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ABSTRACT: We have established an easy synthetic protocol for
selectively developing all-orthogonal BODIPY trimers with unprece-
dented geometries on the basis of selecting methyl oxidation versus
electrophilic formylation of key dimeric precursors. Photophysical
characterization together with biological assays unraveled the most
suitable BODIPY−BODIPY geometrical arrangements within the trimer,
forcing them to serve as molecular platforms for the development of new,
advanced heavy-atom-free photosensitizers for photodynamic therapy
and phototheragnosis.

Photodynamic therapy (PDT) is a minimally invasive and
clinically approved procedure based on the synergistic

action of three elements: (i) a photoactivatable agent, the PDT
photosensitizer (PS), (ii) light of a specific energy, and (iii)
molecular oxygen. These three elements are not toxic by
themselves, but their combination triggers a toxic effect on the
basis of the generation of reactive oxygen species (ROS).1,2

Since its clinical approval in 1993, PDT has proven its efficacy
in the treatment of multiple diseases related to high rates of
cell proliferation and, especially, in the treatment of neoplastic
diseases.1 However, the clinical application of PDT as a cancer
first-line treatment remains limited and not fully exploited. For
this reason, there are currently numerous investigations
focused on improving the performance of PDT treatments
and agents.2

The combination of PDT with diagnostic imaging leads to
phototheragnosis, in which a single agent enables such dual
phototriggered activity.3 It must be noted here that theragnosis
constitutes a growing area of research, being considered one of
the most promising precision medicine procedures, mainly in
cancer.4 However, combining both capacities (PDT and
imaging) in a biocompatible, simple, monochromophoric
system is not easy, because the photonic properties required
for each capacity are antagonistic (the higher the fluorescence
efficiency, the lower the level of ROS photogeneration).2,4

Therefore, both key properties must be finely balanced to
allow simultaneous fluorescence signaling for diagnosis and
ROS-based cytotoxicity for PDT.5 In this scenario, the design
of advanced phototheragnostic agents is one of the most
challenging goals of modern biomaterials science.5

Among the most promising monochomophoric platforms
for developing smarter PS for PDT and phototheragnosis,
BODIPY dyes are at the forefront. These versatile
fluorophores6 generally exhibit a negligible triplet state
population due to their high quantum fluorescence yield;
however, linking heavy atoms to the BODIPY structure is a
facile approach for promoting the required intersystem
crossing (ISC) populating the triplet manifold involved in
ROS (singlet oxygen) formation.7 In this context, an appealing
alternative to the use of heavy atoms is the design of
orthogonal BODIPY dimers, because they are well-known
efficient singlet oxygen photogenerators.8 Indeed, several
orthogonal dimers have been reported to be PDT agents,
mainly involving the 2−8′ BODIPY−BODIPY linkage,8 and
less often the 3−8′ one (Figure 1a).9 On the contrary, all-
orthogonal BODIPY trimers are rather scarce,10 and their
performance as PSs for PDT has still not been fully explored
(Figure 1b).10b,c

To address this gap and fully unlock the capabilities of all-
orthogonal BODIPY trimers, we focused our attention on the
possibility of obtaining trimers with different geometries (see
Figure 1c) and studying the influence of these geometries
(different BODIPY−BODIPY arrangements in the trimer) on
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the generation of singlet oxygen and fluorescent emission, to
determine the privileged new molecular platforms for the
development of advanced PDT and phototheragnostic agents.
In this context, we hypothesized that a straightforward
procedure for accessing all-orthogonal BODIPY trimers
could be via regioselective formylation of dimeric precursors.
It must be noted here that 2-formylBODIPYs can be
straightforwardly and regioselectively obtained by Vilsmeier−
Haack reaction,11 and recently, we have described an
alternative method that allows easy access to 3-formylBODI-
PYs by oxidation of 3-methylBODIPYs using pyridinium
chlorochromate (PCC).9b

