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  19 

Abstract 20 

 21 

We analyze an ensemble of n-sub-epidemic modeling for forecasting the trajectory of epidemics 22 

and pandemics. These ensemble modeling approaches, and models that integrate sub-epidemics 23 

to capture complex temporal dynamics, have demonstrated powerful forecasting capability. This 24 

modeling framework can characterize complex epidemic patterns, including plateaus, epidemic 25 

resurgences, and epidemic waves characterized by multiple peaks of different sizes. We 26 

systematically assess their calibration and short-term forecasting performance in short-term 27 

forecasts for the COVID-19 pandemic in the USA from late April 2020 to late February 2022. 28 

We compare their performance with two commonly used statistical ARIMA models. The best fit 29 
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sub-epidemic model and three ensemble models constructed using the top-ranking sub-epidemic 30 

models consistently outperformed the ARIMA models in terms of the weighted interval score 31 

(WIS) and the coverage of the 95% prediction interval across the 10-, 20-, and 30-day short-term 32 

forecasts.  In the 30-day forecasts, the average WIS ranged from 377.6 to 421.3 for the sub-33 

epidemic models, whereas it ranged from 439.29 to 767.05 for the ARIMA models. Across 98 34 

short-term forecasts, the ensemble model incorporating the top four ranking sub-epidemic 35 

models (Ensemble(4)) outperformed the (log) ARIMA model 66.3% of the time, and the 36 

ARIMA model 69.4% of the time in 30-day ahead forecasts in terms of the WIS. Ensemble(4) 37 

consistently yielded the best performance in terms of the metrics that account for the uncertainty 38 

of the predictions. This framework could be readily applied to investigate the spread of 39 

epidemics and pandemics beyond COVID-19, as well as other dynamic growth processes found 40 

in nature and society that would benefit from short-term predictions. 41 

 42 

Summary 43 

The COVID-19 pandemic has highlighted the urgent need to develop reliable tools to forecast 44 

the trajectory of epidemics and pandemics in near real-time. We describe and apply an ensemble 45 

n-sub-epidemic modeling framework for forecasting the trajectory of epidemics and pandemics. 46 

We systematically assess its calibration and short-term forecasting performance in weekly 10-30 47 

days ahead forecasts for the COVID-19 pandemic in the USA from late April 2020 to late 48 

February 2022 and compare its performance with two different statistical ARIMA models. This 49 

framework demonstrated reliable forecasting performance and substantially outcompeted the 50 

ARIMA models.  The forecasting performance was consistently best for the ensemble sub-51 

epidemic models incorporating a higher number of top-ranking sub-epidemic models. The 52 

ensemble model incorporating the top four ranking sub-epidemic models consistently yielded the 53 
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best performance, particularly in terms of the coverage rate of the 95% prediction interval and 54 

the weighted interval score. This framework can be applied to forecast other growth processes 55 

found in nature and society including the spread of information through social media. 56 

  57 
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Introduction 58 

 59 

The coronavirus disease 2019 (COVID-19) pandemic has amplified the critical need for reliable 60 

tools to forecast the trajectory of epidemics and pandemics in near real-time. During the early 61 

stages of the COVID-19 pandemic, multiple modeling teams embarked on the challenging task 62 

of producing short-term forecasts of the course of the COVID-19 pandemic in terms of the 63 

trajectory for the number of new cases, hospitalizations, or deaths (e.g., [1-10]) . Soon after the 64 

epidemic started, our research team published short-term forecasts of the pandemic during the 65 

early outbreaks of the novel coronavirus in China [4] and subsequently focused on producing 66 

weekly forecasts for the USA [11]. In a related effort, the US COVID-19 Forecasting Hub 67 

brought together multiple research teams to synthesize weekly short-term forecasts of the 68 

COVID-19 pandemic in the USA [12].  It is time to systematically and rigorously evaluate the 69 

forecasting performance of these different pandemic forecasting efforts and document the 70 

lessons learned to continue advancing our understanding of epidemic forecasting. 71 

 72 

Ensemble modeling approaches and models that integrate sub-epidemics to capture complex 73 

temporal dynamics have demonstrated powerful forecasting capability (e.g., [13] [14-17]). In 74 

prior work, we developed a sub-epidemic modeling framework to characterize and improve 75 

forecasting accuracy during complex epidemic waves [13]. This mathematical framework 76 

characterizes epidemic curves by aggregating multiple asynchronous sub-epidemics and 77 

outperforms simpler growth models at providing short-term forecasts of various infectious 78 

disease outbreaks [13, 18]. It is possible to model sub-epidemics associated with transmission 79 

chains that are asynchronously triggered and progress somewhat independently from the other 80 
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sub-epidemics. This framework supports a family of sub-epidemic models that yield similar fits 81 

to the calibration data, but their corresponding forecasts could produce diverging trajectories. 82 

 83 

Ensemble modeling aims to boost forecasting performance by systematically integrating the 84 

predictive accuracy tied to individual models [16, 19-21]. Past work indicates that multimodel 85 

ensemble approaches are powerful forecasting tools that frequently outperform individual 86 

models in epidemic forecasts [14, 15, 22-27]. We extend prior sub-epidemic modeling work and 87 

propose an ensemble sub-epidemic modeling framework for forecasting the trajectory of 88 

epidemics and pandemics. In this model, the sub-epidemics can start at different time points and 89 

may follow different growth rates, scaling of growth, and final sizes. Hence, this ensemble 90 

modeling framework can characterize more diverse epidemic patterns which were impossible to 91 

capture by earlier sub-epidemic models, including plateaus, epidemic resurgences, and epidemic 92 

waves characterized by multiple peaks of different sizes.  93 

 94 

Here, we systematically assess the calibration and short-term forecasting performance in weekly 95 

