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Modelling the spatiotemporal 
complexity of interactions 
between pathogenic 
bacteria and a phage 
with a temperature‑dependent life 
cycle switch
Halil I. Egilmez1, Andrew Yu. Morozov2,3* & Edouard E. Galyov2

We apply mathematical modelling to explore bacteria-phage interaction mediated by condition-
dependent lysogeny, where the type of the phage infection cycle (lytic or lysogenic) is determined by 
the ambient temperature. In a natural environment, daily and seasonal variations of the temperature 
cause a frequent switch between the two infection scenarios, making the bacteria-phage interaction 
with condition-dependent lysogeny highly complex. As a case study, we explore the natural control 
of the pathogenic bacteria Burkholderia pseudomallei by its dominant phage. B. pseudomallei is the 
causative agent of melioidosis, which is among the most fatal diseases in Southeast Asia and across 
the world. We assess the spatial aspect of B. pseudomallei-phage interactions in soil, which has been 
so far overlooked in the literature, using the reaction-diffusion PDE-based framework with external 
forcing through daily and seasonal parameter variation. Through extensive computer simulations for 
realistic biological parameters, we obtain results suggesting that phages may regulate B. pseudomallei 
numbers across seasons in endemic areas, and that the abundance of highly pathogenic phage-free 
bacteria shows a clear annual cycle. The model predicts particularly dangerous soil layers characterised 
by high pathogen densities. Our findings can potentially help refine melioidosis prevention and 
monitoring practices.

Among major factors controlling bacterial numbers both in the wild and in artificial environments are natural 
enemies known as bacteriophages or phages. Phages are viruses that can specifically infect their host by attaching 
to particular bacterial receptors, injecting their genomic DNA (or RNA) into the host cell cytoplasm, and trigger-
ing a process that can lead to phage replication or integration of phage genome into the host chromosome. Viruses 
are considered to be the most abundant biological entity on our planet, and are known to be the key factor regulat-
ing the length and amplitude of algal and bacterial blooms in the ocean1,2. Targeting of undesirable bacteria using 
phages has been successfully used to overcome bacterial resistance to antibiotics in both food safety and medical 
applications3,4, and phages have be used to control the spread of deadly pathogens, such as Vibrio cholerae 5.  
However, the role of phages in regulating the number of bacteria in complex heterogeneous environments is still 
poorly understood. Mathematical modelling backed up by empirical data is a powerful tool for quantifying and 
forecasting the dynamics of bacterial hosts and their phages under changing environmental conditions6. In this 
paper, we use modelling to explore the regulation of the pathogenic bacterium, Burkholderia pseudomallei, by 
its dominant phage with a temperature-dependent life cycle switch in complex spatio-temporal environments.

The soil- and water-borne pathogen B. pseudomallei causes melioidosis, which is a serious human illness. 
It is a significant problem for the rice growing industry as the organism abounds in rice paddies, infecting 
agricultural workers, and killing around  45% of those infected. The overall number of deaths caused by the 
pathogen is estimated to be as high as 90,000 per year7–10. The US Centers for Disease Control and Prevention 
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have identified B. pseudomallei as a potential biothreat agent11. B. pseudomallei is highly abundant in the natural 
environment and agricultural fields across the tropics, especially in Southeast Asia, particularly in Thailand and 
Laos, and northern Australia7,12. Unlike plankton blooms in the ocean, which are highly visible due to changes 
of the natural water colour, bacterial outbreaks in the soil are invisible. Due to the absence of coloration, these 
‘invisible blooms’ can be easily overlooked by the general public and health control organisations. Until recently, 
the potential impact of phages on B. pseudomallei and its infectivity in the environment have been largely over-
looked in the literature, but available empirical data suggest that phages can potentially control B. pseudomallei 
numbers in water or soil in a similar way to control of cyanobacterial blooms by marine viruses13,14. High phage 
numbers have been observed in soil containing B. pseudomallei in Thailand, Laos and Vietnam14,15, indicating 
that they possibly interact with and impact the bacteria.

