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Background: Prediction of T cell immunogenicity is a topic of considerable interest, both 
in terms of basic understanding of the mechanisms of T cells responses and in terms of 
practical applications. HLA binding affinity is often used to predict T cell epitopes, since 
HLA binding affinity is a key requisite for human T cell immunogenicity. However, immuno-
genicity at the population it is complicated by the high level of variability of HLA molecules, 
potential other factors beyond HLA as well as the frequent lack of HLA typing data. To 
overcome those issues, we explored an alternative approach to identify the common 
characteristics able to distinguish immunogenic peptides from non-recognized peptides.

Methods: Sets of dominant epitopes derived from peer-reviewed published papers 
were used in conjunction with negative peptides from the same experiments/donors 
to train neural networks and generate an “immunogenicity score.” We also compared 
the performance of the immunogenicity score with previously described method for 
immunogenicity prediction based on HLA class II binding at the population level.

results: The immunogenicity score was validated on a series of independent data-
sets derived from the published literature, representing 57 independent studies where 
immunogenicity in human populations was assessed by testing overlapping peptides 
spanning different antigens. Overall, these testing datasets corresponded to over 
2,000 peptides and tested in over 1,600 different human donors. The 7-allele method 
prediction and the immunogenicity score were associated with similar performance 
[average area under the ROC curve (AUC) values of 0.703 and 0.702, respectively] while 
the combined methods reached an average AUC of 0.725. This increase in average 
AUC value is significant compared with the immunogenicity score (p = 0.0135) and a 
strong trend toward significance is observed when compared to the 7-allele method 
(p = 0.0938). The new immunogenicity score method is now freely available using CD4 
T cell immunogenicity prediction tool on the Immune Epitope Database website (http://
tools.iedb.org/CD4episcore).

conclusion: The new immunogenicity score predicts CD4 T cell immunogenicity at the 
population level starting from protein sequences and with no need for HLA typing. Its 
efficacy has been validated in the context of different antigen sources, ethnicities, and 
disparate techniques for epitope identification.
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inTrODUcTiOn

The identification of T cell epitopes has an important implica-
tion in several immunological contexts spanning from vaccine 
design to diagnostics in cancer, allergies, and infectious diseases 
fields. Most of the epitope identification is currently performed 
using bioinformatics prediction systems aimed to identify T cell 
immunogenicity and also to dissect the mechanisms underly-
ing development of T cell responses. Currently, the majority of 
the T cell prediction methods are based on prediction of HLA 
binding affinity, which is a key requisite for human T cell immu-
nogenicity. However, there is a lack of effective strategies able 
to predict immunogenitcity at the population level, which is of 
particular importance when HLA typing data are not available. 
To overcome this issue, it is important to identify the common 
HLA binding affinity characteristics able to distinguish immuno-
genic peptides from non-recognized peptides. Two main classes 
of HLA molecules are important in the immunological context. 
Class I molecules presents epitopes to CD8 T cells, while class II 
molecules present epitopes to CD4 T  cells. Prediction of HLA 
class I binding has reached high accuracy with area under the 
ROC curve (AUC) values greater than 0.9 (1–7), similarly HLA 
class II predictions have significantly improved in the most recent 
years reaching significant levels of accuracy (with AUC values 
in the range of 0.760–0.870) (8–10). However, HLA molecules 
are highly polymorphic and epitope prediction at the population 
level has to take into account this high level of heterogeneity.

We previously shown that in the case of HLA class I, focusing 
on 25–30 main HLA A and B allelic variants provides coverage 
of a large fraction of the general population (11). Similarly, in the 
case of HLA class II, about 40–50 allelic variants provide coverage 
of most frequent allelic variants (12). Prediction of HLA binding 
is usually performed with allele-specific algorithms, since binding 
motifs of different HLAs are rather diverse. However, in the case 
of HLA class II, it is also noted that a high degree of overlap exists 
between the epitope binding of different variants (13). Indeed, 
it was shown that the epitopes dominantly recognized are often 
capable of binding to many different HLA class II alleles. These 
epitopes (named promiscuous epitopes) account for 50% or more 
of the total responses at the population level (14).

The “7-allele method” was specifically optimized for predic-
tion of HLA class II responses at the population level (15) based 
on the prediction of promiscuous epitopes. While this method is 
associated with significant predictive value, it is also expected that 
many of the peptides that are predicted or experimentally shown 
to bind HLA class II molecules may not induce T cell responses. 
This is because although HLA binding is necessary it is not suf-
ficient by itself for T cell immunogenicity. Other factors such as 
antigen processing and the size of the TCR repertoire capable of 
recognizing any given MHC/epitope complex are key factors in 
ultimately determining immunogenicity (16–18).

In particular, it has been shown that the TCR repertoire is a 
key factor in shaping epitope immunodominance (19–23). In the 
case of HLA class I, different algorithms have been devised that 
evaluate a peptide sequence for the presence of certain amino 
acids, presumably interacting with TCRs, as a contributing factor 
to epitope’s intrinsic immunogenic potential (24–26).

In the present study, we evaluate an approach to predict 
HLA class II immunogenicity at the population level, regardless 
of specific HLA haplotype, by training neural networks (NNs) 
with well-characterized sets of immunogenic epitopes dominant 
in general human populations. This approach could thus probe 
not only the influence of HLA binding but also potentially detect 
factors beyond HLA class II binding that would be encoded in the 
primary sequence of potential epitopes.

MaTerials anD MeThODs

Datasets
The datasets used for training were derived entirely from 
experimental data generated in our laboratory using congruent 
techniques as a mean to rely on tightly controlled datasets. In 
addition, we also utilized epitopes that were associated with 
positive tetramer data as part of the training, because tetramer 
data are regarded as “gold standard” of quality and specificity 
in analyzing T  cell response. Conversely, the datasets used for 
validation were derived from scientific literature using a broad 
variety of techniques and antigens, and generated from differ-
ent laboratories worldwide. This choice was made to ensure the 
robustness of the validation provided.

Training Dataset Assembly
We used 15-mer peptides derived from several datasets described 
in peer-reviewed articles or obtained by in-house studies follow-
ing same experimental approach (Table  1). In some cases, the 
epitope sets were selected based on interim analysis and do not 
exactly match the final epitope lists in the published articles. 
The peptides were tested for immune recognition in cohorts 
of 5–150 donors by ELISPOT assays for one of the following 
cytokines: IFNγ, IL-5, IL-17, or IL-10. A full list of these epitopes 
is described in Table S1 in Supplementary Material. In total, 
1,032 epitopes were selected as positives in this study. Negative 
peptides were selected from the same datasets listed in Table 1 
following specific criteria: peptides should be negative in all tests, 
only peptides from proteins with at least one positive peptide 
recognized were included. In addition, any peptide tested more 
than once (due to several studies testing antigens/allergens from 
the same organism) giving opposite responses for the same donor 
was removed from the dataset. Overall, 5,739 negative peptides 
(Table S2 in Supplementary Material) were obtained. In some 
cases, set-specific adjustments in the criteria were necessary for 
technical reasons, as detailed below.

Mycobacterium Tuberculosis (TB) Antigens
We selected 65 previously known 15-mer epitopes identified 
from the vaccine candidate antigens and that captured 80% of 
the response (27–29).

Timothy Grass (TG) Known Allergens
Previous studies identified 20 epitopes that accounted for 79.5% 
of the total response to a set of TG-derived pollen antigens (Phl 
p allergens) in TG allergic individuals (14, 31, 32). Most of the 
datasets are composed by 15-mers as they were based on HLA 
class II binding prediction (15, 99). However, since some of those 
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TaBle 1 | Full list of datasets used in this study.

(a) Training datasets

antigen (s) Peptide selection 
method

# of donors reference # of epitopes # of control 
peptides

Mycobacterium tuberculosis Overlapping 18 (27) 65 53
Predicted 28 (28) 1,043
Overlapping 61 (29) 362
Confirmed epitopes 61 (29) 137

Timothy grass Overlapping 25 (14) 60 360
Predicted 35 (30) 360
Overlapping 21 (31) 6
Overlapping 37 (32) 0

House dust mite (HDM) Overlapping 20 (32) 52 6
Cockroach Overlapping 19 (33) 71 521
Dengue antigens Predicted 150 (34) 325 140
Erythropoietin Overlapping 5 (35) 9 11
CRJ1 and CRJ2 Overlapping 54 (36) 30 18
Mouse allergens Predicted 22 (37) 82 885
Novel HDM antigens Predicted 20 (38) 105 186
Pertussis vaccine antigens Overlapping 53 (39) 100 202
Ragweed allergens Overlapping 25 (40) 15 183
Tetanus 20 (41) 28 98
ZIKA virus polyprotein Overlapping 18 (Grifoni et al., 

unpublished)
48 529

Yellow fever virus polyprotein Overlapping 42 (Weiskopf et al., 
unpublished)

42 639

Overall 1,032 5,739

(B) Validation dataset derived from literature

antigen (s) (species) # of donors reference # of epitopes # of control 
peptides

Acetylcholine receptor subunit alpha (Homo sapiens) 22 (42) 4 18
Circumsporozoite (CS) protein (Plasmodinium vivax and falciparum) 22 (43) 4 4
Conserved hypothetical lipoprotein (Francisella tularensis) 10 (44) 3 10
Other protein (Plasmodium falciparum) 12 (45) 7 5
CS protein (Plasmodium falciparum) 64 (46) 7 10
CS protein (Plasmodium falciparum) 35 (47) 7 7
Api m 1 (Apis mellifera) 40 (48) 6 9
Myelin basic protein (Homo sapiens) 12 (49) 3 3
CS protein (Plasmodinium vivax) 52 (50) 7 5
Acetylcholine receptor sub. γ and δ (Homo sapiens) 22 (51) 14 42
Acetylcholine receptor sub. α (Homo sapiens) 22 (52) 8 17
Glutamate decarboxylase 2 (Homo sapiens) 44 (53) 2 10
Structural polyprotein (Rubella virus) 10 (54) 4 7
Envelope glycoprotein D (Human herpesvirus 1) 24 (55) 6 6
Thyroglobulin and thyrotropin receptor (Homo sapiens) 15 (56) 5 10
Fusion glycoprotein F0 (Morbillivirus) 13 (57) 12 50
Poa p 5, Poa pratensis (Kentucky bluegrass) 13 (58) 9 8
Myelin basic protein (Homo sapiens) 20 (59) 6 7
Structural polyprotein (Rubella virus) 14 (60) 4 74
Acetylcholine receptor sub. δ and α (Homo sapiens) 58 (61) 12 33
Hev b 1 (Hevea brasiliensis) 19 (62) 2 2
Api m 1 (Apis mellifera) 10 (63) 7 6
TRAP (Plasmodinium falciparum) 50 (64) 21 30
Nucleoprotein (Morbillivirus) 19 (65) 9 40
Genome polyprotein (Hepatitis C virus) 22 (66) 14 13
Subtilisin-like protease 6 (Trichophyton rubrum) 38 (67) 8 20
Blood groups Rh(D) and Rh(CE) polypeptides (Homo sapiens) 22 (68) 19 15
Myelin proteolipid and myelin basic protein (Homo sapiens) 16 (69) 7 14
Polyprotein Ent. virus B; Glut. Decarboxylase2 (Homo sapiens) 22 (70) 7 26
Gal d 1 (Gallus gallus) 14 (71) 2 1
Genome polyprotein (Hepatitis C virus) 10 (72) 5 122
Hev b 6 (Hevea brasiliensis) 16 (73) 4 12