10-30 day forecasts in the context of the COVID-19 pandemic in the USA from late April 2020 96 

to late February 2022, including the Omicron-dominated wave. We then compare the 97 

performance of the ensemble modeling framework with a set of Autoregressive Integrated 98 

Moving Average (ARIMA) models, following the EPIFORGE 2020 guidelines to report 99 

epidemic forecasts [28]. Our extended ensemble modeling framework substantially outperforms 100 

individual top-ranking sub-epidemic models and the ARIMA models based on standard 101 

performance metrics that account for the uncertainty of the predictions. 102 

 103 

Data  104 
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We used daily COVID-19 deaths reported in the USA from the publicly available data tracking 105 

system of  the Johns Hopkins Center for Systems Science and Engineering (CSSE) from 27 106 

February 2020  to 30 March 2022 [29]. The data is updated on the CSSE webpage once every 107 

day at 23:59 (UTC) and is read from the daily case report.  The data is also publicly available in 108 

the GitHub repository [30].  109 

 110 

�-sub-epidemic model 111 

 112 

We model epidemic trajectories comprised of one or more overlapping and asynchronous sub-113 

epidemics. That is, the sub-epidemics are used as building blocks to characterize more complex 114 

epidemic trajectories. The mathematical equation for the sub-epidemic building block is the 3-115 

parameter generalized-logistic growth model (GLM), which has performed well in short-term 116 

forecasts of single outbreak trajectories for different infectious diseases, including COVID-19 117 

[31-33]. This model is given by the following differential equation:  118 

  119 

�����

��
� ����� � ������ �1 
 ����

��
�, 120 

 121 

where  
�����

��
 describes the curve of daily deaths over time �. The cumulative curve at time �  is 122 

given by ����, while � is a positive parameter denoting the growth rate per unit of time,  
	 is 123 

the final outbreak size, and � � �0,1� is the “scaling of growth” parameter which allows the 124 

model to capture early sub-exponential and exponential growth patterns. If � � 0 , this equation 125 

describes a constant number of new deaths over time, while � � 1  indicates that the early 126 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.22276608doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.19.22276608
http://creativecommons.org/licenses/by/4.0/


 7

growth phase is exponential. Intermediate values of �  (0 � � � 1 ) describe early sub-127 

exponential (e.g., polynomial) growth dynamics.  128 

 129 

An � -sub-epidemic trajectory comprises �  overlapping sub-epidemics and is given by the 130 

following system of coupled differential equations: 131 

 132 

��
���
�� � �


���� � �
����
�

����� �1 
 �
���


	

� , 

 133 

Where �
��� tracks the cumulative number of deaths for sub-epidemic i , and the parameters that 134 

characterize the shape of the ��� sub-epidemic are given by ��
 , �
 , 
	
�, for � � 1, … , �. Thus, the 135 

1-sub-epidemic model is equivalent to the generalized growth model described above. When 136 

� � 1,  we model the onset timing of the �� � 1���  sub-epidemic, where �� � 1� � � , by 137 

employing an indicator variable given by �
��� so that the �� � 1��� sub-epidemic is triggered 138 

when the cumulative curve of the i
th

sub-epidemic exceeds ����.  139 

 140 

The �� � 1��� sub-epidemic is only triggered when  ���� � 
	
. Hence, we have: 141 

 142 

�
��� � �1, �

���� � ���� 0,      Otherwise
        � � 2, … � , 143 

 144 

where  ����� =1 for the first sub-epdemic. Hence, the total number of parameters that are needed 145 

to model an �-sub-epidemic trajectory is given by 3� � 1. The initial number of deaths is given 146 
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by ���0� � #	, where I
0
is the initial number of deaths in the observed data.  The cumulative 147 

curve of the �-sub-epidemic trajectory is given by: 148 

������� � $ �
���
�


��

.  

 149 

The n-sub-epidemic wave model can characterize diverse epidemic patterns, including epidemic 150 

plateaus where the epidemic stabilizes at a high level for an extended period, epidemic 151 

resurgences where the number of cases increases again after a low incidence period, and 152 

epidemic waves characterized by multiple peaks. 153 

 154 

Parameter estimation 155 

 156 

To reduce the noise in the original data due to artificial reasons such as the weekend effects, we 157 

use the 7-day moving average of daily death series to fit the �-sub-epidemic model.  Let 158 

&���&��,&�� , … , &���
where ' � 1,2, … , �� 159 

denote the smoothed daily COVID-19 death series of the epidemic trajectory based on the 160 

moving average. Here, ��  are the time points for the time series data, ��  is the number of 161 

observations, and each &�� , j=1,2,…, ��, is the average of the death counts at the neighboring 162 

seven days (��
�, ��
�, ��
�, �� , ����, ����, ����). We will use this smoothed data to estimate a total 163 

of 3� � 1 model parameters, namely Θ � )���� , ��, ��, 
	�, … , ��, ��, 
	�*. Let  +��, Θ� denote 164 

the expected curve of new COVID-19 deaths of the epidemic’s trajectory.  We can estimate 165 

model parameters by fitting the model solution to the observed data via nonlinear least squares 166 