Taking into account both possibilities (2-formylBODIPYs
by electrophilic formylation vs 3-formylBODIPYs by methyl
oxidation), we report here a comparative study of the
application of both strategies to the preparation of
formylBODIPY-based dimers involving different BODIPY−
BODIPY linkages (2−8′ and 3−8′), as key synthetic
precursors of unprecedented all-orthogonal BODIPY trimers,
because they could serve as advantageous platforms for the
development of advanced heavy-atom-free PDT and photo-
theragnostic agents.
Thus, we first studied the PCC-promoted oxidation of

methyl groups in the 2−8′ dimers 1a,12 1b and 1c, and 1d,13

bearing an electron-donating meso-methyl (1a) or a meso-
phenyl group of different electron richness in one of their
BODIPY subunits (mesityl in 1b, 4-methoxyphenyl in 1c, or 4-
nitrophenyl in 1d). In all cases, 3-formylBODIPY-based dimers
(see 2a−d in Scheme 1A) were obtained in 54−64% yield.
Interestingly, methyl oxidation exclusively took place at
position 3 (3-methyl group) of the BODIPY subunit bearing
a BODIPY rest at its meso position, regardless of the meso
substitution of the other BODIPY subunit. These results
constitute the first examples of regioselective mono-oxidation
of 3-methylBODIPY-based dimers by PCC, expanding the
interest in this reaction in the BODIPY chemistry field.9b

On the contrary, the electrophilic formylation of the same
dimers (1a, 1b and 1c, and 1d) with POCl3/DMF was also
studied. In this case, the reaction takes place at the BODIPY
subunit bearing a BODIPY rest at its meso position, too, to
generate 2-formylBODIPY-based dimers 3a−d (Scheme 1A)
in >80% yields. This regioselectivity agrees with the findings of

Akkaya et al. in the up-to-now unique formylation of an
orthogonal BODIPY dimer.10a

To further investigate the scope of the PCC oxidation of
methylated BODIPY dimers, we selected the oxidation of
dimer 4 (Scheme 1B), in which the reaction can take place
only at the BODIPY subunit without a BODIPY rest at meso.
In this specific case, methyl oxidation also occurs, but yielding
a mixture of products (5a and 5b) with low yield and
regioselectivity (24% and 11%, respectively).
All of these results prompted us to extend the investigation

of the application of both reactions, PCC methyl oxidation
versus POCl3/DMF formylation, to two additional BODIPY
dimers involving the uncommon 3−8′ linkage (6a and 6b in
Scheme 1C). To our satisfaction, the regioselectivity found in
the PCC oxidation and POCl3/DMF formylation of the 2−8′-
linked dimers 1a−d is maintained in the 3−8′-linked dimers 6a
and 6b to generate 3-formylBODIPY-based dimers 7a and 7b,
respectively (by oxidation; 46% and 39% yields, respectively),
and 2-formylBODIPY-based dimers 8a and 8b, respectively
(by formylation; 64% and 78% yield, respectively) (see
Scheme 1C). It must be remarked that 7a, 7b, 8a, and 8b
are the first examples of formylated orthogonal BODIPY
dimers involving the 3−8′ linkage. On the contrary, it should
be noted that the position of the formyl group in all of the
obtained formylated dimers was unequivocally established by
one-dimensional NOESY experiments (e.g., see Figures S1−
S5).
The obtained formylated BODIPY dimers should pave the

way for all-orthogonal BODIPY trimers with different
geometries upon standard BODIPY-core formation from
formyl groups. To explore this possibility, we selected meso-
mesitylated dimers 2b, 3b, 7b, and 8b (see Scheme 1), due to
the known high photostability promoted by meso-mesitylation
in BODIPY fluorophores.14 Satisfactorily, condensation of 2b,
3b, 7b, and 8b with 2,4-dimethylpyrrole in the presence of
trifluoroacetic acid (TFA), followed by oxidation with 2,3-
dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), and final
complexation with BF3·OEt2/triethylamine (standard BODI-
PY-core formation) gave rise to trimers 9−12, respectively, in
low to moderate yields (see Scheme 2).
The obtained new, all-orthogonal BODIPY trimers (9−12)

display their main absorption band in the same spectral region
[centered at 505−510 nm (Figure S6)], resembling the

Figure 1. Existing (a) orthogonal BODIPY dimers and (b) all-
orthogonal trimers and (c) new all-orthogonal BODIPY trimers
developed in this work.