(Continued)
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(B) Validation dataset derived from literature

antigen (s) (species) # of donors reference # of epitopes # of control 
peptides

Bos d 9 (Bos Taurus) 10 (74) 2 5
Cha o 1 (Chamaecyparis obtusa) 19 (75) 10 24
Genome polyprotein (Hepatitis C virus) 22 (76) 12 257
Genome polyprotein (Hepatitis C virus) 41 (77) 18 33
Bos d 9, Bos taurus (Bos Taurus) 29 (78) 8 12
Cytochrome P450 2D6 (Homo sapiens) 80 (79) 28 29
Capsid protein VP1 (Human parvovirus) 19 (80) 8 54
Integrin beta-3 (Homo sapiens) 31 (81) 7 51
Genome polyprotein (Hepatitis C virus) 44 (82) 7 286
Equ c 1 (Equus caballus) 10 (83) 15 32
Merozoite surface protein 1 (Plasmodium falciparum) 48 (84) 10 18
Cry j 1 (Cryptomeria japonica) 12 (85) 4 33
Cha o 2 (Chamaecyparis obtusa) 19 (86) 6 36
Capsid protein VP1 (Adeno-associated virus) 16 (87) 28 62
Non-specific lipid-transfer protein (Prunus persica) 15 (88) 3 5
Aquaporin-4 (Homo sapiens) 32 (89) 6 10
UniProt:B8ZU53 (Mycobacterium leprae) 152 (90) 8 1
Pas n 1 allergen (Paspalum notatum) 18 (91) 4 11
Pen a 1 allergen (Farfantepenaeus aztecus) 16 (92) 15 13
Genome polyprotein (Tick-borne encephalitis virus) 47 (93) 26 46
Other wolf or dog protein (Canis lupus) 25 (94) 18 12
Can f 5 (Canis lupus) 24 (95) 25 31
Botulinum neurotoxin type A (Clostridium botulinum) 25 (96) 6 13
Genome polyprotein (Rhinovirus A and C) 20 (97) 15 34
Botulinum neurotoxin type A (Clostridium botulinum) 14 (98) 6 14
Overall 530 1,758

TaBle 1 | Continued
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epitopes were not 15-mers, to compare those with the rest of 
the dataset longer epitopes were dissected into the composing 
15-mers and each 15-mers belonging to the longer peptides has 
been classified as a positive, with the same process being used 
for negative peptides. In addition, 19 peptides were described to 
cover an NTGAp19 peptide pool, which were selected to encom-
pass at least 40% of the total IL-5 response directed against all 
NTGA peptides screened (30).

House Dust Mite (HDM) Allergens
The peptide set included the 34 most dominant epitopes 
cumulatively accounting for 90% of the total allergen-specific 
response detected in our screen (32). Analogous to the TG set, 
longer regions were deconstructed into 15-mers, which yielded 
52 peptides in total.

Cockroach (CR) Allergens
71 most dominant epitopes were selected based on total spot 
forming cells (SFC) values greater than 1,000 (33).

Dengue (DENV) Antigens
Peptides predicted to bind various frequent DRB1 alleles were 
tested in about 10 HLA-matched donors. The sets comprised 325 
epitopes, positive in at least two donors with PBMC derived from 
normal blood donors from the Colombo (Sri Lanka) region that 
were seropositive for DENV antibodies and thus representative of 
natural infection (34). Negative peptides were those tested in at 
least 10 donors and found to be uniformly negative.

Erythropoietin
Tangri et  al. screened overlapping peptides and reported nine 
epitopes recognized by at least 40% donors (35).

CRJ1 and CRJ2 Japanese Cedar Allergens
This set contained overlapping 15-mers spanning the CRJ1 and 
CRJ2 allergens (36). We selected 30 dominant epitopes based on 
average response magnitude of >100 SFC (sum of IL-5 and IFNγ) 
in either of two group of allergic donors: those who lived in Japan 
for extended periods of time and USA sensitized donors who had 
not lived in Japan. A total of 18 control negative peptides were 
derived from allergens CRJ1 and CRJ2 and selected based on a 
response frequency of one donor or less and an individual SFC 
response <100 SFC.

Mouse Allergens
Peptides derived from mouse allergens, largely selected by the 
7-allele algorithm were tested in 22 donors (37). A total of 89 
dominant epitopes were defined on the basis of total SFC >150 
and recognized in at least two donors.

Novel House Dust Mite Antigens
The peptides screened were predicted with the 7-allele method 
from 96 HDM (novel and known) proteins in 20 HDM allergic 
donors (38). We selected the 106 more dominant epitopes, 
recognized in multiple donors and with an overall magnitude 
of >300 SFC total (accounting for about 50% of the total 
response).

https://www.frontiersin.org/Immunology/
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Pertussis Vaccine Antigens
The peptide set was comprised of 16-mers overlapping by eight 
residues, spanning the entire sequence of the antigens. We selected 
the top 100 epitopes recognized in at least 4 of the 53 total donors 
analyzed, and accounting for approximately 75% of the total  
response (39).

Ragweed Allergens
This set included 16-mers overlapping by eight amino acids, 
spanning the entire sequence of the antigens (40). A total of 15 
epitopes accounting for 75% of the total response was selected. 
If variants were present, the most common variant was selected.

Tetanus Toxoid (TT) Antigen
We selected a set of 28 epitopes, recognized in at least 2 out of 20 
donors tested (41), and predicted by the 7-alleles method (15). 
As a control, we selected a set of 57 peptides, which were studied 
but not recognized, neither in the Immune Epitope Database 
(IEDB, www.iedb.org) nor in the study by Antunes et  al. (41), 
and an additional set of 41 peptides that were not predicted by 
the method and also neither recognized in the study by Antunes 
et al. nor identified in the IEDB as positive human responses. In 
the case of the third set of 41 peptides, there were 261 15-mers in 
the Tetanus set. Among them 124 were predicted to be binders 
with predicted 7-allele median percentile rank ≤20.0. Out of the 
137 non-predicted peptides, those with predicted 7-allele median 
percentile rank >40.0 were selected (67 peptides) for screening 
to be included in non-predicted AND non-epitope set. From this 
list, we eliminated peptides that were overlapping by more than 
five AA residues with any of the epitope (recognized in our study 
or annotated as positive in IEDB). The remaining 41 peptides were 
included in the set of “control peptides” that were not predicted 
and neither recognized in the Antunes et al. study nor identified 
as positive response in IEDB.

ZIKA Virus (ZIKV) Antigens
A set of 15-mer peptides spanning the entire sequence of the 
ZIKV proteome was tested with a 14 days re-stimulation protocol 
in 18 donors. A total of 48 epitopes were defined as being positives 
in at least two donors (Grifoni et al., unpublished).

Yellow Fever (YF) Antigens
The set of epitopes tested includes 94 previously described YF 
CD4 T cell epitopes with known HLA class II restriction (IEDB) 
and sets of peptides predicted to bind different HLA DRB1 mole-
cules. CD4+ T cells from 42 donors vaccinated with YF17 vaccine 
were co-cultured with autologous antigen-presenting cells and 
HLA-matched YF DRB1 predicted peptides. After 14 days, IFNγ 
response against individual peptides was determined as previ-
ously described (100). Epitopes were defined as peptides eliciting 
an SFC of 664 SFC/106 or more. This resulted in the identification 
of 42 unique peptides (Weiskopf et al., unpublished).

IEDB Validation Datasets
To generate additional datasets to evaluate the performance of 
the various predictive schema, we sought to identify literature 
records reporting overlapping peptide studies. Accordingly, we 

queried the IEDB for papers which contained both positive and 
negatives records curated in the paper, related to HLA class II 
restricted T cells. This query identified 870 papers; which were 
further refined by filtering by “overlapping” mentioned in the 
abstract, resulting in 183 records.

The abstracts of those records were manually inspected, to 
select papers truly related to study of immunogenicity of over-
lapping peptide sets. At this stage, we excluded records relating 
to Phl p, TT, TB (already represented in the previous sets) and 
studies based on transgenic mice to obtain 102 relevant papers.

We next removed papers where the peptide size was less than 
15, or where less than 10 donors were studied (resulting in 82 
papers). Each of these 82 papers was manually inspected and 
additional papers were discarded upon manual inspection for a 
variety of reasons, including the paper not reporting testing for 
full sets of overlapping peptides, ambiguous reporting of negative 
results or peptide size tested, no clear discrimination between 
positive and negative responses, testing pools of peptides with no 
deconvolution, and similar problems.

This resulted in a final selection of 57 papers (Table 1). For each 
paper, based on the data disclosed and on the author’s interpreta-
tions, we captured the most dominant epitopes accounting for 
the majority of responses and/or consistently positive in multiple 
donors. We selected peptides that were consistently negatives as 
corresponding negative controls. In studies where large numbers 
of donors were tested and essentially all peptides were positives, 
we selected the peptides positives in one or more donors. A list 
of PUBMED Ids, and the criteria used to select the “top” epitopes 
and the “bottom” negative controls is provided in Table S3A in 
Supplementary Material. A list of positive and negative control 
peptides is provided in Table S3B in Supplementary Material.

Tetramer Training Dataset
A dataset corresponding to epitopes described as positive in 
tetramer staining experiments was downloaded from IEDB 
(accessed June 2015) (101) using the following selection criteria: 
“Positive Assays Only, Epitope Structure: Linear Sequence, T Cell 
Assays: qualitative binding/multimer/tetramer (tetramer), No 
B cell assays, No MHC ligand assays, MHC Restriction Type: Class 
II, Host Organism: Homo sapiens (human) (ID:9606, human).” 
The exported dataset was filtered keeping only 15-mer epitopes 
for which a source antigen protein ID was available. For each 
unique positive peptide, we took its source protein sequence 
using the antigen genome ID and scanned that protein for all 
possible 15-mers overlapping by 10 amino acids. The original 
positive peptide was then considered as an immunogenic one 
and the rest of the obtained peptides were used as negatives. The 
tetramer dataset had 124 unique positives and 5,319 negatives 
that are presented in Table S4 in Supplementary Material.

artificial neural network (ann)-Based 
Predictions Using NNAlign Method
The NN training for peptide sequences was performed using the 
NNAlign method (102). The method uses classified peptide data 
for training and identifies nested shorter sequence patterns that 
constitute an informative motif to separate positive from nega-
tive examples. As an input to NNAlign, we used sequences of our 
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15-mer peptides and their assigned observed immunogenicity 
score (1.0 for immunogenic and 0.0 for non-immunogenic). 
The method was trained using extensive cross-validation where 
part of the data is left out of the training process and is used for 
evaluation purpose only. For each peptide, the method returns a 
predicted score between 0.0 and 1.0, with high values identifying 
more immunogenic peptides and low values non-immunogenic 
peptides. The NNAlign-1.4 software package was downloaded 
from http://www.cbs.dtu.dk/services/NNAlign/. The method was 
trained for each possible motif length varying from 1 to 15. The 
data for cross-validation was split based on common motifs within 
peptides with a maximum overlap to nine and varying the motif 
length. Input peptides were encoded using Sparse and BLOSUM 
schemes. No rescaling was done to the input data. We also chose 
to preserve repeated flanks in the original data and do not realign 
networks with offset. The method was trained with 5 hidden 
neurons using 10 seeds for each network architecture. It is possible 
that other encoding approaches, choice of NN design, or choice of 
other learning algorithms could have let to better results, but such 
a comparison was outside the scope of our current manuscript.