[34] or via maximum likelihood estimation assuming a specific error structure [35].  For 167 
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nonlinear least squares, this is achieved by searching for the set of parameters  ,- that minimizes 168 

the sum of squared differences between the observed data  &���&��,&�� … . . &���
and the model 169 

mean corresponds to +��, Θ� . That is, Θ � )���� , ��, ��, 
	�, … , ��, ��, 
	�* is estimated by  170 

Θ. � arg min  ∑ �+)�� , Θ* 
 &������
���  . 171 

 172 

This parameter estimation method weights each of the data points equally and does not require a 173 

specific distributional assumption for &�, except for the first moment 6�&�� � +��
; ,�. That is, 174 

the mean of the observed data at time t is equivalent to the expected count (e.g., number of 175 

deaths) denoted by +��, Θ� at time t [36]. This method yields asymptotically unbiased point 176 

estimates regardless of any misspecification of the variance-covariance error structure. Hence, 177 

the estimated model mean +��
 , Θ.� yields the best fit to observed data &��in terms of squared L2 178 

norm. In Matlab, we can use the fmincon function to set the optimization problem.  179 

 180 

To quantify parameter uncertainty, we follow a parametric bootstrapping approach which allows 181 

the computation of standard errors and related statistics in the absence of closed-form formulas 182 

[37]. We generate 8 bootstrap samples from the best-fit model  +��, ,-�, with an assumed error 183 

structure, to quantify the uncertainty of the parameter estimates and construct confidence 184 

intervals. Typically, the error structure in the data is modelled using a probability model such as 185 

the Poisson or negative binomial distribution. Because the time-series data we are fitting to 186 

involve large counts, the Poisson or negative binomial distribution can be well approximated by 187 

a normal distribution for large numbers.  So, using the best-fit model  +��, ,-�, we generate B-188 

times replicated simulated datasets of size �� , where the observation at time �� is sampled from a 189 
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normal distribution with mean +��� , ,-� and variance   
∑ �����,���
�����
��
�	�

��
������
. Next, we refit the model 190 

to each of the B simulated datasets to re-estimate parameters for each. The new parameter 191 

estimates for each realization are denoted by  Θ.� where 9 � 1,2, … , 8. Using the sets of re-192 

estimated parameters )Θ.�*, it is possible to characterize the empirical distribution of each 193 

estimate, calculate the variance, and construct confidence intervals for each parameter. The 194 

resulting uncertainty around the model fit can similarly be obtained from  +)�, Θ.�*, 195 

+)�, Θ.�*, … , +��, Θ. �.  196 

 197 

Model-based forecasts with quantified uncertainty 198 

 199 

Forecasting the model +)�, Θ.*,  :  days ahead provides an estimate for  +�� � :, Θ.� .  The 200 

uncertainty of the forecasted value can be obtained using the previously described parametric 201 

bootstrap method. Let 202 

+)� � :, Θ.�*, +)� � :, Θ.�*, … , +�� � :, Θ. � 

denote the forecasted value of the current state of the system propagated by a horizon of h time 203 

units, where Θ.� denotes the estimation of parameter set Θ from the bth bootstrap sample.  We can 204 

use these values to calculate the bootstrap variance as the measure of the uncertainty of the 205 

forecasts and use the 2.5% and 97.5% percentiles to construct the 95% prediction intervals (PI). 206 

 207 

 208 

Model selection 209 

 210 

We considered a set of �-sub-epidemic models where 1 � � � 2 and ranked them from best to 211 

worst according to the �#�! which is given by [38, 39]: 212 
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�#�! � ��;<=�>>6� � 2? � 2?�? � 1�
�� 
 ? 
 1 

 213 

where >>6 � ∑ �+)�� , Θ.* 
 &������
��� , ? � 3� � 1 is the number of model parameters, and ��   is 214 

the number of data points. The �#�!  for the parameter estimation from the nonlinear least-215 

squares fit, which implicitly assumes normal distribution for error.  216 

 217 

We selected the four top ranking sub-epidemic models for further analyses. We used them to 218 

construct three ensemble sub-epidemic models, which we refer to as: Ensemble(2), Ensemble(3), 219 

and Ensemble(4). The next section describes the process of constructing these ensemble models 220 

from the top-ranking sub-epidemic models. 221 

 222 

 223 

Constructing Ensemble Models from top-ranking models 224 

 225 

Ensemble models that combine the strength of multiple models may exhibit significantly 226 

enhanced predictive performance (e.g., [14-17]). Here we generate ensemble models from the 227 

weighted combination of the highest-ranking sub-epidemic models as deemed by the �#�!�  for 228 

the �-th model where �#�!� � @ � �#�!
  and � = 1, ..., I.  An ensemble derived from the top-229 

ranking I models is denoted by Ensemble(I) and illustrated in Figure 1.  Thus, Ensemble(2) and 230 

Ensemble(3) refer to the ensemble models generated from the weighted combination of the top-231 

ranking 2 and 3 models, respectively. We compute the weight A
 for the �-th model, � = 1, ... , I, 232 

where ∑ A
 = 1 as follows: 233 

 234 
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A
 �
�

�
�
�
�

�
�
�
� �

�
�
�
�"� �

�
�



   for all � � 1,2, … , #,  235 

 236 

and hence A# � @ � A� .  237 

 238 

The estimated mean curve of daily COVID-19 deaths for the Ensemble(I) model is: 239 

+$�%�#���� � $ A


#


��

+
)�, Θ.�
�* 

 240 

where given the training data, Θ.�
� denotes the set of estimated parameters, and +
��, Θ.�
�� 241 

denotes the estimated mean curve of daily COVID-19 deaths, for the �-th model. Accordingly, 242 

we compute the weighted average and sample the bootstrap realizations of the forecasts for each 243 

model to construct the 95% CI or PI using the 2.5% and 97.5% quantiles [16]. Our MATLAB 244 