Difficulties in understanding and predicting the efficiency of control of B. pseudomallei by its natural phages 
stem from the high complexity of the underlying biological system. In particular, B. pseudomallei-phage inter-
action is affected by the recently discovered ‘condition-dependent lysogeny’ that is characteristic for a clade of 
highly abundant phages15. Condition-dependent lysogeny is schematically depicted in Fig. 1. In ‘warm’ conditions 
the phages infect the pathogen and follow a lytic cycle (immediately killing the host cells), whereas at colder 
temperatures they lysogenise their bacterial hosts: in this case the phage remains in the cell without causing lysis15 
and infected bacteria become phage-associated. Lysogenic (i.e. phage-associated) B. pseudomallei which enter 
a warm-blooded host would experience lysis of the pathogen, and would not be able to cause disease. In warm 
conditions most bacteria in the environment are in the ‘phage-free’ form and can cause disease when entering the 
human body. The switch between the lytic and the lysogenic infection cycles occurs at temperatures of around 
35 °C15,16 which has important consequences for bacteria-phage interactions: daily and seasonal variation of the 
temperature in the main endemic areas of Southeast Asia and Australia should cause a transition between the 
two infection cycles. In this paper, we are interested in predicting natural control of B. pseudomallei by the phage 
by means of computational modelling in order to provide important knowledge to facilitate the natural bacterial 
control by the phage via adjusting the existing agricultural practices.

Mathematical and computational modelling of interactions between bacteria and their natural viruses has a 
long history starting from the seminal work of Campbell17 and later by Lenski et al.18. The amount of theoretical 
studies has increased dramatically within recent years (for a brief review see6), but surprisingly, systems involving 
temperature-dependent lysogeny have not received much attention until very recently. Egilmez et al. modelled 
B. pseudomallei-phage interactions under varying temperature using historic data from two endemic provinces 
in Thailand16. Their modelling study predicts that B. pseudomallei can exhibit annual blooms (outbreaks) during 
warm seasons, which positively correlates with the reported increased cases of melioidosis during these periods. 
The model, however, considered bacteria-phage dynamics in a well-mixed environment in the surface water of 
agricultural fields. As such, the model neglected the spatial aspect of the problem, while the fact that the key 

Figure 1.   Schematic diagram explaining the two types of infection cycles of the phage (lytic and lysogenic) 
under the scenario of temperature-dependent lysogeny. At hot temperatures ( T > 35 °C), most phages follow 
a lytic cycle by killing the pathogen after the infection (shown by red dashed lines). At cooler temperatures 
( T < 35 °C), infection by the phage mostly occurs via a lysogenic cycle where bacterial cells become phage-
associated (shown by blue lines). However, an increase in the ambient temperature causes the bacteria-
associated phages to enter the lytic state and lyse their hosts (shown by the red solid line).
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drivers of interactions, the temperature and the carrying capacity of bacteria in soil, have a pronounced spatial 
gradient in the vertical direction. Adding space might have a substantial effect on previous conclusions about 
disease prevention and monitoring practices from the well-mixed model.

Here we extend the model of temperature-dependent lysogeny developed by Egilmez et al.16 by adding a spa-
tial dimension. We explore the spatiotemporal dynamics of bacteria-phage interactions in the upper layer of soil 
under daily and seasonal variation of the temperature. The dependence of model parameters on the temperature 
and the depth is taken from the available empirical literature and the temperature variation is taken from histori-
cal records for two endemic provinces of Thailand (Sa Kaeo and Nakhon). Using extensive computer simulations 
we explore spatiotemporal dynamics within a large range of biologically realistic model parameters. The spatial 
model is based on the classical reaction-diffusion framework (PDEs), and despite the overall complexity of the 
system, the model can be still considered to be parsimonious compared to highly complex soil models. The 
reaction-diffusion approach can be applied since the considered non-homogeneous system is under a strong 
external forcing (by means of daily and seasonal temperature variation).

Our model predicts that the system undergoes clear seasonal cycling behaviour with outbreaks of phage-free 
pathogenic bacteria occurring at the onset of the hot season in both provinces considered. We find that the verti-
cal profiles of phage-free and infected bacterial cells (in both lysogenic and lytic states) show a non-monotonous 
pattern: bacterial blooms with a high density of phage-free B. pseudomallei are observed at some intermediate 
depths, which can have important consequences for the safety of agricultural workers. Interestingly, enrichment 
of the environment in the model (e.g. by using agricultural fertilisers) can cause irregular spikes in phage-free 
bacteria numbers, signifying a higher risk of disease. This theoretical study re-enforces the early hypothesis 
that temperature-responsive phages could play a key role in regulating bacterial numbers both daily and across 
seasons16. It provides possible ways to improve the existing monitoring of B. pseudomallei in soil using informa-
tion on the vertical distribution of the pathogen.

