both parameters, a and b, the dimensionless

speed decreases (and so does the dimensional speed if consid-

ering a fixed value of g) for increasing values of these

parameters (because this corresponds to less language conver-

sions per unit time, see equation (2.5) and recall that pi � 1

for i ¼ A,B). However, we see that the front speed is more

sensitive to variations of a than to those of b. In addition,

for a ¼ 1, we find that the lower and upper bounds and the

numerical integration always converge at c* ¼ 2.

Because the value of the dimensional speed depends on the

value of g, in table 1, we show the dimensionless and dimen-

sional speeds computed for the four datasets in figure 2, as

well as the parameter values obtained from figure 2 and used

to compute these results (we use the same labelling for the

languages as in figure 2). The dimensional speeds in table 1

have been calculated using two possible values of the diffusion

coefficient: D ¼ 5.08 km2 yr21 (as in figures 3 and 4), obtained

from mobility data on Italian populations in the twentieth cen-

tury [44,45] (see above), and D¼ 6.72 km2 yr21, obtained from

mobility data in the eighteenth–nineteenth centuries in Catalo-

nia, Spain [46]. The first estimate is probably a better approach

for the twentieth-century European languages, because they

are coetaneous. We do not have estimates for South American

populations, but because the Quechua-speaking communities

are very traditional agricultural communities [16], the second

estimate, corresponding to a more traditional agricultural

society, might be a better approach. However, both values give

similar results for the front speed (table 1).
For the case of Welsh, the observed front speed was

estimated in reference [25] from language distribution maps

to be within the range 0.3 2 0.6 km yr21. Comparing this

observed range with the model predictions for the Welsh

retreat front (table 1(c) and (d)), we see that the observed

speed range is consistent when using the data for (c) Welsh

in Monmouthshire, whereas the estimates are somewhat

faster when using the data for (d) Welsh in all of Wales. We

stress again that, at least at present, half the population of

Wales is concentrated in 10% of its area (in the southern

coast, near Cardiff ), whereas the rest is rural and approxi-

mately equally populated [42]. Thus, whereas it is very

possible that the language shift dynamics are different in

large agglomerations than in rural areas, to obtain a realistic

estimate for the speed of the linguistic retreat in the whole of

Wales, it might be more reasonable to use the data from

Monmouthshire, because it may be representative of a larger

(rural) area. In such a case, we can, indeed, consider that

there is a good consistence between model and observations.

We do not have estimates for the observed speeds of retreat

for (a) Scottish or (b) Quechua, but their predicted dimensional

ranges have the same order of magnitude and similar ranges

to those reported for the Welsh language (table 1).
4. Discussion
In this paper, we have introduced a new model to explain

historical data on the decline of minority languages when

in competition with other languages which are perceived as

more advantageous. We have fitted our model (equation

(2.5)) to historical data, and it yields reasonably good fits

(figure 2), as good as or better than the Abrams–Strogatz

model (equation (1.1)). A significant feature that can be

observed from these fits is the fact that the three datasets

corresponding to endangered languages in the UK present

similar parameters, probably owing to having endured simi-

lar conditions, whereas they differ significantly from the

estimates corresponding to the evolution of the Quechua

language in Peru.

In our model, we have considered only two populations,

speakers and non-speakers of the endangered language B,

without explicitly considering bilinguals (they are included

as B-speakers), in contrast to models prepared by some

other authors [21,30,31]. This is partly due to practical

reasons, because we are applying our model to the same

datasets as in reference [19]. But besides this fact, we consider

that dividing the population in speakers and non-speakers of

a minority language is a good enough division to establish

the language health and estimate the evolution of this

minority language if its perceived value does not change.
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In addition, our model does only allow for the high-status

language to gain speakers and eventually become the only

available language, whereas other authors have found bilingu-

alism as a possible stable outcome [30,31]. However, in these

models, the social status of the endangered language was

allowed to change owing to language policies [30], or the

data used corresponded to a period where those policies had

already started to efficiently change the status of the minority

language [31]. Then, the fact that bilingualism may be a viable

solution does not disagree with our model. Indeed, according

to linguistic studies, stable bilingualism is only possible when

the status of the minority languages is raised [14,47], whereas

our model shows the predictions if no such change occurs.

It is worth, therefore, noting that while in the case of

Scottish Gaelic no language policies were applied during

the considered period [28], this is not the case for the other

two languages. Quechua was made official in Peru in 1975,

although none of the bilingual programmes created to main-

tain it have been able to effectively improve its status and

stop the language shift [48]. By contrast, the linguistic policies

applied in Wales since the 1970s seem to have been able to

raise the status of Welsh and stabilize (see figure 2d after

1971) and even reverse the languages shift (after 2001

[30,42]). In that sense, the data for the Welsh language after

1971 should probably have been omitted from the analysis,

but because there was still language loss (figure 2d ), fits do

not show significant divergence in the parameter estimates

with or without these data points.