receiver Operating characteristic (rOc) 
curves and aUc Values
To measure how different approaches are capable of classifying 
peptides into epitopes and non-epitopes, ROC curves were used 
(103). Varying cutoff for predicted scores, peptides were classified 
into immunogenic and non-immunogenic and the numbers of 
true positives (TPs) and false positives (FPs) were obtained. The 
ROC curve was made by plotting TP rate as a function of FP rate at 
each cutoff. AUC is a useful measure for assessing predictive per-
formance of a prediction method. AUC values range from 0.5 to 1, 
where 0.5 corresponds to random and 1 to perfect predictions. The 
AUC value can be interpreted as the probability that the predicted 
score for a randomly chosen immunogenic peptide is higher than 
the score of a randomly chosen non-immunogenic peptide.

hla Binding Predictions
We utilized the previously described 7-allele method (15) to 
derive HLA binding propensities. The 7-allele method predicts 
immunogenicity based on the median percentile predicted bind-
ing of seven alleles representative of the binding motifs most 
commonly recognized in the general human population, and is 
available on the IEDB website (104).

generation of Two-sample logo
The two-sample logo was created with 15-mer peptides (15 residues 
from N-terminal were extracted in case of longer peptides) from 
all the datasets combined, for epitopes and non-epitopes. For two-
sample logo, both epitopes and non-epitopes datasets (in FASTA 
formatted files) were submitted to the online tool (http://www.
twosamplelogo.org/cgi-bin/tsl/tsl.cgi) with default settings except 
for p-value, which was set to 0.01 and resolution of 600 dpi (105).

statistical analysis
The statistical analysis was performed using Prism 7 (Graph-Pad 
Software, San Diego, CA, USA). The non-parametric Wilcoxson 

matched-pair signed rank test with method of Pratt was utilized 
to assess the significance differences between sets of different 
AUC values.

resUlTs

Derivation and Validation of an anns-
Derived immunogenicity score
We assembled T cell epitope datasets from different previously 
published peptide screening studies performed in our laboratory 
(Table  1). In all cases, peptides were screened using ELISPOT 
assays to detect which peptides stimulated secretion of cytokines. 
Table  1 summarizes the number of donors that were screened 
for each peptide set and if the peptides were selected to overlap 
specific antigens, or if they were selected based on predicted 
binding affinity. Dominant epitopes accounting for a majority of 
the T cell responses as described in more detail in the Section 
“Materials and Methods” were considered positives (Table S1 in 
Supplementary Material, N = 1,032 peptides). Peptides that did 
not give any response in any donor but that came from proteins for 
which at least one peptide was positive, were considered negatives 
(Table S2 in Supplementary Material, N = 5,739 peptides). This 
additional criterion for negative classification was used to ensure 
that the lack of recognition was not simply due to lack of avail-
ability of the source protein necessary for antigen presentation.

This initial dataset was used to train an ANN-based method 
called NNAlign (102). The NNAlign method takes an unaligned 
peptide set and aims to find a linear sequence core within the 
peptides, which differentiates the positive (immunogenic) from 
the negative (non-immunogenic) peptides. The length of the 
sequence core was varied systematically from a single residue to 
15 residues immunogenicity score (ranging 0–1) for each varia-
tion is retrieved, and prediction quality was assessed using fivefold 
cross-validation. Several sequence core lengths showed AUC 
values greater than 0.7 which is generally considered as a good 
prediction quality value, suggesting that the ANNs shows differ-
ences between positive and negative peptides based on the peptide 
motif. In terms of sequence motif length, the cross-validation did 
not indicate a clear optimal length, as the prediction performance 
was similar for motif lengths between 3 and 12 (Figure  1).  
A motif length of nine residues is consistent with the known size 
of peptide core region engaging HLA and TCR. For this reason, a 
motif length of nine was selected for the following analyses.

combining immunogenicity and hla 
Binding Predictions
To consider both HLA binding and the immunogenicity predic-
tion (which presumably incorporate the capacity of being recog-
nized by TCR), we combined our ANN-based immunogenicity 
predictions with HLA class II binding predictions. Only one 
method has been described to predict epitopes based on HLA 
binding at the population level, namely the 7-allelle method, 
which was previously empirically optimized based on immuno-
genicity datasets (15).

To combine immunogenicity and HLA binding scores, we 
used the median percentile rank score (HLA_score) of the 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
http://www.cbs.dtu.dk/services/NNAlign/
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http://www.twosamplelogo.org/cgi-bin/tsl/tsl.cgi


FigUre 1 | Predictive performances for different motif lengths. Bars show cross-validation performance for the training dataset. Area under the ROC curve (AUC) 
values are shown for each artificial neural network training done by choosing different sequence lengths to define a preferred sequence motif within a 15-mer 
peptide. Error bars show SD of the five cross-validation sets.
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7-allele method (ranging from 0 to 100) and combined it with 
our NN-based immunogenicity score after converting it to a 
percentile score, so that it would also range from 0 to 100 and 
could be comparable with the HLA_score, using the formula 
(Imm_score) = (1 − neural network immunogenicity) × 100. The 
two scores were combined as follows:

 Combined score Imm score 1 HLA score.= × + −( )×α α  (1)

Next, we systematically varied the value of α in the interval 
of 0 ≤ α ≤ 1. From the equation above, when α = 1 the results 
depend only on the immunogenicity predictions by the NN, 
while with α = 0 only HLA binding predictions are used to define 
immunogenicity.

To assess the performance of the immunogenicity score, the 
7-allele method and their combination, we used independent 
literature-based datasets. Specifically, we searched the IEDB for 
papers which described results of testing overlapping peptide sets 
related to human HLA class II restricted T cells. These epitope sets 
thus represent a broad range of studies, representing a “real-life” 
portrait of epitope identification studies performed in the world-
wide scientific community. These epitope sets are listed in Table S3A  
in Supplementary Material and described in more detail in the 
Section “Materials and Methods” and the sequences are provided 
in Table S3B in Supplementary Material. Overall, a total of 57 
different sets derived from independent literature studies were 
curated, entailing a total of 530 positive and 1,758 negative 
peptides. Figure 2 depicts the predictive performance of the com-
bined score, displaying the average of the different AUC values 
obtained for each of the different datasets. The 7-allele method 

was associated with AUC values of 0.695, and the immunogenicity 
score was associated with an average AUC value of 0.670. In terms 
of combination of the two algorithms, the performance increased 
and reached a peak at 0.71 for an α value of 0.50.

Performance of the immunogenicity 
score, eliminating redundancy Between 
Training and Testing Datasets
It is expected that inclusion of additional data points would 
increase the performance of an NN model. Accordingly, we 
incorporated an additional dataset of CD4 T cell epitopes identi-
fied by tetramer mapping studies. We reasoned that this would 
provide high quality epitopes since the tetramer-staining assay 
is commonly considered a “gold standard” assay for epitope 
characterization. The dataset was obtained by querying the IEDB 
for 15-mer peptides that were tested positive by tetramer staining 
assays. For each positive peptide, its source protein was scanned 
for 15-mer peptides overlapping by 10 amino acids, with the 
positive peptide sequences being removed and the remaining 
peptides used to construct a negative dataset. The final tetramer 
dataset is composed of 124 unique positives and 5,319 unique 
negative peptides (Table S4 in Supplementary Material).

The datasets utilized to train and evaluate the NN models 
contained some redundancies, which could affect the evaluation 
and inflate performance. To avoid this issue, we eliminated any 
redundancy between the training set (Table 1 and tetramer set 
combined) and the validation set of the 57 independent studies 
(Table 1) by filtering out any peptide sharing a common 9-mer 
sequence.

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigUre 2 | Predictive performances obtained combining HLA binding and immunogenicity scores. The figure shows the performance dependency on an α 
coefficient used to combine HLA binding and immunogenicity scores. The model trained on the training dataset described in the text and validated on independent 
literature datasets, also described in the text.
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In the analysis performed, a clear optimal alpha was not 
observed. The data in Figure 2 seemed to indicate an optimal alpha 
around 0.2–0.3, while the analysis from Figure 3 indicates two 
optimal peaks at about 0.4 and 0.6. Since the data in Figure 3 are 
inherently more reliable because of training with a higher number 
of data points, we empirically selected 0.4 as the alpha to include 
in the next set of analyses. When this analysis was performed, 
the 7-allele method prediction and the immunogenicity score 
were associated with similar performance (average AUC values of 
0.703 and 0.702, respectively) while the combined methods again 
afforded gain in performance, reaching an average AUC of 0.725 
(Figure 3). This increase in average AUC values of the combined 
methods is significant when compared with the average AUC val-
ues of the immunogenicity method with a p value of 0.0135 using 
Wilcoxon matched-pairs signed rank test, and a strong trend 
toward significance when compared to the 7-allele method with 
a p value of 0.0938. These results, together with the ones obtained 
with the tetramer dataset confirm that both the 7-allele and the 
immunogenicity score method had significant predictive value on 
their own which are in both cases enhanced by their combination.

Two-sample logo of a general 
immunogenicity Motif
Next, we analyzed the epitopes and non-epitopes from all the 
datasets combined for their positional residue conservation and 
plotted two-sample logo using 15 residues from the N-terminus 
of the peptides (105) (Figure 4). The two-sample logo represents 
amino acids which were significantly different in epitopes and 
non-epitopes based on p-value (<0.01) calculated using t-test. 
Amino acid residues enriched in the epitope dataset are mostly 

positively charged, while amino acid residues depleted in the 
epitope dataset (and enriched in the non-epitope dataset) are 
mostly negatively charged. In other words, epitopes have higher 
numbers of positive charged residues like arginine (R) or lysine 
(K) at positions 9th and 11th–14th, whereas non-epitopes 
contained aspartate (D) and glutamate (E) at positions 7th–9th 
and 11th–13th. A preference for hydrophobic residues is also 
observed [such as proline (P) and alanine (A)] in non-epitopes, 
whereas isoleucine (I), phenylalanine (F), and asparagine (N) are 
enriched in the epitope set. To further address the significance of 
the logo, we split the dataset into five sets, where each set contains 
80% of the total dataset, the results in Figure S1 in Supplementary 
Material confirm that the most prevalent feature revealed by the 
logo are in consistent with the two-sample logo created using 
whole dataset (Figure 4). These results suggest that some of these 
preferences may be contributing to T cell recognition or MHC 
binding or represent a result of processing enzymes. These pos-
sibilities will be addressed in future studies.

epitope Prediction Threshold and 
implementation of an Online Tool
We next determined the performance of the combined score using 
different cutoff values ranging from 0 to 100 (Table 2) for each 
study. To this end, we calculated the performance of overlapping 
datasets derived from literature at different threshold settings 
using the percentile combined score at α = 0.4. As a first step, 
for each study we calculated the numbers of: true negative 
(TN) defined as non-immunogenic peptides predicted as non- 
immunogenic, FP defined as non-immunogenic peptides predicted  
as immunogenic, false negative (FN) defined as immunogenic 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


TaBle 2 | Performance of overlapping dataset derived from literature at different 
threshold settings using the percentile combined score.