(The Mathworks, Inc) code for model fitting and forecasting is publicly available in the GitHub 245 

repository [30]. 246 

 247 

Figure 1. Schematic diagram of the construction of the ensemble model from the weighted 248 

combination of the highest-ranking sub-epidemic models as deemed by the �#�!�  for the �-th 249 

model where  �#�!� � @ � �#�!
  and � = 1, ... , I.  An ensemble derived from the top-ranking I 250 

models is denoted by Ensemble(I). 251 

 252 

As a sensitivity analysis, we also investigated how the ensemble sub-epidemic models performed 253 

when the ensemble weights were proportional to the relative likelihood �;�  rather than the 254 

reciprocal of the AICc. Let �#�&
� denote the minimum �#� from the set of models. The relative 255 
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likelihood of model � is given by ;
 � B��'#����
'#���/�� [40]. We compute the weight A
 for the 256 

�-th model where ∑ A
 = 1 as follows: 257 

 258 

A
 � )�
)��)��"�)


   for all � � 1,2, … , #, 259 

 260 

and hence A# � @ � A� .  261 

 262 

Auto-regressive integrated moving average models (ARIMA) 263 

 264 

We also generated short-term predictions of the pandemic trajectory using ARIMA models to 265 

compare their performance with that of the sub-epidemic models. ARIMA models have been 266 

frequently employed to forecast trends in finance [41-43] and weather [44-46]. The ARIMA (p, 267 

d, q) process is given by  268 

C�8��1 
 8��&� � D � E�8�F� 

or equivalently as C�8��1 
 8���&� 
 µ��/�!� � θ�8�F�  , where p is the order of the AR 269 

model, d is the degree of differencing, q is the order of the MA model, KL�M is a white noise 270 

process with mean 0 and variance σ� , and B denotes the backshift operator. The p-order 271 

polynomial  O�P� � 1 
 O�P 
 @ 
 O�P� and the q-order polynomial d θ�P� � 1 
 θ�P 
 @ 
272 

E�P*  are assumed to have no roots inside the unit circle to ensure causality and invertibility. The 273 

constant D � Q)1 
 C� 
 @ 
 C�*, and µ is the mean of  �1 
 8��&�. When d=0, Q is the mean 274 

of  &�. 275 

 276 
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The auto.arima function in the R package “forecast” is used to select orders and build the model 277 

[47]. First, the degree of differencing 0 � � � 2  is selected based on successive KPSS unit-278 

root tests [48], which test the data for a unit root; if the test result is significant, the differenced 279 

data is tested for a unit root; and this procedure is repeated until the first insignificant result is 280 

obtained. Then given d, the orders p and q are selected based on the AICc for the d-times 281 

differenced data. For d=0 or d=1, a constant will be included if it improves the AICc value; for 282 

d>1, the constant Q is fixed at 0 to avoid the model having a quadratic or higher order trend, 283 

which is dangerous when forecasting.  The final model is fitted using the maximum likelihood 284 

estimation.  285 

 286 

To guarantee the forecasted values and prediction intervals are above zero, we take the following 287 

two strategies. In the first one, we conduct the ARIMA order selection and model fitting using 288 

the log-transformed data. Then we take the exponential of the forecasted values and the PI 289 

bounds to predict the incident death counts and get the PIs. We refer to this approach as the (log) 290 

ARIMA throughout the manuscript. In the second case, the negative values are set as zero. Then, 291 

it is possible that the actual coverage probability of such PIs can be smaller than the nominal 292 

value (95%).  We refer to this approach as ARIMA throughout the manuscript.  293 

 294 

Forecasting strategy and performance metrics 295 

 296 

We conducted short-term forecasts using the top-ranking �-sub-epidemic model �1 � � � 2� 297 

and three ensemble models constructed with the top-ranking sub-epidemic models namely 298 

Ensemble(2), Ensemble(3), and Ensemble(4). For comparison, we also generated short-term 299 
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forecasts using the previously described ARIMA models. Overall, we conducted 588 forecasts 300 

across models.  301 

 302 

Using a 90-day calibration period for each model, we conducted a total of 98 weekly sequential 303 

10-day, 20-day and 30-day forecasts from 20 April 2020 to 28 February 2022, spanning five 304 

pandemic waves. This range of forecasting horizons is comparable to that investigated in prior 305 

COVID-19 forecasting studies [49]. This period covers the latter part of the early spring wave, a 306 

summer wave in 2020, a fall-winter 2020/2021 wave, the summer-fall wave in 2021, and the 307 

winter 2022 wave. 308 

 309 

To assess the forecasting performance, we used four performance metrics: the mean absolute 310 

error (MAE), the mean squared error (MSE), the coverage of the 95% prediction intervals, and 311 

the mean interval score (MIS) [50]. The mean absolute error (MAE) is given by: 312 

 313 

MAE= 
1
R $S+���, ,-� 
 &T��S

+

���

 . 