Methods
Model equations.  We introduce a spatiotemporal model to describe the bacteria-phage interaction in the 
upper part of the soil with the depth H (we consider H = 1 m) in a typical agricultural field. Here we consider a 
1D model where all abiotic and biotic components depend on time t and vertical coordinate h. The biotic com-
ponent of the model consists of 4 compartments: phage-free bacteria (S) susceptible to infection by the phage, 
bacteria infected by the phage in its lysogenic ( I1 ) and lytic ( I2 ) states, and free phages (P). The total density of the 
host bacterial populations N is defined as N = S + I1 + I2 . The schematic diagram illustrating bacteria-phage 
interactions is similar to that of Egilmez and co-authors16. The local species interactions are described based on 
the classical modelling approach6,19. Our spatiotemporal model is of reaction-diffusion type and is described by 
the following equations

In the above model, we parameterise the growth of susceptible bacteria via a standard logistic growth 
function6, where α is the maximal per capita growth rate and C is the carrying capacity of the environment; we 
assume that C(h) varies with depth. Infection of S by phages P at low temperatures results in lysogeny which is 
described by a mass action term KsS(t, h)P(t, h) . The growth of lysogenic bacteria I1 is described by a logistic 
function as in the case of S; however, with a different maximal growth rate α(T) as detailed in the next subsection. 
At high temperatures, the transition from the lysogenic to the lytic cycle of infection occurs: this is described 
by the term �1(T)I1(t, h) . Infection by the phage via the lytic cycle is modelled by the term K2(T)S(t)P(t) . The 
death rate of infected bacteria due to lysis is modelled by �2(T)I2 . The lysis of a bacterium results in the release 
of b new phages, the the burst size6. In the equation for P, KN(t)P(t) stands for the loss of phage due to binding 
to any type of bacteria (for simplicity, we assume that there is no saturation in binding). Finally, µP(t, h) is the 
natural mortality or deactivation of phages.

According to this framework, the vertical displacement of the phage and bacteria are modelled by a diffusion 
term (first term in each equation), where Db and DP are the diffusion coefficients of bacteria and phage, respec-
tively. The variation of the temperature T across the soil is described by the heat equation

where Dh is the diffusion coefficient of heat transfer (see more detail in the next section). Models (1)–(2) should 
be supplied with appropriate boundary conditions. We assume that the model has the zero-flux boundary con-
dition for all biotic components (bacteria and phage) at h = 0 and h = H . For the temperature, we consider 
Dirichlet boundary conditions such that T(t, 0) = Ts(t) and T(t,H) = TH , where Ts(t) is the surface temperature 
and TH is a constant temperature in deeper soil layers.
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Parameterisation of equation terms.  Next we describe the functional forms of the dependence of 
model parameters on the temperature and the depth. Following the previous study16, we assume that the maxi-
mal bacterial growth rates α(T) and α(T) are described by

where T0 = 38.2 ◦C is the optimal temperature; T1 = 34.8 ◦C is the temperature corresponding to the switch 
between the lytic and the lysogenic cycles; αmax = 23 day−1 is the maximal possible growth, σ = 9.1 ◦C describes 
the decay of growth with temperature T16,20.

In the equation for α(T) , we assume that at a high temperature normal cell division of I1 stops since there 
is a transition to a lytic state in bacteria. In the soil bacteria grow anaerobically or microaerophillically, and the 
growth rates of B. pseudomallei under such conditions are yet to be studied. For simplicity they are assumed to be 
the same as under aerobic conditions. Realistic values of the above parameters are listed in Table 1. Note that in 
the model both α(T) and α(T) are in fact effective growth rates of the bacterial populations, i.e. they incorporate 
the replication of cells and as well as their mortality.

The overall adsorption rate of the phage K is estimated as 2× 10−7 ml−1 day−1 from Egilmez et al.16. The 
adsorption constants K1(T) , K2(T) and the transition rate from lysogenic to lytic cycle �1(T) depend on tem-
perature as follows16:

where KS is the maximal phage adsorption constant ( KS = ǫK where ǫ = 0.3 is the adsorption efficiency) and 
�1max = 23 day−1 is the maximal transition rate which is assumed to be equal to the maximal growth rate of 
the bacteria16. The lysis rate of bacteria �2 = 20 day−1 (depending on 50 min latency time13) and the burst size 
b = 100 in the model are assumed to be constant16. The temperature dependence of α(T) , α(T) , K1(T) , K2(T) and 
�1(T) are shown in Fig. 2. The mortality rate of phages µ is high near the surface due to ultraviolet radiation, but 
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Table 1.   Parameters used in the model along with their units and ranges.