So, in an attempt to model language competition when

one of the languages is at a clear disadvantage against

another language seen as more advantageous, in our

model, equation (2.5), language shift is allowed in only one

direction (i.e. from the less attractive to the more attractive

language). Other authors did allow a reverse flow of speakers

between languages, with their relative importance deter-

mined by a status parameter [19,30]. However, even though

a double-sense flow may seem reasonable for competing

languages with similar conditions, a unidirectional flow

agrees with the behaviour observed in many societies, in

which local speakers cease to transmit their language to

their children [15,17]. Moreover, recent historical data suggest

that, at least when the high-status language is widely

regarded as advantageous, such as English or Spanish (the

high-status languages corresponding to the datasets in

figure 2), and no language-planning policies are applied:

(i) speakers of the high-status language (almost) never learn

the indigenous language [12,27]; (ii) once the replacement

process is started, it tends to gradually run its course towards

total substitution (unless political measures are taken)

[15–17]; and (iii) even when the initial number of speakers

of the minority languages is high, it can become extinct in a

time interval as short as one generation [17]. In fact, the

Abrams–Strogatz model (equation (1.1)) presents two impor-

tant limitations: (i) if a . 1 it predicts that, for large enough

values of the initial proportion of speakers of the low-status

language, then high-status speakers shift their language

and use the low-status one instead (which would stop the

observed language decline); (ii) if a , 1 it predicts that,

when the proportion of speakers of the high-status language

becomes large enough, again high-status speakers shift their

language and use the low-status one instead (which seems

strange and, again, has not been observed). By contrast,

the language shift model that we have used in this paper
does not have these limitations. In addition, the results in

figure 2 show that our model (equation (2.5)) can, indeed,

give a good account of the observed trends in the decline of

minority languages.

In this paper, we have also explored the geographical

aspects of language shift, particularly the rate at which a

more advantageous language expands geographically and

replaces the indigenous one. Besides the mathematical

study of the sensitivity of the model to the parameters, we

have also calculated and assessed the front speed obtained

from the datasets in figure 2. We have seen that the predicted

speed for the Welsh retreat is consistent with the observa-

tional estimation (0.3 2 0.6 km yr21 [25]). We do not have

observed estimates for the other two languages, but because

they lie within the same order of magnitude, they may also be

realistic predictions.

In addition, besides the numerical integration approach, we

have been able to obtain mathematical expressions for lower and

upper bounds to the rate of spread, equations (2.11) and (2.14).

The usefulness of these bounds is, on the one hand, that they

provide a check of the numerical results; on the other hand,

they make it possible to perform quick estimates, without discre-

tizing the set of differential equations and performing numerical

integrations on a grid.

To obtain the estimates on the front speed, we have applied

the parameters obtained from the non-spatial model to the

spatial approximation. This is a realistic assumption, because

when integrating the spatial model, equation (2.8), over the

whole region, we should obtain the total variation correspond-

ing to the non-spatial model, equation (2.5). This might be

affected if there was a high migration towards or from the

studied region. However, according to statistical data in the

UK [35], the migration rates have increased in the past

20 years, and even in such conditions, the immigration rate

is about an order of magnitude lower than the language

shift rate in figure 2. For the Peruvian case, because the indi-

genous communities are generally poor- and tight-knit

communities, high migration rates are rather unlikely [16]. In

future work, however, it could be interesting to fit time

curves at different places to estimate the parameters a, b and

g as a function of the position, and then use them to predict

the front speed also as a function of the position.

In addition, note that the case in which high-status speak-

ers move mainly to urban areas (that then act as hub) does

not correspond to a front propagating across a homogeneous

geography. Therefore, in such cases, it would be necessary to

develop a different model which could be the subject of

future work.

Finally, we would like to note that the models developed

in this paper could be applied also to other processes of cul-

tural transmission where the cultural trait being transmitted

can be described as a clear advantageous change (at least

from the subjective perspective of the prospective receivers).
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Endnote
1Note that according to reference [19], the population groups are mono-
lingual, but comparing their data with census data (e.g., see
supplementary information in reference [30]) one can induce that, at
least for the British languages, the bilingual population is included in pB.
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22. Stauffer D, Castelló X, Eguı́lez VM, San Miguel M.
2007 Microscopic Abrams – Strogatz model of
language competition. Physica A 374, 835 – 842.
(doi:10.1016/j.physa.2006.07.036)

23. Patriarca M, Leppänen T. 2004 Modeling language
competition. Physica A 338, 296 – 299. (doi:10.
1016/j.physa.2004.02.056)

24. Patriarca M, Heinsalu E. 2009 Influence of
geography on language competition. Physica A 388,
174 – 186. (doi:10.1016/j.physa.2008.09.034)
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