Here &T��is the time series of the original death counts (unsmoothed) of the h-time units ahead 314 

forecasts, where ��  are the time points of the time series data [51]. Similarly, the mean squared 315 

error (MSE) is given by: 316 

 317 

MSE= 
1
R $�+��� , ,-� 
 &T����

+

���

 . 
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We also employed two metrics that account for prediction uncertainty: the coverage rate of the 318 

95% PI  e.g., the proportion of the observations that fall within the 95% PI as well as the 319 

weighted interval score (WIS) [50, 52] which is a proper score. The WIS  and the coverage rate 320 

of the 95% PIs  take into account the uncertainty of the predictions, whereas the MAE and MSE 321 

only assess the closeness of the mean trajectory of the epidemic to the observations [53].   322 

 323 

Recent epidemic forecasting studies have embraced the Interval Score (IS) for quantifying model 324 

forecasting performance [18, 24, 49, 54]. The WIS provides quantiles of predictive forecast 325 

distribution by combining a set of ISs for probabilistic forecasts. An IS is a simple proper score 326 

that requires only a central (1−α)×100% PI [50] and is described as 327 

 328 

#>,�U, &� � �V 
 ;� � 2
W X �; 
 &� X Y�& � ;� � 2

W X �& 
 V� X Y�& � V� . 
 329 

In this equation 1 refers to the indicator function, meaning that Y�& � ;� � 1 if & � ; and 330 

0 otherwise. The terms ;  and V  represent the 
,

�
 and 1 
 ,

�
 quantiles of the forecast U. The IS 331 

consists of three distinct quantities: 332 

 333 

1. The sharpness of U, given by the width V 
 ;  of the central �1 
 W� X334 

100% PI. 335 

2. A penalty term 
�

,
X �; 
 &� X Y�& � ;� for the observations that fall below 336 

the lower end point ;  of the �1 
 W� X 100% PI. This penalty term is 337 
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directly proportional to the distance between & and the lower end ; of the 338 

PI. The strength of the penalty depends on the level W. 339 

3. An analogous penalty term  
�

,
X �& 
 V� X Y�& � V� for the observations 340 

falling above the upper limit V of the PI. 341 

 342 

To provide more detailed and accurate information on the entire predictive distribution, we 343 

report several central PIs at different levels �1 
 W�� � �1 
 W�� � @ � �1 
 W�� along with 344 

the predictive median, ?, which can be seen as a central prediction interval at level 1 
 W	 [ 0. 345 

This is referred to as the WIS, and it can be evaluated as follows: 346 

 347 

\#>,�:��U, &� � 1

 � 12

. �A	. |& 
 ?| � $ A-. #>,��U, &�
�

-��

� 

 348 

where, A- � ,�
�

 for ^ � 1,2, … . 
 and A	 � �

�
. Hence, WIS can be interpreted as a measure of 349 

how close the entire distribution is to the observation in units on the scale of the observed data 350 

[10, 55].  351 

 352 

 353 

Results 354 

 355 

Quality of the sub-epidemic model fits 356 

 357 

The best fit sub-epidemic model and three ensemble models constructed using the top-ranking 358 

sub-epidemic models (Ensemble(2), Ensemble(3), Ensemble(4)) yielded similar quality fits to 98 359 
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sequential weekly calibration periods from 20-April-2020 to 28-February-2022 (Figure 2, Table 360 

1). For instance, the average WIS was ~247 with little variation across models (Table 1). The 361 

coverage rate of the 95% PIs averaged 97% and ranged from 91% to 100% during the study 362 

period. Moreover, all performance metrics displayed similar temporal trends (Figure 2). 363 

 364 

Model Mean absolute 

error (MSE) 

Mean 

squared 

error (MAE) 

Percentage 

coverage of the 

95% prediction 

interval 

Weighted 

Interval Score 

(WIS) 

Best fit sub-

epidemic model 309260.00 394.74 97.06 247.28 

Ensemble(2) model 308300.00 394.91 97.30 246.93 

Ensemble(3) model 308620.00 395.24 97.46 247.09 

Ensemble(4) model 309160.00 396.17 97.46 247.33 

*The Ensemble(i) model incorporates the top i ranked sub-epidemic models in the ensemble as 365 

described in the text. 366 

 367 

Table 1.   Mean performance metrics quantifying the quality of model fits across 98 sequential 368 

weekly calibration periods of the daily time series of COVID-19 deaths in the USA from 20-369 

April-2020 through 22-February 2022. 370 

 371 

Figure 2. Performance metrics quantifying the quality of sub-epidemic model fits to 98 372 

sequential weekly calibration periods of the daily time series of COVID-19 deaths in the USA 373 

from 20-April-2020 through 22-February 2022. The best fit sub-epidemic model and three 374 

ensemble models constructed using the top-ranking sub-epidemic models (Ensemble(2), 375 

Ensemble(3), Ensemble(4)) yielded similar quality fits. 376 
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 377 

Representative fits of the top-ranking sub-epidemic models to the daily curve of COVID-19 378 

deaths in the USA from 27-Feb-2020 to 20-April-2020 are shown in Figure 3. Although these 379 

sub-epidemic models fit the data well, each of them results from the aggregation of two sub-380 

epidemics characterized by different growth rates, scaling of growth, and outbreak sizes as 381 

shown in Figure 4.  382 

 383 

Figure 3.  Representative fits of the top-ranking sub-epidemic models to the daily curve of 384 

COVID-19 deaths in the USA from 27-Feb-2020 to 20-April-2020.  The sub-epidemic models 385 

capture well the entire epidemic curve, including the latter plateau dynamics, by considering 386 

models with two sub-epidemics.  The best model fit (solid red line) and 95% prediction interval 387 