Symbol Meaning Unit Range Default Value

Db Bacteria diffusion coefficient in soil cm2 day−1 10−12
−10−3 10−7

DP Phages diffusion coefficient in soil cm2 day−1 10−12
−10−3 10−5

Dh Heat diffusion coefficient in soil cm2 day−1 − 67

ρs Bulk density kg/m3 − 1.1× 103

Cps Specific heat J/kg K − 1.1× 103

ks Thermal conductivity in soil W/m K − 0.1

αmax Maximum growth rate of bacteria day−1 19−27 23

Csurf Bacteria carrying capacity near the surface cell/ml 1× 106−1× 107 1× 106

C0 Bacteria carrying capacity at large depths cell/ml 1× 104−1× 107 1× 106

√
B Inverse characteristic length of C(h) cm−2 − 7.5× 10−4

K Phage adsorption rate ml−1day−1 5× 10−8
−5× 10−7 1× 10−7

KS Effective per bacteria contact rate ml−1day−1 − ǫ × 10−7

ǫ Adsorption efficiency − − 0.3

�1max Maximum lysogenic process rate day−1 19.1−27.2 23

�2 Constant lysis rate day−1 − 20

b Phage burst size − 50−200 105

T0 Optimum temperature for growth and lysis ◦C 35.6−50.6 38.2

T1 Optimum transition temperature ◦C 34.81−34.84 34.8

σ Standard deviation of growth rate ◦C 6.7−17.4 9.1

µ Mortality rate of phages day−1 0.1−15 3

n Transition width − 53.7−56.3 55
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the role of ultraviolet radiation becomes negligible starting from a depth of a few centimetres because sunlight 
cannot penetrate the soil. For the above reason, we can assume µ = 3 day−1 to be constant.

The carrying capacity C of the bacteria varies with the depth of the soil, according to empirical 
observations21–23. This can be explained by the fact that the humus, oxygen, nitrogen contents, or/and water 
content in the soil generally decrease with depth24. We use a combined approach to parameterise C(h) based 
on the available empirical data. We assume that in the absence of phages, the bacteria achieve numbers close to 
the carrying capacity at a given depth. Firstly, we parameterise the dependence of the overall bacterial load on 
depth in paddy soils in Southern Asia using the existing data22. Then we re-scale the obtained curve based on 
the available observations of B. pseudomallei at a depth h = 30 cm25,26. We approximate C(h) using the following 
simple Gaussian-type curve

where Csurf gives the maximal number of bacteria near the surface (h), B determines how fast the bacterial abun-
dance decreases with depth, C0 is background bacterial density which takes into account the fact that bacteria 
can survive even at large depths (e.g. h = 100 cm ). Based on our estimates (see supplementary material SM1 
for more detail), we will use the following parameter values as defaults: Csurf = 1× 106 cell/ml , B = 7.5× 10−4 
1/cm2 , C0 = 104 cell/ml . One can easily see that C(h) has a maximum at the surface and monotonically decreases 
with depth. We assume that the carrying capacity of the environment is not influenced by seasonal variation.

The coefficient Dh in the equation for the temperature distribution can be estimated as follows. Generally, Dh 
is related to ρs , Cρs and ks which are the bulk density, specific heat and thermal conductivity in soil, respectively, 
i.e. Dh = ks/(ρsCρs) . We use the estimates for ρs , Cρs and ks from27 which gives ρs = 110.52 kg/m3 , Cρs = 1130 
J/kg K and ks = 0.0967 W/m K and, for the diffusion coefficient Dh = 7.7× 10−8 m2s−1 . The variation of Ts—the 
surface temperature—is obtained from the historical weather report for the surface16. The bottom boundary 
temperature TH at h = H = 1 m is considered to be 22 ◦C . The initial value of the temperature distribution Ts(0) 
is assumed to be linear, but this assumption does not affect long-term temperature dynamics.

The paddy fields in which we model the bacteria-phage interactions are flooded lands, where the soil is 
either mud or muddy water. Many factors can affect vertical dispersal of bacteria and phages in such soil. 
For instance, rain water can carry bacteria and phage up or down in the soil, which can be mathematically 
modelled by adding an advection term; however, for simplicity we ignore such effects in this paper. We also 
assume the phage and bacteria vertical diffusion coefficients to be constant; however, it is rather hard to provide 
accurate estimates for Dp and Db . In water, the diffusion coefficient of bacteria and phages can be estimated as 
3.6× 10−10 m2s−1

= 0.3 cm2day−1 and 2.8× 10−12 m2s−1
= 0.002 cm2day−1 , respectively28, but the diffusivity 

in soil should be smaller than this. As such, these values should be considered as upper limits for DP and Db , with 
the actual coefficients being orders of magnitude smaller. We undertook simulations with different combinations 
of diffusion coefficients in this range, and found that the patterns of vertical distribution do not largely depend 
on the diffusion coefficients provided DP < 10−3 cm2day−1 and Db < 10−2 cm2day−1 , due to the strong external 
forcing of the system by temperature (see “Results” section for details).