Threshold average 
sensitivity

average 
specificity

Total peptide to be 
synthesized (average)

8 20 91 13
18 31 85 21
36 51 65 39
43 59 59 46
66 75 37 68

The performance for each study is calculated individually and then averaged.
Sensitivity = (TP/TP + FN) × 100, specificity = (TN/TN + FP) × 100, % total peptide to 
be synthesized = [(TP + FP)/(TP + TN + FP + FN)] × 100.
TN, true negative; FP, false positive; FN, false negative; TP, true positive.

FigUre 4 | Two-sample logo created using epitopes and non-epitopes in  
all the data (p-value < 0.01). The immunogenicity motifs for epitopes and 
non-epitopes were derived from the combination of all the datasets.

FigUre 3 | Performance of independent literature datasets with combined approach and varying degree of alpha on the model trained with initial, in-house and 
tetramer datasets. The prediction values from HLA score and immunogencity score using different values of alpha are shown. A cutoff of 0.4 value for alpha is also 
highlighted by a dotted line.
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cutoff values of 8, 36, and 66 allowed capturing, respectively, 20, 51, 
and 75% of the epitopes with a corresponding specificity of 91, 65, 
and 37%. We also estimated the fraction of peptides needed to test 
in order to observe a defined fraction of epitopes using the follow-
ing formula: [(TP + FP)/(TP + TN + FP + FN)] × 100. A value 
of 43 was associated with equal sensitivity and specificity (59). To 
make this approach user friendly, we also implemented an online 
version of this algorithm (Figure 5). The tool is freely available in 
the IEDB website at http://tools.iedb.org/CD4episcore/.

DiscUssiOn

Bioinformatics predictions to identify T  cell epitopes are fre-
quently used in the context of designing and testing vaccines and 
diagnostics for infectious diseases, allergies, and cancer. While 
several HLA allele-specific predictive algorithms (10) and T cell 
epitopes predictive strategies based on MHC class II binding have 
been described (106–108), development of effective strategies to 
predict immunogenicity at the population level are lacking and 
remain therefore of significant interest. This is important, since 
in the real-life applications most often encountered HLA typing 
data is often unavailable.

Here, we report an approach to identify sequence motifs dis-
tinguishing immunogenic peptides recognized by CD4+ T cells 
from non-recognized peptides, independent of the restricting 
HLA class II allele. We confirm that the previously described 
7-allele method (15) is effective in predicting epitopes and could 
narrow the range of peptides to be used for biological testing. 
Importantly, we find significant improvements of a combined 
HLA binding +  immunogenicity approach over immunogenic-
ity predictions alone and a strong trend toward significance of a 

peptides predicted as non-immunogenic, and TP defined as the 
immunogenic peptides predicted as immunogenic. Based on 
these values we calculated sensitivity [= (TP/TP + FN) × 100] and 
specificity [= (TN/TN + FP) × 100]. Finally, we determined that 

https://www.frontiersin.org/Immunology/
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FigUre 5 | Screenshot for home page of immunogenicity prediction server.
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combined HLA binding + immunogenicity approach over HLA 
binding predictions alone.

The machine learning algorithm we applied (NNalign) was 
developed to identify sequence motifs of a specific length that 
distinguish peptide sets—in our case immunogenic from non-
immunogenic peptides. We found that motif lengths between 8 
and 11 residues gave the best performance in the classification of 
the different datasets. This motif length is in line with what has 
been described with epitope residues in contact with the T cell 
receptor, and the length of the epitope core binding characteristic 
of the HLA class II molecule, which is also about nine amino acids 
long (20, 109).

The fact that the increase over predictions performed on 
HLA binding alone is rather small suggests, in line with previous 
studies, that HLA binding is a dominant force in shaping the 
repertoire of T cell epitopes. It is also possible, however, that this 
relatively small increase might be related to coordinate evolution 
between HLA binding and antigen processing and TCR recogni-
tion as suggested before by other studies (110).

Since the method was derived on immunogenicity outcomes 
only, it is possible that the motif defined herein is not only related 
to HLA binding but also incorporates overall preferences for TCR 
residue contacts. However, given the unbiased nature in which 
it was derived, it cannot be ruled out that the method may also 
reflect completely different processes, such as modulation by 

HLA-DM or increase in HLA binding stability over affinity is the 
actual source of the motif (111).

The predictive ability of very short motifs (3, 4 residues) is 
striking. Potential structural or mechanistic bases for this could 
be reflective of dominant influence of short stretches of residues 
incorporating dominant residues for HLA binding in close 
proximity to residues also dominant in TCR recognition (15). 
Examining the residues in the motif suggests that peptides with 
small amino acid side chains are avoided in the middle of the 
motif, while residues with longer side chains are overrepresented. 
This is qualitatively similar to what we had previously found for 
HLA class I restricted epitopes, and which has been reported in 
experimental studies using single residue substitutions (112, 113).  
This further supports that the motif identified coincides with 
properties of peptides more likely to engage a TCR. The F, M, 
L enrichment in the positions close to the N-terminus maybe 
at least in part corresponding to the P1 anchor of the MHC-II, 
which has similar specificity in several loci and allelic variants.

Our results have been trained over an extended set of data, 
derived from different methodologies and from populations of 
diverse ethnicities, and related to infectious diseases, allergy, and 
autoimmunity. The tetramer-trained algorithm seems to perform 
better, despite a bias toward certain HLA alleles and possible 
inclusion of many epitopes in negative set (i.e., other epitopes 
from the same protein other than the tetramer considered). We 

https://www.frontiersin.org/Immunology/
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speculate that this may be due to the fact that tetramer epitopes 
represent usually dominant epitopes which in turn have been 
shown to correspond to promiscuous HLA binders. Overall, 
the combined training sets corresponded to over 14 thousand 
peptides, from over 300 different antigens and tested in over 2,500 
different human donors. We believe this is an important aspect of 
our study, as it ensures that our building model (as related to both 
the 7-allele method, the immunogenicity score and the combined 
approach) are valid irrespective of antigen source, different eth-
nicities and disparate techniques for epitope identification. Our 
prediction method may be useful for generating off the shelf vac-
cine peptide libraries for pathogens or common tumor markers. 
Conversely, this method may be useful for an optimum selection 
of peptides covering individualized tumor derived neo-epitopes 
after NGS sequencing in HLA-typed individuals.

The algorithm is available on the IEDB website (101), and we 
estimate that the use of the combined immunogenicity score and 
7-allele method will allow capturing 50% of the total epitopes 
by synthesis of 24% of the total possible overlapping 15-mers. 
This would translate in coverage of a 300 residues protein with 72 
15-mer peptides. Future improvements of T cell epitope predic-
tions may benefit from the increased availability of large scale 
datasets of peptides eluted from HLA class II molecules, datasets 
of specific TCRs recognizing epitopes, and datasets unraveling 
the role of mediators in the MHC class II processing pathway 
such as HLA-DM.

Even with this approach the AUC values are lower than for 
MHC-I analysis (1). However, it should be kept in mind that 
these AUC values refers to prediction at the population level 
encompassing T  cell with diverse restriction, while the higher 
AUC values for MHC-I usually refers to allele-specific predic-
tions. However, the application of the current approach from 
MHC-II to MHC-I, faces specific challenges. In MHC-I it is 
thought there is much more HLA-specific selection of epitopes, 
arguing against a straightforward application of the current 
approach, but it is possible that the alpha analysis could identify 
any HLA-independent components. Finally, it will be of interest 
to develop a similar approach to develop HLA agnostic predictors 
of HLA class I epitopes. Recent data suggest that it is possible 
to empirically develop HLA class I epitope “megapools” that 

afford coverage of general populations, irrespective of ethnicity  
(114, 115). Future studies will be focused on similar methods for 
HLA-agnostic prediction of class I restricted epitopes.

eThics sTaTeMenT

Human data have been previously published and extracted from 
IEDB database (www.IEDB.org).

aUThOr cOnTriBUTiOns

SD, EK, LE, SP, MA, and JS compiled and analyzed the data. SD, 
EK, AS, and BP wrote and edited the manuscript. AG and DW 
contributed the data. AS, MN, and BP conceived and supervised 
the project.

FUnDing

This work has been supported by the following grant(s) of  
National Institute of Allergy and Infectious Diseases: 10.13039/ 
100000060 HHSN272201200010C, HHSN272200900042C/HHS 
N27220140045C, U19 AI100275 and AI118626, UM1 AI114271, 
P01 AI106695. Additional following grant(s) have supported 
as well this work: JHU OPP1109415, Umea University/EU 
Commission, U of Cape Town Gates Grant-OPP106626, and 
Emory U19AI111211.

sUPPleMenTarY MaTerial

The Supplementary Material for this article can be found online at 
https://www.frontiersin.org/articles/10.3389/fimmu.2018.01369/
full#supplementary-material.

TaBle s1 | List of epitopes used as a positive dataset for the training set.

TaBle s2 | List of control peptides used as negative data for the training set.

TaBle s3 | Validation dataset description. (a) List of papers and corresponding 
number of peptide as positive, negative, and intermediate immunogenicity.  
(b) List of positive and negative peptides for the corresponding papers.