(dashed red lines) are shown in the left panels. The cyan curves correspond to the associated 388 

uncertainty from individual bootstrapped curves. The sub-epidemic profiles are shown in the 389 

center panels, where the red and blue curves represent the two sub-epidemics and the grey curves 390 

are the estimated epidemic trajectories. For each model fit, the residuals are also shown (right 391 

panels). Black circles correspond to the data points.  392 

 393 

Figure 4. Parameter estimates for the first (top panel) and the second sub-epidemics (bottom 394 

panels) were derived for the top-ranking sub-epidemic model after fitting the sub-epidemic 395 

modeling framework to the daily curve of COVID-19 deaths in the USA from 27-Feb-2020 to 396 

20-April-2020 (see also Figure 2). Parameter estimates for both sub-epidemics are well 397 

identified, as indicated by their relatively narrow bootstrap confidence intervals. 398 

 399 

Short-term forecasting performance 400 
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 401 

The best fit sub-epidemic model and three ensemble models constructed using the top-ranking 402 

sub-epidemic models (Ensemble(2), Ensemble(3), Ensemble(4)) consistently outperformed the 403 

ARIMA models in terms of the weighted interval score (WIS) and the coverage of the 95% 404 

prediction interval across the 10, 20 and 30 day short-term forecasts (Table 2). For instance, for 405 

30-day forecasts, the average WIS ranged from 377.6 to 421.3 for the sub-epidemic models, 406 

whereas, it ranged from 439.29 to 767.05 for the ARIMA models. Across 98 short-term 407 

forecasts, the Ensemble(4) outperformed the (log) ARIMA model 66.3% of the time and the 408 

ARIMA model 69.4% of the time in 30-day ahead forecasts in terms of the WIS (Figure 5 & 409 

Figure 6). Similarly, the coverage of the 95% PI ranged from 82.2% to 88.2% for the sub-410 

epidemic models, whereas it ranged from 58% to 60.3% for the ARIMA models in 30-day 411 

forecasts. In terms of the coverage of the 95% PI, the Ensemble(4) outperformed the (log) 412 

ARIMA model 89.8% of the time and the ARIMA model 91.8% of the time (Figure 5 & Figure 413 

6).  Forecasting performance generally improved as the number of top-ranking sub-epidemic 414 

models included in the ensemble increased (Table 1). The Ensemble(4) model consistently 415 

yielded the best performance in terms of the metrics that account for the uncertainty of the 416 

predictions.  417 

 418 

Model Mean 

absolute 

error (MSE) 

Mean squared 

error (MAE) 

Percentage 

coverage of the 95% 

prediction interval 

Weighted 

Interval Score 

(WIS) 

10 days ahead 

Top-ranked sub-

epidemic model 551740.00 535.16 87.14 352.00 

Ensemble(2) model 504560.00 516.44 88.88 331.83 
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Ensemble(3) model 491020.00 513.39 89.29 328.00 

Ensemble(4) model 491740.00 513.14 89.39 326.56 

(log) ARIMA model 424880.00 458.72 42.45 365.19 

ARIMA model 430070.00 467.18 43.06 380.47 

20 days ahead 

Top-ranked sub-

epidemic model 646880.00 570.34 85.15 382.90 

Ensemble(2) model 576700.00 544.35 88.57 354.04 

Ensemble(3) model 558890.00 540.71 89.59 350.73 

Ensemble(4) model 557130.00 539.30 89.44 346.83 

(log) ARIMA model 591980.00 536.22 51.07 422.41 

ARIMA model 538690.00 528.87 55.05 404.92 

30 days ahead 

Top-ranked sub-

epidemic model 749560.00 613.75 82.18 421.29 

Ensemble(2) model 670740.00 586.52 87.35 383.36 

Ensemble(3) model 650790.00 584.20 88.20 382.79 

Ensemble(4) model 644270.00 579.77 88.16 377.64 

(log) ARIMA model 818530.00 621.58 57.99 767.05 

ARIMA model 656480.00 591.93 60.34 439.29 

*The Ensemble(i) model incorporates the top i ranked sub-epidemic models in the ensemble as 419 

described in the text. 420 

 421 

Table 2.  Mean forecasting performance metrics for the sub-epidemic models (ensemble weights 422 

are proportional to the reciprocal of the AICc) and the ARIMA models across 98 sequential 423 

weekly calibration periods of the daily time series of COVID-19 deaths in the USA from 20-424 

April-2020 through 22-February 2022. Values highlighted in bold correspond to the best 425 

performance metrics. 426 
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 427 

Figure 5. Forecasting performance metrics for the (log) ARIMA model and the Ensemble(4) 428 

model across 98 30-day forecasts. The symbol (^) indicates weekly forecasts where the 429 

Ensemble(4) model outperformed the (log) ARIMA model. For example, the Ensemble(4) 430 

outperformed the (log) ARIMA model 66.3% of the time in terms of the WIS and 89.8% of the 431 

time in terms of the coverage rate of the 95% PI (Figure 4 & Figure 6).  432 

 433 

Figure 6. Forecasting performance metrics for the ARIMA model and the Ensemble(4) model 434 

across 98 30-day forecasts. The symbol (^) indicates weekly forecasts where the Ensemble(4) 435 

model outperforms the ARIMA model. For instance, the Ensemble(4) outperformed the ARIMA 436 

model 69.4% of the time in terms of the WIS and 91.8.8% of the time in terms of the coverage 437 

rate of the 95% PI (Figure 4 & Figure 6).  438 

 439 

In terms of the metrics based on point estimate information, the ARIMA models showed lower 440 

overall MSE or MAE compared to the sub-epidemic models in 10 and 20-day forecasts, but the 441 