(6)C(h) = (Csurf − C0) exp(−Bh2)+ C0,

20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3
10-8

(a)

20 25 30 35 40 45
0

5

10

15

20

25

(b)

Figure 2.   (a) Temperature dependence of the adsorption constants Ki ( i = 1, 2 ) of the phage (measured in 
ml−1day−1 ). (b) Growth rates of susceptible α(T) and lysogenic α(T) bacteria and the transition rate �1(T) 
from the lysogenic cycle to the lytic cycle (measured in day−1 ). The corresponding analytical expressions for the 
temperature dependence are given by (3)–(5).
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In our numerical simulations, we use both explicit and implicit numerical schemes. We take a 0.1 cm spatial 
step size to get a proper resolution. We separately compute the heat equation to define T(t) with a smaller time 
resolution and then apply the temperature obtained to model bacteria-phage interactions for a larger time 
resolution (for example, �t ∼= 7× 10−5 day). We compute the average densities of the species (both in terms of 
spatial and temporal averaging) using a numerical right Riemann sum. The accuracy of our numerical simula-
tion was verified by reducing both time and space steps and comparing the results obtained. We use daily and 
seasonal variation of temperatures (for the period of 2013–2016) in the provinces of Nakhon Phanom and Sa 
Kaeo in Thailand to parameterise the model (http://www.world​weath​eronl​ine.com). The unit of the densities of 
bacteria and phages are cells/ml. The summary of model parameters as well their values are provided in Table 1.

Results
Modelling temperature variation in soil.  Using Eq. (2) and historical data of temperature variation near 
the soil surface during the 3 year period considered, we explored the daily spatiotemporal variation of T(h, t) as 
well as dynamics across seasons. Figure 3a and 2S in SM2 show examples of the vertical temperature distribution 
at different times of the day for the first day of January, April, July and October in the Nakhon Phanom province 
in Thailand. In the other province Sa Kaeo, the temperature variation exhibits a similar spatiotemporal pattern 
which is not shown here for brevity. It is apparent that the temperature exhibits daily oscillations until depths 
of around h = 40 cm . At greater soil depths the temperature gradually decreases towards the boundary value of 
TH = 22 °C uniformly across seasons.

Temperature variations observed at several fixed depths are shown in Fig. 3b and 3S in SM2, plotted for the 
same days as those presented in Fig. 3a and 2S in SM2. We compared the range of temperature variation predicted 
by the model with reported field data in Thailand29, and found a good overall agreement between theoretical and 
empirical values which allows us to substitute the theoretical values of T(h, t) into model equations (1). The main 
conclusion from Figs. 2, 3 is that variation of temperatures both in time and space occurs around the critical value 
of T1 , which describes the switch between the lytic and the lysogenic infection cycles in the highly abundant phage 
of B. pseudomallei. One can see that the temperature-dependent switch occurs in the range of depths from h = 0 
to h = 20 cm . This fact has profound consequences for bacteria-phage interaction, which are discussed below.

Seasonal dynamics of bacterial and phage numbers.  Using the above temperature variation patterns, 
we run simulations of the model to obtain predicted bacterial and phage densities. The dynamics of all compo-
nents for the default parameter values in Table 1 are shown in Fig. 4, plotted for Nakhon Phanom province in 
Thailand. In this figure, we present the temporal dynamics of the phage and bacteria densities which are spatially 
averaged from the surface to the depth h = 20 cm (note that the considered upper soil layer is characterised by 
the most pronounced daily oscillations in temperature, see Figs. 3 and SM2). One can see that the overall popula-
tion of susceptible bacteria S in the upper soil layers demonstrates a pronounced seasonal trend with a peak in 
May–June. This can be explained by the fact that higher temperatures promoting bacterial growth are observed 
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Figure 3.   Vertical distribution of the temperature across the soil (a) and daily temperature variation at a fixed 
depth of the soil (b) for the first day of April in a typical field in Nakhon Phanom province in Thailand predicted 
by the heat equation (2) using historical surface temperature data for the period of 2013–2016.

http://www.worldweatheronline.com
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during this time. The overall amount of free phages in the soil follows the annual pattern of susceptible bacteria: 
the presence of a large number of S at high temperatures results in a massive replication of P across the soil layers. 
The lysogenic bacteria I1 show the opposite dynamics to both susceptible bacteria S and bacteria in the lytic state 
I2 by following the temperature variation controlling the switch between the two infection cycles.