TaBle s4 | Additional training dataset from tetramer staining assays.

reFerences

1. Peters B, Bui HH, Frankild S, Nielson M, Lundegaard C, Kostem E, et  al. 
A community resource benchmarking predictions of peptide binding to 
MHC-I molecules. PLoS Comput Biol (2006) 2(6):e65. doi:10.1371/journal.
pcbi.0020065 

2. Kumar N, Mohanty D. Structure-based identification of MHC binding 
peptides: benchmarking of prediction accuracy. Mol Biosyst (2010) 6(12): 
2508–20. doi:10.1039/c0mb00013b 

3. Hu X, Mamitsuka H, Zhu S. Ensemble approaches for improving HLA class 
I-peptide binding prediction. J Immunol Methods (2011) 374(1–2):47–52. 
doi:10.1016/j.jim.2010.09.007 

4. Trolle T, Metushi IG, Greenbaum JA, Kim Y, Sidney J, Lund O, et  al. 
Automated benchmarking of peptide-MHC class I binding predictions. 
Bioinformatics (2015) 31(13):2174–81. doi:10.1093/bioinformatics/btv123 

5. Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural 
networks: application to the MHC class I system. Bioinformatics (2016) 
32(4):511–7. doi:10.1093/bioinformatics/btv639 

6. Nielsen M, Andreatta M. NetMHCpan-3.0; improved prediction of binding 
to MHC class I molecules integrating information from multiple receptor 
and peptide length datasets. Genome Med (2016) 8(1):33. doi:10.1186/
s13073-016-0288-x 

7. Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0: 
improved peptide-MHC class I interaction predictions integrating eluted 
ligand and peptide binding affinity data. J Immunol (2017) 199(9):3360–8. 
doi:10.4049/jimmunol.1700893 

8. Karosiene E, Rasmussen M, Blicher T, Lund O, Buus S, Nielsen M. 
NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method 
including all three human MHC class II isotypes, HLA-DR, HLA-DP and 
HLA-DQ. Immunogenetics (2013) 65(10):711–24. doi:10.1007/s00251-013- 
0720-y 

9. Dhanda SK, Usmani SS, Agrawal P, Nagpal G, Gautam A, Raghava GPS. Novel 
in  silico tools for designing peptide-based subunit vaccines and immuno-
therapeutics. Brief Bioinform (2017) 18(3):467–78. doi:10.1093/bib/bbw025 

10. Fleri W, Paul S, Dhanda SK, Mahajan S, Xu X, Peters B, et al. The immune 
epitope database and analysis resource in epitope discovery and synthetic 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
http://www.IEDB.org
https://www.frontiersin.org/articles/10.3389/fimmu.2018.01369/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2018.01369/full#supplementary-material
https://doi.org/10.1371/journal.pcbi.0020065
https://doi.org/10.1371/journal.pcbi.0020065
https://doi.org/10.1039/c0mb00013b
https://doi.org/10.1016/j.jim.2010.09.007
https://doi.org/10.1093/bioinformatics/btv123
https://doi.org/10.1093/bioinformatics/btv639
https://doi.org/10.1186/s13073-016-0288-x
https://doi.org/10.1186/s13073-016-0288-x
https://doi.org/10.4049/jimmunol.1700893
https://doi.org/10.1007/s00251-013-
0720-y
https://doi.org/10.1007/s00251-013-
0720-y
https://doi.org/10.1093/bib/bbw025


12

Dhanda et al. Predicting Immunogenicity Beyond HLA Binding

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1369

vaccine design. Front Immunol (2017) 8:278. doi:10.3389/fimmu.2017. 
00278 

11. Weiskopf D, Angelo MA, de Azeredo EL, Sidney J, Greenbaum JA, 
Fernando  AN, et  al. Comprehensive analysis of dengue virus-specific 
responses supports an HLA-linked protective role for CD8+ T  cells. Proc 
Natl Acad Sci U S A (2013) 110(22):E2046–53. doi:10.1073/pnas.1305227110 

12. McKinney DM, Southwood S, Hinz D, Oseroff C, Arlehamn CS, Schulten V, 
et al. A strategy to determine HLA class II restriction broadly covering the 
DR, DP, and DQ allelic variants most commonly expressed in the general 
population. Immunogenetics (2013) 65(5):357–70. doi:10.1007/s00251-013- 
0684-y 

13. Greenbaum J, Sidney J, Chung J, Brander C, Peters B, Sette A. Functional 
classification of class II human leukocyte antigen (HLA) molecules reveals 
seven different supertypes and a surprising degree of repertoire sharing across 
supertypes. Immunogenetics (2011) 63(6):325–35. doi:10.1007/s00251-011- 
0513-0 

14. Oseroff C, Sidney J, Kotturi MF, Kolla R, Alam R, Broide DH, et al. Molecular 
determinants of T  cell epitope recognition to the common Timothy grass 
allergen. J Immunol (2010) 185(2):943–55. doi:10.4049/jimmunol.1000405 

15. Paul S, Lindestam Arlehamn CS, Scriba TJ, Dillon MB, Oseroff C, Hinz D, 
et al. Development and validation of a broad scheme for prediction of HLA 
class II restricted T  cell epitopes. J Immunol Methods (2015) 422:28–34. 
doi:10.1016/j.jim.2015.03.022 

16. Yewdell JW, Bennink JR. Immunodominance in major histocompatibility 
complex class I-restricted T  lymphocyte responses. Annu Rev Immunol 
(1999) 17:51–88. doi:10.1146/annurev.immunol.17.1.51 

17. Assarsson E, Sidney J, Oseroff C, Pasquetto V, Bui HH, Frahm N, et  al. 
A quantitative analysis of the variables affecting the repertoire of T  cell 
specificities recognized after vaccinia virus infection. J Immunol (2007) 
178(12):7890–901. doi:10.4049/jimmunol.178.12.7890 

18. Kotturi MF, Peters B, Buendia-Laysa F Jr, Sidney J, Oseroff C, Botten J, 
et  al. The CD8+ T-cell response to lymphocytic choriomeningitis virus 
involves the L antigen: uncovering new tricks for an old virus. J Virol (2007) 
81(10):4928–40. doi:10.1128/JVI.02632-06 

19. Stewart-Jones GB, McMichael AJ, Bell JI, Stuart DI, Jones EY. A structural 
basis for immunodominant human T cell receptor recognition. Nat Immunol 
(2003) 4(7):657–63. doi:10.1038/ni942 

20. Turner SJ, Doherty PC, McCluskey J, Rossjohn J. Structural determinants 
of T-cell receptor bias in immunity. Nat Rev Immunol (2006) 6(12):883–94. 
doi:10.1038/nri1977 

21. Kotturi MF, Scott I, Wolfe T, Peters B, Sidney J, Cheroutre H, et al. Naive 
precursor frequencies and MHC binding rather than the degree of epitope 
diversity shape CD8+ T  cell immunodominance. J Immunol (2008) 
181(3):2124–33. doi:10.4049/jimmunol.181.3.2124 

22. Jenkins MK, Chu HH, McLachlan JB, Moon JJ. On the composition of the 
preimmune repertoire of T  cells specific for peptide-major histocompati-
bility complex ligands. Annu Rev Immunol (2010) 28:275–94. doi:10.1146/
annurev-immunol-030409-101253 

23. Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D, Lee JY, et al. Diversity and clonal 
selection in the human T-cell repertoire. Proc Natl Acad Sci U S A (2014) 
111(36):13139–44. doi:10.1073/pnas.1409155111 

24. Frankild S, de Boer RJ, Lund O, Nielsen M, Kesmir C. Amino acid similarity 
accounts for T cell cross-reactivity and for "holes" in the T cell repertoire. 
PLoS One (2008) 3(3):e1831. doi:10.1371/journal.pone.0001831 

25. Calis JJ, Maybeno M, Greenbaum JA, Weiskopf D, De Silva AD, Sette A, et al. 
Properties of MHC class I presented peptides that enhance immunogenicity. 
PLoS Comput Biol (2013) 9(10):e1003266. doi:10.1371/journal.pcbi.1003266 

26. Glanville J, Huang H, Nau A, Hatton O, Wagar LE, Rubelt F, et  al. 
Identifying specificity groups in the T cell receptor repertoire. Nature (2017) 
547(7661):94–8. doi:10.1038/nature22976 

27. Arlehamn CS, Sidney J, Henderson R, Greenbaum JA, James EA, Moutaftsi M, 
et al. Dissecting mechanisms of immunodominance to the common tubercu-
losis antigens ESAT-6, CFP10, Rv2031c (hspX), Rv2654c (TB7.7), and Rv1038c 
(EsxJ). J Immunol (2012) 188(10):5020–31. doi:10.4049/jimmunol.1103556 

28. Lindestam Arlehamn CS, Gerasimova A, Mele F, Henderson R, Swann J, 
Greenbaum JA, et al. Memory T cells in latent Mycobacterium tuberculosis 
infection are directed against three antigenic islands and largely contained 
in a CXCR3+CCR6+ Th1 subset. PLoS Pathog (2013) 9(1):e1003130. 
doi:10.1371/journal.ppat.1003130 

29. Lindestam Arlehamn CS, McKinney DM, Carpenter C, Paul S, Rozot  V, 
Makgotlho E, et  al. A quantitative analysis of complexity of human 
pathogen-specific CD4 T cell responses in healthy M. tuberculosis infected 
South Africans. PLoS Pathog (2016) 12(7):e1005760. doi:10.1371/journal.
ppat.1005760 

30. Schulten V, Greenbaum JA, Hauser M, McKinney DM, Sidney J, Kolla R, 
et al. Previously undescribed grass pollen antigens are the major inducers of 
T helper 2 cytokine-producing T cells in allergic individuals. Proc Natl Acad 
Sci U S A (2013) 110(9):3459–64. doi:10.1073/pnas.1300512110 

31. Westernberg L, Schulten V, Greenbaum JA, Natali S, Tripple V, McKinney DM, 
et  al. T-cell epitope conservation across allergen species is a major deter-
minant of immunogenicity. J Allergy Clin Immunol (2016) 138(2):571–8.e7. 
doi:10.1016/j.jaci.2015.11.034 

32. Hinz D, Oseroff C, Pham J, Sidney J, Peters B, Sette A. Definition of a pool 
of epitopes that recapitulates the T  cell reactivity against major house 
dust mite allergens. Clin Exp Allergy (2015) 45(10):1601–12. doi:10.1111/ 
cea.12507 

33. Dillon MB, Schulten V, Oseroff C, Paul S, Dullanty LM, Frazier A, et  al. 
Different Bla-g T cell antigens dominate responses in asthma versus rhinitis 
subjects. Clin Exp Allergy (2015) 45(12):1856–67. doi:10.1111/cea.12643 

34. Weiskopf D, Bangs DJ, Sidney J, Kolla RV, De Silva AD, de Silva AM, et al. 
Dengue virus infection elicits highly polarized CX3CR1(+) cytotoxic 
CD4(+) T  cells associated with protective immunity. Proc Natl Acad Sci  
U S A (2015) 112(31):E4256–63. doi:10.1073/pnas.1505956112 

35. Tangri S, Mothe BR, Eisenbraun J, Sidney J, Southwood S, Briggs K, et al. 
Rationally engineered therapeutic proteins with reduced immunogenicity. 
J Immunol (2005) 174(6):3187–96. doi:10.4049/jimmunol.174.6.3187 

36. Oseroff C, Pham J, Frazier A, Hinz D, Sidney J, Paul S, et al. Immunodominance 
in allergic T-cell reactivity to Japanese cedar in different geographic cohorts. 
Ann Allergy Asthma Immunol (2016) 117(6):680–689.e1. doi:10.1016/j.anai. 
2016.10.014 

37. Schulten V, Westernberg L, Birrueta G, Sidney J, Paul S, Busse P, et al. Allergen 
and epitope targets of mouse-specific T cell responses in allergy and asthma. 
Front Immunol (2018) 9:235. doi:10.3389/fimmu.2018.00235

38. Oseroff C, Christensen LH, Westernberg L, Pham J, Lane J, Paul S, et  al. 
Immunoproteomic analysis of house dust mite antigens reveals distinct 
classes of dominant T  cell antigens according to function and serological 
reactivity. Clin Exp Allergy (2017) 47(4):577–92. doi:10.1111/cea.12829 

39. Bancroft T, Dillon MB, da Silva Antunes R, Paul S, Peters B, Crotty S, et al. Th1 
versus Th2 T cell polarization by whole-cell and acellular childhood pertussis 
vaccines persists upon re-immunization in adolescence and adulthood. Cell 
Immunol (2016) 304-305:35–43. doi:10.1016/j.cellimm.2016.05.002 

40. Pham J, Oseroff C, Hinz D, Sidney J, Paul S, Greenbaum J, et al. Sequence 
conservation predicts T cell reactivity against ragweed allergens. Clin Exp 
Allergy (2016) 46(9):1194–205. doi:10.1111/cea.12772 

41. Antunes RDS, Paul S, Sidney J, Weiskopf D, Dan JM, Phillips E, et  al. 
Definition of human epitopes recognized in tetanus toxoid and development 
of an assay strategy to detect ex vivo tetanus CD4(+) T cell responses. PLoS 
One (2017) 12(1):e0169086. doi:10.1371/journal.pone.0169086 

42. Manfredi AA, Protti MP, Wu XD, Howard JF Jr, Conti-Tronconi BM. CD4+ 
T-epitope repertoire on the human acetylcholine receptor alpha subunit in 
severe myasthenia gravis: a study with synthetic peptides. Neurology (1992) 
42(5):1092–100. doi:10.1212/WNL.42.5.1092 

43. Herrera S, Escobar P, de Plata C, Avila GI, Corradin G, Herrera MA. Human 
recognition of T  cell epitopes on the Plasmodium vivax circumsporozoite 
protein. J Immunol (1992) 148(12):3986–90. 