Ensemble(4) achieved the best forecasting performance in 30-day forecasts (Table 2). Overall, 442 

the forecasting performance deteriorated at longer forecasting horizons across all models 443 

considered in our study. 444 

 445 

Representative 30-day forecasts of the top-ranking sub-epidemic models to the daily curve of 446 

COVID-19 deaths in the USA from 20-April-2020 to 20-May-2022 are shown in Figure 7. The 447 

corresponding sub-epidemic profiles of the forecasts are shown in Figure 8. These models 448 

support forecasts with diverging trajectories even though they yield similar fits to the calibration 449 
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period. For instance, the top-ranked sub-epidemic model predicts a decline in the mortality 450 

curve, whereas the second-ranked model predicts a stable pattern during the next 30 days (Figure 451 

7).  The corresponding forecasts generated from three ensemble models (Ensemble(2), 452 

Ensemble(3), Ensemble(4)) built from the top-ranking sub-epidemic models are shown in Figure 453 

9. The individual 30-day ahead predictions across 98 forecasting periods generated by the 454 

Ensemble(4) and the ARIMA models are available in the GitHub repository [30].  455 

 456 

Figure 7.  Representative 30-day forecasts of the top-ranking sub-epidemic models to the daily 457 

curve of COVID-19 deaths in the USA from 20-April-2020 to 20-May-2020. The model fit 458 

(solid line) and 95% prediction interval (shaded area) are also shown. The vertical line indicates 459 

the start time of the forecast. Circles correspond to the data points. These four top-ranking 460 

models support forecasts with diverging trajectories even though they yield similar fits to the 461 

calibration period. For instance, the 1st ranked sub-epidemic model predicts a decline in the 462 

mortality curve whereas the 2nd ranked model predicts a stable pattern during the next 30 days. 463 

 464 

Figure 8. Representative sub-epidemic profiles of the forecasts derived from the top-ranking 465 

sub-epidemic models to the daily curve of COVID-19 deaths in the USA from 20-April-2020 to 466 

20-May-2022. The model fit (solid line) and 95% prediction interval (shaded area) are also 467 

shown. Black circles correspond to the calibration data.  Blue and red curves represent different 468 

sub-epidemics of the epidemic wave profile. Gray curves correspond to the overall epidemic 469 

trajectory obtained by aggregating the sub-epidemic curves. The vertical line indicates the start 470 

time of the forecast. 471 

 472 
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Figure 9. Representative sub-epidemic ensemble model forecasts (Ensemble(2), Ensemble(3), 473 

Ensemble(4)) of COVID-19 deaths in the USA from 20-April-2020 to 20-May-2022. Circles 474 

correspond to the data points. The model fits (solid line) and 95% prediction intervals (shaded 475 

area) are shown. Circles correspond to the data points. The vertical line indicates the start time of 476 

the forecast 477 

 478 

In sensitivity analyses, defining ensemble weights as proportional to the relative likelihood did 479 

not achieve better performance relative to the ensemble models generated using weights 480 

proportional to the reciprocal of the AICc. Moreover, the rank of the ensemble models was not 481 

affected by the type of weights (Table 3).  482 

 483 

Model Mean absolute 

error (MSE) 

Mean 

squared 

error (MAE) 

Percentage 

coverage of the 95% 

prediction interval 

Weighted 

Interval Score 

(WIS) 

10 days ahead 

Top-ranked sub-

epidemic model 551740.00 535.16 87.14 352.00 

Ensemble(2) model 548540.00 534.14 87.25 348.66 

Ensemble(3) model 547220.00 533.51 87.25 347.99 

Ensemble(4) model 546350.00 533.23 87.35 347.60 

(log) ARIMA 

model 424880.00 458.72 42.45 365.19 

ARIMA model 430070.00 467.18 43.06 380.47 

20 days ahead 

Top-ranked sub-

epidemic model 646880.00 570.34 85.15 382.90 

Ensemble(2) model 640240.00 567.90 85.71 377.27 
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Ensemble(3) model 640960.00 568.45 85.71 376.67 

Ensemble(4) model 639280.00 567.74 85.56 376.36 

(log) ARIMA 

model 591980.00 536.22 51.07 422.41 

ARIMA model 538690.00 528.87 55.05 404.92 

30 days ahead 

Top-ranked sub-

epidemic model 749560.00 613.75 82.18 421.29 

Ensemble(2) model 744130.00 612.63 82.65 414.72 

Ensemble(3) model 745230.00 613.21 82.59 414.54 

Ensemble(4) model 743020.00 612.48 82.52 414.16 

(log) ARIMA 

model 818530.00 621.58 57.99 767.05 

ARIMA model 656480.00 591.93 60.34 439.29 

 484 

 485 

Table 3. Mean forecasting performance metrics for the sub-epidemic models (ensemble weights 486 

were based on the relative likelihood) and the ARIMA models across 98 sequential weekly 487 

calibration periods of the daily time series of COVID-19 deaths in the USA from 20-April-2020 488 

through 22-February 2022. Values highlighted in bold correspond to the best performance 489 

metrics. 490 

 491 

 492 

Discussion 493 

 494 

Our ensemble sub-epidemic modeling approach outperformed individual top-ranking sub-495 

epidemic models and a set of ARIMA models in weekly short-term forecasts covering the 496 

national trajectory of the COVID-19 pandemic in the USA from the early growth phase up until 497 
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the Omicron-dominated wave. This framework has demonstrated reliable forecasting 498 

performance across different pandemic phases from the early growth phase characterized by 499 