Figure 5 shows the vertical profiles of the densities of all types of bacteria and the phage on April 1st (the 
profiles of densities of microorganisms for the other seasons of the year are shown in supplementary material 
SM4). The profile S(h) is characterised by two pronounced maxima: a narrow peak in the upper soil layers, and 
a lower one at a depth of approximately h = 30 cm . Lysogenic bacteria I1 are dominant in the range of depths 
from a few centimetres in the upper surface layers to the depth where S achieves its deep maximum. The reason 
that S can outcompete I1 at deeper soil layers—despite the fact that they have the same growth rate—is because of 
the lysis of I1 which occurs during warm periods. Bacteria in the lytic state I2 are located mostly near the surface 
which coincides with higher phage densities. The vertical profile of the free phage can also have several peaks 
as well, but these are mostly located near the surface within depths up to approximately h = 15 cm : at deeper 
depths the phage can only persist via a lysogenic mode (inside bacteria).

Daily temperature variation causes high amplitude oscillations of susceptible bacteria S near the surface with 
the lowest and the highest abundances being at mid-day and late evening, respectively. These oscillations are 
strongly correlated with those of the phage density P. The overall pattern of the vertical distribution of micro-
organisms remains similar across seasons with only minor alterations. For example, in April–May the locations 
characterised by a high density of S extend from the surface to deeper depths. This results in peaks of the overall 
amount of pathogenic bacteria shown in Fig. 4. Interestingly, the lower peak of S remains constant throughout 
all seasons. Our simulations demonstrate a similar pattern of daily and annual dynamics of bacterial and phage 
numbers for Sa Kaeo province (see supplementary material SM6).

Dependence of system dynamics on model parameters.  We varied key model parameters to assess 
their influence on system dynamics. Increasing the carrying capacity of bacteria Csurf  (e.g. due to excessive use 
of fertiliser in agricultural fields) results in the appearance of sharp peaks of the abundance of S during warm 
seasons due to the higher temperatures in the top soil. In this case, most lysogenic bacteria switch to the lytic 
cycle and then die. Figure 6 presents the annual dynamics of the bacterial density in the top 20 cm of the soil for 
increasing values of the carrying capacity. Unlike Fig. 4, the densities are averaged through the entire day. The 
observed non-smoothness of the curves for high values of Csurf  occurs due to high irregularity in the daily oscil-
lations of S, I1 , I2 , and P. Enrichment of the environment by adding nutrients generally promotes non-periodic 
daily oscillations and sudden bursts of bacteria. It also increases the amplitude of peaks of susceptible patho-
genic bacteria (not shown here for brevity). This mechanism is similar to the classical paradox of enrichment in 
predator-prey systems30–33. High amplitude oscillations of S would signify a higher risk of disease acquisition.

Enrichment of the soil largely alters the vertical distribution of bacteria and phages shown in Fig. 7 (for the 
vertical profiles of other components see SM3). The range of depths with high densities of S near the surface 
shrinks with an increase of Csurf  . Moreover, the profiles show a narrow and sharp peak of S which presents 
potential danger for agricultural workers (note that such peaks occur at all times). Analysis of the model for a 
fixed temperature shows that the existence of these sharp peaks is related to a Hopf bifurcation which occurs 
when the carrying capacity is varied.
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Figure 4.   (a,b) Daily and seasonal temporal dynamics of bacteria and phage numbers within the upper 20 cm 
of the soil predicted by the model for Nakhon Phanom province in Thailand. Model parameters are taken from 
Table 1 as default values. The unit of the densities of bacteria and phages are cell/ml and phage/ml, respectively.
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Other important parameters of the model are the diffusion coefficients of microorganisms in the soil. 
We find that, surprisingly, variation of Dp and Db within the ranges 10−11 < DP < 10−3 cm2day−1 and 
10−10 < Db < 10−2 cm2day−1 results in only slight changes in the dynamics (the corresponding graphs are 
presented in supplementary material SM5). Only in cases where the diffusion coefficients become substantially 
large (Db,p > 10−2 cm2 day−1) does the vertical profile of S become altered. This can be explained by a strong 
external forcing on the system by the temperature variation: the system essentially becomes a set of independ-
ent oscillators synchronised by external forcing (i.e. local interactions between phages and bacteria involving 
oscillatory dynamics). This holds true for any ratio of Dp/Db provided the coefficients are small in the absolute 
value. This finding strengthens our theoretical predictions, since accurate estimates for values of Dp and Db are 
not available in the literature.