44. Sjostedt A, Sandstrom G, Tarnvik A, Jaurin B. Nucleotide sequence and T cell 
epitopes of a membrane protein of Francisella tularensis. J Immunol (1990) 
145(1):311–7. 

45. Rzepczyk CM, Csurhes PA, Baxter EP, Doran TJ, Irving DO, Kere N. Amino 
acid sequences recognized by T cells: studies on a merozoite surface antigen 
from the FCQ-27/PNG isolate of Plasmodium falciparum. Immunol Lett 
(1990) 25(1–3):155–63. doi:10.1016/0165-2478(90)90108-3 

46. Zevering Y, Houghten RA, Frazer IH, Good MF. Major population differences 
in T cell response to a malaria sporozoite vaccine candidate. Int Immunol 
(1990) 2(10):945–55. doi:10.1093/intimm/2.10.945 

47. Good MF, Pombo D, Quakyi IA, Riley EM, Houghten RA, Menon A, et al. 
Human T-cell recognition of the circumsporozoite protein of Plasmodium 
falciparum: immunodominant T-cell domains map to the polymorphic 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
https://doi.org/10.3389/fimmu.2017.
00278
https://doi.org/10.3389/fimmu.2017.
00278
https://doi.org/10.1073/pnas.1305227110
https://doi.org/10.1007/s00251-013-
0684-y
https://doi.org/10.1007/s00251-013-
0684-y
https://doi.org/10.1007/s00251-011-
0513-0
https://doi.org/10.1007/s00251-011-
0513-0
https://doi.org/10.4049/jimmunol.1000405
https://doi.org/10.1016/j.jim.2015.03.022
https://doi.org/10.1146/annurev.immunol.17.1.51
https://doi.org/10.4049/jimmunol.178.12.7890
https://doi.org/10.1128/JVI.02632-06
https://doi.org/10.1038/ni942
https://doi.org/10.1038/nri1977
https://doi.org/10.4049/jimmunol.181.3.2124
https://doi.org/10.1146/annurev-immunol-030409-101253
https://doi.org/10.1146/annurev-immunol-030409-101253
https://doi.org/10.1073/pnas.1409155111
https://doi.org/10.1371/journal.pone.0001831
https://doi.org/10.1371/journal.pcbi.1003266
https://doi.org/10.1038/nature22976
https://doi.org/10.4049/jimmunol.1103556
https://doi.org/10.1371/journal.ppat.1003130
https://doi.org/10.1371/journal.ppat.1005760
https://doi.org/10.1371/journal.ppat.1005760
https://doi.org/10.1073/pnas.1300512110
https://doi.org/10.1016/j.jaci.2015.11.034
https://doi.org/10.1111/cea.12507
https://doi.org/10.1111/cea.12507
https://doi.org/10.1111/cea.12643
https://doi.org/10.1073/pnas.1505956112
https://doi.org/10.4049/jimmunol.174.6.3187
https://doi.org/10.1016/j.anai.2016.10.014
https://doi.org/10.1016/j.anai.2016.10.014
https://doi.org/10.3389/fimmu.2018.00235
https://doi.org/10.1111/cea.12829
https://doi.org/10.1016/j.cellimm.2016.05.002
https://doi.org/10.1111/cea.12772
https://doi.org/10.1371/journal.pone.0169086
https://doi.org/10.1212/WNL.42.5.1092
https://doi.org/10.1016/0165-2478(90)90108-3
https://doi.org/10.1093/intimm/2.10.945


13

Dhanda et al. Predicting Immunogenicity Beyond HLA Binding

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1369

regions of the molecule. Proc Natl Acad Sci U S A (1988) 85(4):1199–203. 
doi:10.1073/pnas.85.4.1199 

48. Carballido JM, Carballido-Perrig N, Kagi MK, Meloen RH, Wuthrich  B, 
Heusser CH, et  al. T cell epitope specificity in human allergic and nonal-
lergic subjects to bee venom phospholipase A2. J Immunol (1993) 150(8 Pt 
1):3582–91. 

49. Salvetti M, Ristori G, D’Amato M, Buttinelli C, Falcone M, Fieschi C, et al. 
Predominant and stable T cell responses to regions of myelin basic protein 
can be detected in individual patients with multiple sclerosis. Eur J Immunol 
(1993) 23(6):1232–9. doi:10.1002/eji.1830230606 

50. Bilsborough J, Carlisle M, Good MF. Identification of Caucasian CD4 T cell 
epitopes on the circumsporozoite protein of Plasmodium vivax. T cell mem-
ory. J Immunol (1993) 151(2):890–9. 

51. Manfredi AA, Protti MP, Dalton MW, Howard JF Jr, Conti-Tronconi BM. 
T helper cell recognition of muscle acetylcholine receptor in myasthenia 
gravis. Epitopes on the gamma and delta subunits. J Clin Invest (1993) 
92(2):1055–67. doi:10.1172/JCI116610 

52. Moiola L, Protti MP, Manfredi AA, Yuen MH, Howard JF Jr, Conti-
Tronconi BM. T-helper epitopes on human nicotinic acetylcholine receptor 
in myasthenia gravis. Ann N Y Acad Sci (1993) 681:198–218. doi:10.1111/ 
j.1749-6632.1993.tb22887.x 

53. Atkinson MA, Bowman MA, Campbell L, Darrow BL, Kaufman DL, 
Maclaren NK. Cellular immunity to a determinant common to glutamate 
decarboxylase and coxsackie virus in insulin-dependent diabetes. J Clin 
Invest (1994) 94(5):2125–9. doi:10.1172/JCI117567 

54. Chaye H, Ou D, Chong P, Gillam S. Human T- and B-cell epitopes of E1 gly-
coprotein of rubella virus. J Clin Immunol (1993) 13(2):93–100. doi:10.1007/
BF00919265 

55. Damhof RA, Drijfhout JW, Scheffer AJ, Wilterdink JB, Welling GW, Welling-
Wester S. T  cell responses to synthetic peptides of herpes simplex virus 
type 1 glycoprotein D in naturally infected individuals. Arch Virol (1993) 
130(1–2):187–93. doi:10.1007/BF01319007 

56. Kellermann SA, McCormick DJ, Freeman SL, Morris JC, Conti-Fine BM. 
TSH receptor sequences recognized by CD4+ T  cells in Graves’ disease 
patients and healthy controls. J Autoimmun (1995) 8(5):685–98. doi:10.1006/
jaut.1995.0051 

57. Muller CP, Ammerlaan W, Fleckenstein B, Krauss S, Kalbacher H, Schneider F, 
et al. Activation of T cells by the ragged tail of MHC class II-presented pep-
tides of the measles virus fusion protein. Int Immunol (1996) 8(4):445–56. 
doi:10.1093/intimm/8.4.445 

58. Zhang L, Yang M, Chong P, Mohapatra SS. Multiple B- and T-cell epitopes 
on a major allergen of Kentucky Bluegrass pollen. Immunology (1996) 
87(2):283–90. doi:10.1046/j.1365-2567.1996.467533.x 

59. Pender MP, Csurhes PA, Houghten RA, McCombe PA, Good MF. A study of 
human T-cell lines generated from multiple sclerosis patients and controls 
by stimulation with peptides of myelin basic protein. J Neuroimmunol (1996) 
70(1):65–74. doi:10.1016/S0165-5728(96)00105-1 

60. Marttila J, Ilonen J, Lehtinen M, Parkkonen P, Salmi A. Definition of 
three minimal T helper cell epitopes of rubella virus E1 glycoprotein. 
Clin Exp Immunol (1996) 104(3):394–7. doi:10.1046/j.1365-2249.1996. 
54762.x 

61. Wang ZY, Okita DK, Howard J Jr, Conti-Fine BM. Th1 epitope repertoire 
on the alpha subunit of human muscle acetylcholine receptor in myasthenia 
gravis. Neurology (1997) 48(6):1643–53. doi:10.1212/WNL.48.6.1643 

62. Raulf-Heimsoth M, Chen Z, Rihs HP, Kalbacher H, Liebers V, Baur X. 
Analysis of T-cell reactive regions and HLA-DR4 binding motifs on the 
latex allergen Hev b 1 (rubber elongation factor). Clin Exp Allergy (1998) 
28(3):339–48. doi:10.1046/j.1365-2222.1998.00230.x 

63. Kammerer R, Kettner A, Chvatchko Y, Dufour N, Tiercy JM, Corradin G, 
et al. Delineation of PLA2 epitopes using short or long overlapping synthetic 
peptides: interest for specific immunotherapy. Clin Exp Allergy (1997) 
27(9):1016–26. doi:10.1111/j.1365-2222.1997.tb01253.x 

64. Flanagan KL, Plebanski M, Akinwunmi P, Lee EA, Reece WH, Robson KJ, 
et al. Broadly distributed T cell reactivity, with no immunodominant loci, 
to the pre-erythrocytic antigen thrombospondin-related adhesive protein of 
Plasmodium falciparum in West Africans. Eur J Immunol (1999) 29(6):1943–54.  
doi:10.1002/(SICI)1521-4141(199906)29:06<1943::AID-IMMU1943>3. 
0.CO;2-1 

65. Marttila J, Ilonen J, Norrby E, Salmi A. Characterization of T cell epitopes 
in measles virus nucleoprotein. J Gen Virol (1999) 80(Pt 7):1609–15. 
doi:10.1099/0022-1317-80-7-1609 

66. Lamonaca V, Missale G, Urbani S, Pilli M, Boni C, Mori C, et al. Conserved 
hepatitis C virus sequences are highly immunogenic for CD4(+) T  cells: 
implications for vaccine development. Hepatology (1999) 30(4):1088–98. 
doi:10.1002/hep.510300435 

67. Woodfolk JA, Sung SS, Benjamin DC, Lee JK, Platts-Mills TA. Distinct 
human T cell repertoires mediate immediate and delayed-type hypersensi-
tivity to the Trichophyton antigen, Tri r 2. J Immunol (2000) 165(8):4379–87. 
doi:10.4049/jimmunol.165.8.4379 

68. Stott LM, Barker RN, Urbaniak SJ. Identification of alloreactive T-cell epi-
topes on the Rhesus D protein. Blood (2000) 96(13):4011–9. 