exponential or sub-exponential growth dynamics to plateaus and new disease surges driven by 500 

the relaxation of social distancing policies or the emergence of new variants. Importantly, we 501 

found that forecasting performance consistently improved for the ensemble sub-epidemic models 502 

that incorporated a higher number of top-ranking sub-epidemic models. The ensemble model 503 

incorporating the top four ranking sub-epidemic models consistently yielded the best 504 

performance, particularly in terms of the coverage rate of the 95% prediction interval and the 505 

weighted interval score. 506 

 507 

Our findings support the power of ensemble modeling approaches (e.g.,[14-17]). Our ensemble 508 

modeling framework derived from a family of sub-epidemic models demonstrated improved 509 

performance as the number of top-ranking sub-epidemic models included in the ensemble 510 

increased. Prior studies have documented the potential of ensemble models to enhance 511 

forecasting performance during multi-epidemic periods [14]. For instance, in the context of 512 

influenza, one study utilized “weighted density ensembles” for predicting timing and severity 513 

metrics and found that the performance of the ensemble model was comparable to that of the top 514 

individual model, albeit the ensemble’s forecasts were more stable across influenza seasons [17]. 515 

In the context of dengue in Puerto Rico, another study found that forecasts derived from 516 

Bayesian averaging ensembles outperformed a set of individual models [25]. Results from the 517 

US COVID-19 Forecasting Hub CDC were consistent with our findings in that a multimodel 518 

ensemble frequently outperformed the set of individual models.  519 

 520 
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We also evaluated short-term forecasting performance by a set of ARIMA models, as prior 521 

studies have underscored the value of ARIMA models in epidemic forecasting [56], by providing 522 

a relatively simple and transparent approach to forecasting. For instance, in the context of 523 

influenza-like-illness in the USA, a set of ARIMA models provided reasonably accurate short-524 

term forecasts during the 2016/17 influenza season [57]. In another forecasting study during 525 

multiple seasons of influenza in the USA, an ARIMA model yielded similar short-term 526 

forecasting performance compared to other models based on the mechanistic SIR modeling 527 

framework [58]. ARIMA models have also been used for spatial prediction of the COVID-19 528 

epidemic [59, 60]. Another study [61] showed that the ARIMA model is more effective than the 529 

Prophet time series model for forecasting COVID-19 prevalence. Finally, it is worth noting that 530 

the US COVID-19 Forecast Hub did not include an ARIMA model in its set of evaluated models 531 

[49]. Therefore, it is interesting to assess how ARIMA models perform in the context of the 532 

COVID-19 pandemic in the US. 533 

 534 

Prior work has underscored the need to assess alternative ways of constructing ensembles from a 535 

set of individual models [14, 16]. We explored two ways of constructing the ensembles by 536 

relying on the AICc or the relative likelihood associated with the individual models. We found 537 

that the short-term forecasting performance achieved by the ensemble models was not 538 

significantly affected by the type of ensemble weights used to construct them although 539 

performance using ensemble weights based on the reciprocal of the AICc was slightly better. 540 

Further research could explore how different weighting strategies influence the forecasting 541 

performance of ensemble modeling approaches. 542 

 543 
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Short-term forecasting is an essential attribute of the models. As prior studies have underscored, 544 

longer-term forecasts are of value, but their dependability varies inversely with the time horizon. 545 

Our 20 and 30-day forecasts are most valuable for monitoring, managing, and informing the  546 

relaxing of social distancing requirements. The early detection of potential disease resurgence 547 

can signal the need for strict distancing controls, and the reports of cases can identify the 548 

geographic location of incubating sub-epidemics.  549 

 550 

Our study is not exempt of limitations. Our analysis relied on daily time series data of COVID-551 

19 deaths in the USA, which is inherently noisy due to heterogeneous data reporting at fine 552 

spatial scales (i.e., county-level) [62]. Noisy data complicate the ability of any mathematical 553 

model to identify meaningful signals about the impact of transmission dynamics and control 554 

interventions. To deal with the high noise levels in the data, we fitted the models to smoothed 555 

time series rather than the actual daily series, as described in the parameter estimation section. 556 

Other forecasting studies, including the US COVID-19 Forecasting Hub, have relied on weekly 557 

death counts to address this issue [49]. Beyond the COVID-19 pandemic, there is a need to 558 

establish benchmarks to systematically assess forecasting performance across a diverse catalog 559 

of mathematical models and epidemic datasets involving multiple infectious diseases, social 560 

contexts, and spatial scales.  561 

 562 

While our analysis demonstrated the accuracy of our ensemble sub-epidemic modeling 563 

framework in forecasting the COVID-19 pandemic, the same framework could be readily used to 564 

forecast other epidemics irrespective of the type of disease and spatial scale involved.  Beyond 565 

infectious diseases, this framework could also be used to forecast other biological and social 566 
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growth processes, such as the epidemics of lung injury associated with e-cigarette use or vaping 567 

and the viral spread of information through social media platforms. 568 

 569 

In summary, our ensemble sub-epidemic models provided reliable short-term forecasts of the 570 

trajectory of the COVID-19 pandemic in the USA involving multiple waves and outcompeted a 571 

set of ARIMA models.  The forecasting performance of the ensemble models improved with the 572 

number of top-ranking sub-epidemic models included in the ensemble.  This framework could be 573 

readily applied to investigate the spread of epidemics and pandemics beyond COVID-19 and in a 574 

range of problems in nature and society that would benefit from short-term predictions.  575 
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