Finally, we investigated the role of three other key model parameters describing the efficiency of phages: 
the phage mortality µ , the burst size b and the adsorption constant K. The results are summarised in the two 
following diagrams shown in Fig. 8. The other parameters are kept constant to their default values. In the dia-
grams we categorised the pattern of dynamics into three different dynamical regimes. Regime A corresponds to 
dynamics exhibiting oscillations in species densities due to daily and seasonal variations, as seen in Figs. 4, 5. 
Regime B corresponds to the pattern of dynamics shown in Fig. 7. In this case, fluctuations in species densities 
do not match daily and/or seasonal variations but are highly irregular. These two regimes can be distinguished 
using the dynamical patterns of daily average densities. Finally, regime C corresponds to the extinction of the 

Figure 5.   Vertical distribution of infected bacteria predicted by the model (a): in lytic I1 , (b): in lysogenic I2 , (c): 
phage P and (d): susceptible bacteria S in the soil across the day of April 1st predicted by the model calculated 
for Nakhon Phanom province. Model parameters are taken from Table 1 as default values. Note that the curves 
in (d) overlap for depths h>20cm. The unit of the densities of bacteria and phages are cell/ml and phage/ml, 
respectively.
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free phage in the system. This occurs because the average phage replication is lower than its mortality. From the 
diagrams one can conclude that the phage goes extinct for large values of mortality, small adsorption rates, and 
low carrying capacities in the system. For a fixed nutrient level (a constant Csurf  ), low mortality rates of phages 
result in irregular dynamics with high spikes in bacterial densities.

Discussion and conclusions
In this paper we make a theoretical exploration of the natural control of bacteria by their phages under the 
recently discovered scenario of temperature-dependent lysogeny15 in a heterogeneous environment such as soil. 
The practical importance of the problem comes from the fact that melioidosis—the disease caused by infection 
of the pathogenic bacteria Burkholderia pseudomallei—is now estimated to be the third most fatal in Southeast 
Asian countries7,12. Despite available empirical data indicating high abundance of phages in the soil of endemic 
areas in Thailand (and in Southeast Asia overall), the natural control of the pathogen by phages has been largely 
overlooked in the literature so far and this study is intended to partly bridge the existing gap. Note that more 
complex mathematical models exist, describing microbial transport in the soil as a series of attachment and 
detachment processes or complicated random walks34,35. Other approaches include integro-differential equations 
describing the spatial effects of replication delay of the phage36. Here, however we address the problem using a 
parsimonious model based on the reaction-diffusion approach which is well-known in mathematical ecology37. 
We argue that implementation of this approach is justified because of the low sensitivity of the model prediction 
to variation in the diffusion coefficients (SM5), with strong external forcing and local interactions being the main 
drivers of the system dynamics. In particular, the influence of the external forcing of temperature on the system 
becomes facilitated by the temperature-dependent switch between the two infection cycles, which provides an 
extra degree of predictability for microbial dynamics: in the system with a single type infection cycle (lytic or 
lysogenic), variation of the temperature would only affect the growth rates of bacteria.

We find that generally the densities of bacteria and phage in soil show a seasonal trend both in terms of their 
vertical distribution and the total numbers. In particular, the model predicts that during the warmest period 
of the year (April–July), the densities of phage-free bacteria and phages increase while the density of lysogenic 
bacteria decreases. This would signify a higher risk of infection during warm periods of the year since phage-
free bacteria can readily infect warm-blooded hosts, while lysogenised bacteria are likely to be killed by the 
induced phage upon entry. The spatial model overall confirms the seasonal pattern reported earlier based on the 
non-spatial model16. However, the spatial model shows more pronounced seasonal peaks of pathogenic bacteria 
than the non-spatial one (this follows from comparison of patterns with the previously published non-spatial 
model16). Note that in the non-spatial model—considering interactions in the surface water of agricultural 
fields—the strength and variation of solar UV radiation was found to be a major regulator of bacteria-phage 
interactions, but it actually does not play a role in the spatial system with soil. In the spatial model, the external 
seasonal forcing of the soil temperature gradient plays a dominant role in causing the density of S to peak in the 
warmest season.