69. Tejada-Simon MV, Hong J, Rivera VM, Zhang JZ. Reactivity pattern and 
cytokine profile of T cells primed by myelin peptides in multiple sclerosis 
and healthy individuals. Eur J Immunol (2001) 31(3):907–17. doi:10.1002/ 
1521-4141(200103)31:3<907::AID-IMMU907>3.0.CO;2-1 

70. Marttila J, Juhela S, Vaarala O, Hyoty H, Roivainen M, Hinkkanen A, 
et  al. Responses of coxsackievirus B4-specific T-cell lines to 2C protein- 
characterization of epitopes with special reference to the GAD65 homology 
region. Virology (2001) 284(1):131–41. doi:10.1006/viro.2001.0917 

71. Holen E, Bolann B, Elsayed S. Novel B and T cell epitopes of chicken ovomu-
coid (Gal d 1) induce T cell secretion of IL-6, IL-13, and IFN-gamma. Clin 
Exp Allergy (2001) 31(6):952–64. doi:10.1046/j.1365-2222.2001.01102.x 

72. Wertheimer AM, Miner C, Lewinsohn DM, Sasaki AW, Kaufman E, 
Rosen  HR. Novel CD4+ and CD8+ T-cell determinants within the NS3 
protein in subjects with spontaneously resolved HCV infection. Hepatology 
(2003) 37(3):577–89. doi:10.1053/jhep.2003.50115 

73. de Silva HD, Gardner LM, Drew AC, Beezhold DH, Rolland JM, 
O’Hehir  RE. The hevein domain of the major latex-glove allergen Hev b 6.01 
contains dominant T cell reactive sites. Clin Exp Allergy (2004) 34(4):611–8. 
doi:10.1111/j.1365-2222.2004.1919.x 

74. Elsayed S, Eriksen J, Oysaed LK, Idsoe R, Hill DJ. T  cell recognition pat-
tern of bovine milk alphaS1-casein and its peptides. Mol Immunol (2004) 
41(12):1225–34. doi:10.1016/j.molimm.2004.05.010 

75. Sone T, Dairiki K, Morikubo K, Shimizu K, Tsunoo H, Mori T, et  al. 
Identification of human T cell epitopes in Japanese cypress pollen allergen, 
Cha o 1, elucidates the intrinsic mechanism of cross-allergenicity between Cha 
o 1 and Cry j 1, the major allergen of Japanese cedar pollen, at the T cell level. 
Clin Exp Allergy (2005) 35(5):664–71. doi:10.1111/j.1365-2222.2005.02221.x 

76. Schulze zur Wiesch J, Lauer GM, Day CL, Kim AY, Ouchi K, Duncan JE, et al. 
Broad repertoire of the CD4+ Th cell response in spontaneously controlled 
hepatitis C virus infection includes dominant and highly promiscuous epi-
topes. J Immunol (2005) 175(6):3603–13. doi:10.4049/jimmunol.175.6.3603 

77. Sarobe P, Lasarte JJ, Garcia N, Civeira MP, Borras-Cuesta F, Prieto J. 
Characterization of T-cell responses against immunodominant epitopes from 
hepatitis C virus E2 and NS4a proteins. J Viral Hepat (2006) 13(1):47–55. 
doi:10.1111/j.1365-2893.2005.00653.x 

78. Ruiter B, Tregoat V, M’Rabet L, Garssen J, Bruijnzeel-Koomen CA, Knol EF, 
et  al. Characterization of T  cell epitopes in alphas1-casein in cow’s milk 
 allergic, atopic and non-atopic children. Clin Exp Allergy (2006) 36(3):303–10. 
doi:10.1111/j.1365-2222.2006.02436.x 

79. Ma Y, Bogdanos DP, Hussain MJ, Underhill J, Bansal S, Longhi MS, et al. 
Polyclonal T-cell responses to cytochrome P450IID6 are associated with 
disease activity in autoimmune hepatitis type 2. Gastroenterology (2006) 
130(3):868–82. doi:10.1053/j.gastro.2005.12.020 

80. Kasprowicz V, Isa A, Tolfvenstam T, Jeffery K, Bowness P, Klenerman P. 
Tracking of peptide-specific CD4+ T-cell responses after an acute resolving 
viral infection: a study of parvovirus B19. J Virol (2006) 80(22):11209–17. 
doi:10.1128/JVI.01173-06 

81. Sukati H, Watson HG, Urbaniak SJ, Barker RN. Mapping helper T-cell 
epitopes on platelet membrane glycoprotein IIIa in chronic autoimmune 
thrombocytopenic purpura. Blood (2007) 109(10):4528–38. doi:10.1182/
blood-2006-09-044388 

82. Schulze Zur Wiesch J, Lauer GM, Timm J, Kuntzen T, Neukamm M, 
Berical A, et al. Immunologic evidence for lack of heterologous protection 
following resolution of HCV in patients with non-genotype 1 infection. Blood 
(2007) 110(5):1559–69. doi:10.1182/blood-2007-01-069583 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
https://doi.org/10.1073/pnas.85.4.1199
https://doi.org/10.1002/eji.1830230606
https://doi.org/10.1172/JCI116610
https://doi.org/10.1111/
j.1749-6632.1993.tb22887.x
https://doi.org/10.1111/
j.1749-6632.1993.tb22887.x
https://doi.org/10.1172/JCI117567
https://doi.org/10.1007/BF00919265
https://doi.org/10.1007/BF00919265
https://doi.org/10.1007/BF01319007
https://doi.org/10.1006/jaut.1995.0051
https://doi.org/10.1006/jaut.1995.0051
https://doi.org/10.1093/intimm/8.4.445
https://doi.org/10.1046/j.1365-2567.1996.467533.x
https://doi.org/10.1016/S0165-5728(96)00105-1
https://doi.org/10.1046/j.1365-2249.1996.
54762.x
https://doi.org/10.1046/j.1365-2249.1996.
54762.x
https://doi.org/10.1212/WNL.48.6.1643
https://doi.org/10.1046/j.1365-2222.1998.00230.x
https://doi.org/10.1111/j.1365-2222.1997.tb01253.x
https://doi.org/10.1002/(SICI)1521-4141(199906)29:06 < 1943::AID-IMMU1943 > 3.
0.CO;2-1
https://doi.org/10.1002/(SICI)1521-4141(199906)29:06 < 1943::AID-IMMU1943 > 3.
0.CO;2-1
https://doi.org/10.1099/0022-1317-80-7-1609
https://doi.org/10.1002/hep.510300435
https://doi.org/10.4049/jimmunol.165.8.4379
https://doi.org/10.1002/
1521-4141(200103)31:3 < 907::AID-IMMU907 > 3.0.CO;2-1
https://doi.org/10.1002/
1521-4141(200103)31:3 < 907::AID-IMMU907 > 3.0.CO;2-1
https://doi.org/10.1006/viro.2001.0917
https://doi.org/10.1046/j.1365-2222.2001.01102.x
https://doi.org/10.1053/jhep.2003.50115
https://doi.org/10.1111/j.1365-2222.2004.1919.x
https://doi.org/10.1016/j.molimm.2004.05.010
https://doi.org/10.1111/j.1365-2222.2005.02221.x
https://doi.org/10.4049/jimmunol.175.6.3603
https://doi.org/10.1111/j.1365-2893.2005.00653.x
https://doi.org/10.1111/j.1365-2222.2006.02436.x
https://doi.org/10.1053/j.gastro.2005.12.020
https://doi.org/10.1128/JVI.01173-06
https://doi.org/10.1182/blood-2006-09-044388
https://doi.org/10.1182/blood-2006-09-044388
https://doi.org/10.1182/blood-2007-01-069583


14

Dhanda et al. Predicting Immunogenicity Beyond HLA Binding

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1369

83. Immonen A, Kinnunen T, Sirven P, Taivainen A, Houitte D, Perasaari J, et al. 
The major horse allergen Equ c 1 contains one immunodominant region 
of T  cell epitopes. Clin Exp Allergy (2007) 37(6):939–47. doi:10.1111/j. 
1365-2222.2007.02722.x 

84. Malhotra I, Wamachi AN, Mungai PL, Mzungu E, Koech D, Muchiri E, et al. 
Fine specificity of neonatal lymphocytes to an abundant malaria blood-stage 
antigen: epitope mapping of Plasmodium falciparum MSP1(33). J Immunol 
(2008) 180(5):3383–90. doi:10.4049/jimmunol.180.5.3383 

85. Masuyama K, Chikamatsu K, Ikagawa S, Matsuoka T, Takahashi G, 
Yamamoto  T, et  al. Analysis of helper T  cell responses to Cry j 1-derived 
peptides in patients with nasal allergy: candidate for peptide-based immu-
notherapy of Japanese cedar pollinosis. Allergol Int (2009) 58(1):63–70. 
doi:10.2332/allergolint.08-OA-0008 

86. Sone T, Dairiki K, Morikubo K, Shimizu K, Tsunoo H, Mori T, et  al. 
Recognition of T  cell epitopes unique to Cha o 2, the major allergen in 
Japanese cypress pollen, in allergic patients cross-reactive to Japanese cedar 
and Japanese cypress pollen. Allergol Int (2009) 58(2):237–45. doi:10.2332/
allergolint.08-OA-0027 

87. Madsen D, Cantwell ER, O’Brien T, Johnson PA, Mahon BP. Adeno-
associated virus serotype 2 induces cell-mediated immune responses directed 
against multiple epitopes of the capsid protein VP1. J Gen Virol (2009) 90 
(Pt 11):2622–33. doi:10.1099/vir.0.014175-0 

88. Pastorello EA, Monza M, Pravettoni V, Longhi R, Bonara P, Scibilia J, et al. 
Characterization of the T-cell epitopes of the major peach allergen Pru p 3. Int 
Arch Allergy Immunol (2010) 153(1):1–12. doi:10.1159/000301573 

89. Matsuya N, Komori M, Nomura K, Nakane S, Fukudome T, Goto H, et al. 
Increased T-cell immunity against aquaporin-4 and proteolipid protein 
in neuromyelitis optica. Int Immunol (2011) 23(9):565–73. doi:10.1093/
intimm/dxr056 

90. Chaduvula M, Murtaza A, Misra N, Narayan NP, Ramesh V, Prasad HK, 
et  al. Lsr2 peptides of Mycobacterium leprae show hierarchical responses 
in lymphoproliferative assays, with selective recognition by patients with 
anergic lepromatous leprosy. Infect Immun (2012) 80(2):742–52. doi:10.1128/
IAI.05384-11 

91. Etto T, de Boer C, Prickett S, Gardner LM, Voskamp A, Davies JM, et  al. 
Unique and cross-reactive T cell epitope peptides of the major Bahia grass 
pollen allergen, Pas n 1. Int Arch Allergy Immunol (2012) 159(4):355–66. 
doi:10.1159/000338290 