For both provinces of Thailand we considered, the spatial model predicts the existence of a pronounced peak 
of highly virulent phage-free bacteria both near the surface and, even more strikingly, at the depth of approxi-
mately h = 30 cm or deeper. The structure of the bacterial population at shallow depths of soil is affected by sea-
sonal variations of ambient temperature. In the surface water of rice paddies16 and in top soil, the B. pseudomallei 
population is predicted to be dominated by the more virulent phage-free bacteria during warmer seasons of the 
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Figure 6.   Daily average densities of susceptible bacteria S within the upper 20 cm of the soil calculated 
for different values of carrying capacity Csurf (Nakhon Phanom province): The corresponding values of 
Csurf (measured in cell/ml) are provided in figures: (a) Csurf = 1× 106 cell/ml , Csurf = 2× 106 cell/ml , 
Csurf = 3× 106 cell/ml . (b) highly enriched environment, Csurf = 5× 106 cell/ml , Csurf = 1× 107 cell/ml , 
Csurf = 5× 107 cell/ml . The unit of the density of S is cell/ml.
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Figure 7.   Influence of the carrying capacity on the vertical distribution of susceptible bacteria S in the soil 
predicted by the model calculated for Nakhon Phanom province. The left panel shows vertical distributions in 
the top 60 cm whereas the right panel presents zooms of the same profiles near the surface. The corresponding 
values of Csurf (measured in cell/ml) are provided in figures. The graphs show the spatial distributions predicted 
for April 1st. The unit of the density of S is cell/ml.
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year, whereas during colder winter season phage-associated bacteria are more prevalent. Since surface water and 
top soil are presumably the main sources of the infection, this is likely to be a major contributing factor to the 
increase of melioidosis cases during warm seasons in Thailand that is reported in the literature38.

The model predicts that the high-density maximum of phage-free bacteria located at around h = 30 cm 
would not be affected by the seasonal variation in temperature. The existence of such a peak of phage-free 
bacterial numbers is somewhat counter-intuitive since one would expect the dominance of lysogenic bacteria 
at depths characterised by temperatures lower than the critical temperature T1 of transition to the lytic cycles. 
The observed peak of S is a consequence of phage-free bacteria having a higher per-capita effective population 
growth rate (i.e. replication minus mortality) than of I1 . This follows from α(T) > α(T) , as well as from the fact 
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Figure 8.   Bifurcation diagrams showing dynamical regimes in the model (Nakhon Phanom province) 
depending on the parameters µ (the morality rate of phages)-Csurf (carrying capacity on the surface) and K 
(overall phage adsorption rate) and b (phage burst size). The classification of regimes A–C is the following. 
Regime “A” corresponds to periodic daily variations of species densities; for regime “B” species shows irregular 
oscillations; regime “C” signifies the extinction of phages. Other model parameters are set at default values.
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that the transition rate from the lysogenic state to the lytic, with an eventual lysis, is always nonzero. Although 
at the depth of h = 30 cm the difference in the effective growth rates is small, this effect accumulates through a 
large number of generations and S eventually outcompetes I1.

Significantly, this prediction is in agreement with environmental sampling data which indicate that B. pseu-
domallei is more frequently found in soil samples taken at 30 cm or deeper, and that bacteria could be found at 
these depths throughout the year, irrespective of the season8,9,24. The existence of a non-seasonal permanent peak 
of phage-free bacteria at or near h = 30 cm is important from the pathogen monitoring point of view, as it pro-
vides a likely scientific explanation for the empirically derived recommendation that sampling for the presence of 
B. pseudomallei in the environment should be done at the depth of 30 cm8,9. For the safety of agricultural workers, 
the position of the peak of phage-free B. pseudomallei in the soil specifies a layer of soil whose disturbance would 
increase the risk of infection (note that neither lysogenic nor lytic bacteria can cause disease). Coincidentally, 
30 cm is the approximate traditional depth of ploughing rice paddy fields. Our study suggests that considering 
more shallow tillage for rice farming in areas of high endemicity of melioidosis may reduce the risk of infection.

Our model also predicts that enrichment of the environment (e.g. by adding fertiliser) may result in sudden 
irregular bursts of phage-free B. pseudomallei in the upper soil layers, which would be invisible to the human 
eye. Such blooms occur in narrow soil layers and they can be hard to monitor by standard course sampling, but 
the density of phage-free bacteria in these layers can be extremely high: a whole order of magnitude higher than 
at nearby depths. Such layers would present an extra risk of infection for agricultural workers.

From the diagram in Fig. 8, it follows that by increasing mortality of phages µ (e.g. via the use of agrochemi-
cals that may cause phage mortality, for example those containing ferrous iron) the natural control of bacteria 
by phages could be affected. A slight increase in phage mortality may make bacteria-phage interactions more 
regular (seen in the transition from regime B to A). On the other hand, imposing a higher mortality on the phage 
can eliminate the phage from the soil environment and remove the natural control of B. pseudomallei.

In conclusion, our modelling findings reveal that a dominant temperature-responsive clade of phages that 
is capable of infecting B. pseudomallei can control the dynamics of the bacteria and their spatial distribution 
in the soil environment. Taking into account our modelling outcomes can potentially help to improve current 
melioidosis prevention efforts in Southeast Asia and across the world.
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