92. Ravkov EV, Pavlov IY, Martins TB, Gleich GJ, Wagner LA, Hill HR, et al. 
Identification and validation of shrimp-tropomyosin specific CD4 T  cell 
epitopes. Hum Immunol (2013) 74(12):1542–9. doi:10.1016/j.humimm.2013. 
08.276 

93. Schwaiger J, Aberle JH, Stiasny K, Knapp B, Schreiner W, Fae I, et  al. 
Specificities of human CD4+ T  cell responses to an inactivated flavivirus 
vaccine and infection: correlation with structure and epitope prediction. 
J Virol (2014) 88(14):7828–42. doi:10.1128/JVI.00196-14 

94. Ronka AL, Kinnunen TT, Goudet A, Rytkonen-Nissinen MA, Sairanen  J, 
Kailaanmaki AH, et  al. Characterization of human memory CD4(+) 
T-cell responses to the dog allergen Can f 4. J Allergy Clin Immunol (2015) 
136(4):1047–54.e10. doi:10.1016/j.jaci.2015.02.025 

95. Kailaanmaki A, Kinnunen T, Ronka A, Rytkonen-Nissinen M, Lidholm J, 
Mattsson L, et al. Human memory CD4+ T cell response to the major dog 
allergen Can f 5, prostatic kallikrein. Clin Exp Allergy (2016) 46(5):720–9. 
doi:10.1111/cea.12694 

96. Oshima M, Deitiker P, Jankovic J, Aoki KR, Atassi MZ. Submolecular 
recognition of the C-terminal domain of the heavy chain of botulinum 
neurotoxin type A by T cells from toxin-treated cervical dystonia patients. 
Immunobiology (2016) 221(4):568–76. doi:10.1016/j.imbio.2015.12.002 

97. Gaido CM, Stone S, Chopra A, Thomas WR, Le Souef PN, Hales BJ. 
Immunodominant T-cell epitopes in the VP1 capsid protein of rhinovirus 
species A and C. J Virol (2016) 90(23):10459–71. doi:10.1128/JVI.01701-16 

98. Oshima M, Deitiker P, Jankovic J, Atassi MZ. Submolecular recognition 
regions of the HN domain of the heavy chain of botulinum neurotoxin type 
A by T cells from toxin-treated cervical dystonia patients. J Neuroimmunol 
(2016) 300:36–46. doi:10.1016/j.jneuroim.2016.09.013 

99. Paul S, Sidney J, Sette A, Peters B. TepiTool: a pipeline for computational 
prediction of T  cell epitope candidates. Curr Protoc Immunol (2016) 
114:18.19.1–18.19.24. doi:10.1002/cpim.12 

100. Weiskopf D, Angelo MA, Grifoni A, O’Rourke PH, Sidney J, Paul S, et al. 
HLA-DRB1 alleles are associated with different magnitudes of dengue 
virus-specific CD4+ T-cell responses. J Infect Dis (2016) 214(7):1117–24. 
doi:10.1093/infdis/jiw309 

101. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, 
et  al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res (2015) 
43(Database issue):D405–12. doi:10.1093/nar/gku938 

102. Andreatta M, Schafer-Nielsen C, Lund O, Buus S, Nielsen M. NNAlign: a 
web-based prediction method allowing non-expert end-user discovery of 
sequence motifs in quantitative peptide data. PLoS One (2011) 6(11):e26781. 
doi:10.1371/journal.pone.0026781 

103. Swets JA. Measuring the accuracy of diagnostic systems. Science (1988) 
240(4857):1285–93. doi:10.1126/science.3287615 

104. Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, et  al. 
Immune epitope database analysis resource. Nucleic Acids Res (2012) 40(Web 
Server issue):W525–30. doi:10.1093/nar/gks438 

105. Vacic V, Iakoucheva LM, Radivojac P. Two sample logo: a graphical rep-
resentation of the differences between two sets of sequence alignments. 
Bioinformatics (2006) 22(12):1536–7. doi:10.1093/bioinformatics/btl151 

106. Dhanda SK, Gupta S, Vir P, Raghava GP. Prediction of IL4 inducing peptides. 
Clin Dev Immunol (2013) 2013:263952. doi:10.1155/2013/263952 

107. Dhanda SK, Vir P, Raghava GP. Designing of interferon-gamma inducing 
MHC class-II binders. Biol Direct (2013) 8:30. doi:10.1186/1745-6150-8-30 

108. Nagpal G, Usmani SS, Dhanda SK, Kaur H, Singh S, Sharma M, et  al. 
Computer-aided designing of immunosuppressive peptides based on IL-10 
inducing potential. Sci Rep (2017) 7:42851. doi:10.1038/srep42851 

109. Sant’Angelo DB, Robinson E, Janeway CA Jr, Denzin LK. Recognition of core 
and flanking amino acids of MHC class II-bound peptides by the T cell recep-
tor. Eur J Immunol (2002) 32(9):2510–20. doi:10.1002/1521-4141(200209)32: 
9<2510::AID-IMMU2510>3.0.CO;2-Q 

110. Nielsen M, Lundegaard C, Lund O, Kesmir C. The role of the proteasome 
in generating cytotoxic T-cell epitopes: insights obtained from improved 
predictions of proteasomal cleavage. Immunogenetics (2005) 57(1–2):33–41. 
doi:10.1007/s00251-005-0781-7 

111. Yin L, Calvo-Calle JM, Dominguez-Amorocho O, Stern LJ. HLA-DM con-
strains epitope selection in the human CD4 T cell response to vaccinia virus 
by favoring the presentation of peptides with longer HLA-DM-mediated 
half-lives. J Immunol (2012) 189(8):3983–94. doi:10.4049/jimmunol. 
1200626 

112. Alexander J, Sidney J, Southwood S, Ruppert J, Oseroff C, Maewal A, et al. 
Development of hi0067h potency universal DR-restricted helper epitopes 
by modification of high affinity DR-blocking peptides. Immunity (1994) 
1(9):751–61. doi:10.1016/S1074-7613(94)80017-0 

113. Hung CF, Tsai YC, He L, Wu TC. DNA vaccines encoding Ii-PADRE 
generates potent PADRE-specific CD4+ T-cell immune responses and 
enhances vaccine potency. Mol Ther (2007) 15(6):1211–9. doi:10.1038/sj.mt. 
6300121 

114. Carrasco Pro S, Sidney J, Paul S, Lindestam Arlehamn C, Weiskopf D, Peters 
B, et al. Automatic generation of validated specific epitope sets. J Immunol Res 
(2015) 2015:763461. doi:10.1155/2015/763461 

115. Weiskopf D, Cerpas C, Angelo MA, Bangs DJ, Sidney J, Paul S, et al. Human 
CD8+ T-cell responses against the 4 dengue virus serotypes are associated 
with distinct patterns of protein targets. J Infect Dis (2015) 212(11):1743–51. 
doi:10.1093/infdis/jiv289 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

The handling Editor declared a past co-authorship with the authors.

Copyright © 2018 Dhanda, Karosiene, Edwards, Grifoni, Paul, Andreatta, Weiskopf, 
Sidney, Nielsen, Peters and Sette. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License (CC BY). The use, distribution 
or reproduction in other forums is permitted, provided the original author(s) and the 
copyright owner are credited and that the original publication in this journal is cited, 
in accordance with accepted academic practice. No use, distribution or reproduction 
is permitted which does not comply with these terms.

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
https://doi.org/10.1111/j.
1365-2222.2007.02722.x
https://doi.org/10.1111/j.
1365-2222.2007.02722.x
https://doi.org/10.4049/jimmunol.180.5.3383
https://doi.org/10.2332/allergolint.08-OA-0008
https://doi.org/10.2332/allergolint.08-OA-0027
https://doi.org/10.2332/allergolint.08-OA-0027
https://doi.org/10.1099/vir.0.014175-0
https://doi.org/10.1159/000301573
https://doi.org/10.1093/intimm/dxr056
https://doi.org/10.1093/intimm/dxr056
https://doi.org/10.1128/IAI.05384-11
https://doi.org/10.1128/IAI.05384-11
https://doi.org/10.1159/000338290
https://doi.org/10.1016/j.humimm.2013.
08.276
https://doi.org/10.1016/j.humimm.2013.
08.276
https://doi.org/10.1128/JVI.00196-14
https://doi.org/10.1016/j.jaci.2015.02.025
https://doi.org/10.1111/cea.12694
https://doi.org/10.1016/j.imbio.2015.12.002
https://doi.org/10.1128/JVI.01701-16
https://doi.org/10.1016/j.jneuroim.2016.09.013
https://doi.org/10.1002/cpim.12
https://doi.org/10.1093/infdis/jiw309
https://doi.org/10.1093/nar/gku938
https://doi.org/10.1371/journal.pone.0026781
https://doi.org/10.1126/science.3287615
https://doi.org/10.1093/nar/gks438
https://doi.org/10.1093/bioinformatics/btl151
https://doi.org/10.1155/2013/263952
https://doi.org/10.1186/1745-6150-8-30
https://doi.org/10.1038/srep42851
https://doi.org/10.1002/1521-4141(200209)32:
9 < 2510::AID-IMMU2510 > 3.0.CO;2-Q
https://doi.org/10.1002/1521-4141(200209)32:
9 < 2510::AID-IMMU2510 > 3.0.CO;2-Q
https://doi.org/10.1007/s00251-005-0781-7
https://doi.org/10.4049/jimmunol.1200626
https://doi.org/10.4049/jimmunol.1200626
https://doi.org/10.1016/S1074-7613(94)80017-0
https://doi.org/10.1038/sj.mt.6300121
https://doi.org/10.1038/sj.mt.6300121
https://doi.org/10.1155/2015/763461
https://doi.org/10.1093/infdis/jiv289
https://creativecommons.org/licenses/by/4.0/

	Predicting HLA CD4 Immunogenicity in Human Populations
	Introduction
	Materials and Methods
	Datasets
	Training Dataset Assembly
	Mycobacterium Tuberculosis (TB) Antigens
	Timothy Grass (TG) Known Allergens
	House Dust Mite (HDM) Allergens
	Cockroach (CR) Allergens
	Dengue (DENV) Antigens
	Erythropoietin
	CRJ1 and CRJ2 Japanese Cedar Allergens
	Mouse Allergens
	Novel House Dust Mite Antigens
	Pertussis Vaccine Antigens
	Ragweed Allergens
	Tetanus Toxoid (TT) Antigen
	ZIKA Virus (ZIKV) Antigens
	Yellow Fever (YF) Antigens

	IEDB Validation Datasets
	Tetramer Training Dataset

	Artificial Neural Network (ANN)-Based Predictions Using NNAlign Method
	Receiver Operating Characteristic (ROC) Curves and AUC Values
	HLA Binding Predictions
	Generation of Two-Sample Logo
	Statistical Analysis

	Results
	Derivation and Validation of an ANNs-Derived Immunogenicity Score
	Combining Immunogenicity and HLA Binding Predictions
	Performance of the Immunogenicity Score, Eliminating Redundancy Between Training and Testing Datasets
	Two-Sample Logo of a General Immunogenicity Motif
	Epitope Prediction Threshold and Implementation of an Online Tool

	Discussion
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