Scheme 1. Synthesis of Mono-formylated Orthogonal
BODIPY Dimers by (i) PCC Oxidation or (ii) Electrophilic
Formylation with POCl3/DMF
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absorption of each independent BODIPY subunit. Just a weak
long-wavelength shoulder is recorded from trimer 12, featuring
both 2−8′ and 3−8′ junctions, which can be attributed to a
small degree of excitonic coupling in such a geometry (Figure
2).15 Theoretically optimized geometries (CAM-B3LYP)

reveal that the steric hindrance around both BODIPY−
BODIPY linkage positions imposes an orthogonal disposition
of the involved BODIPY subunits [torsion angles approaching
90° (Figure S7)], which hampers any resonant interaction
between them. However, the molar absorption markedly
depends on the linked chromophoric positions (see Table S1).
Thus, trimer 10, featuring solely 2−8′ linkages, displays huge
molar absorption (reaching 230000 M−1 cm−1), in con-
cordance with the expected additive contribution of the three
involved BODIPY subunits. However, the mixing of the
linkage positions (3−8′ and 2−8′ in 9 and 12) implies a
decrease in the absorption probability, reaching the lowest
values for trimer 11 with just 3−8′ connectivities (down to
90000 M−1 cm−1). For the sake of simplicity, we theoretically
simulated the absorption properties of the corresponding
dimers 1b and 6b (Table S2), which show the photophysical
trends observed in trimers (Tables S1 and S3). The
photoexcitation of 2−8′-linked dimer 1b implies the
population of two excited states, each resulting from electron
promotion in individual BODIPY subunits. Indeed, the
molecular orbitals (MOs) involved in the electronic transitions
to S1 and S2 are predominantly located in each BODIPY core,
leading to additive allowed local excitations (LE) [HOMO−1
→ LUMO and HOMO → LUMO (Figure S8)]. However, in
3−8′-linked dimer 6b, the low-lying excited state has partial
charge transfer (CT) character. Indeed, and in spite of the

orthogonal arrangement, the occupied frontier MOs of both
dimers are spread over the two BODIPY cores, whereas the
unoccupied ones are exclusively located in one of the BODIPY
cores (Figure S8). Therefore, the HOMO→ LUMO transition
in 6b entails electronic transfer from one BODIPY subunit to
another.10c Note that such a weaker CT transition was fully
forbidden in 1b, but allowed in 6b, and it is predicted to be at a
position similar to that of the LE transitions of 1b (Table S2),
in agreement with the experimental findings.
The fluorescence signatures also differ markedly depending

on the geometry of the trimer. Thus, 2−8′-linked trimer 10
shows a single emission centered around 530−535 nm (Figure
S6); its intensity decreases with solvent polarity [from 23% to
almost 0% (Figure 2)]. As expected, the excited state dynamics
are ruled by the orthogonal arrangement-induced intra-
molecular CT attributed to a symmetry-breaking mechanism
(SBCT).16 In agreement with the absorption measurements,
the presence of the 3−8′ linkage in the trimer implies a further
stabilization of the CT, as reflected in lower fluorescence
efficiencies [e.g., <2% in 11, even in apolar media (Figure 2)].
Indeed, in trimers involving the 3−8′ junction (9, 11, and 12),
the emission from the LE state is so weak that the ICT
emission is detected at longer wavelengths in apolar and low-
polarity solvents [shifted up to ∼610 nm in 12 and ∼675 nm
in 11 (Figure S6)]. In more polar media, the charge separation
(CS) is so stabilized that the ICT becomes a dark state and its
emission vanishes, resulting in a single strongly quenched LE
emission. The role of the geometry and the solvent is also
reflected in the corresponding dimers (Table S3). Thus, 2−8′-
linked dimer 1b is more fluorescent than related trimer 10
based on it. The presence of two orthogonally linked BODIPY
pairs in this trimer enhances the SBCT probability with the
ensuing fluorescence quenching. However, the fluorescence
response of 3−8′-linked dimer 6b is weak and similar to that of
its counterpart trimer 11, supporting the stronger CS
stabilization in this geometry arrangement.
CT states can mediate the triplet state population,

promoting singlet oxygen generation by energy transfer (type
II mechanism of ROS photogeneration),10c,17 as supported by
the detection of the 1O2 phosphorescence at 1270 nm (see the
experimental details in the Supporting Information). The most
accepted mechanism, enabling the triplet state to be reached
from the populated CT one, is spin−orbit charge transfer
intersystem crossing (SOCT-ISC).18 All of the studied trimers
show an efficient singlet oxygen photogeneration, which decays
in polar media (Figure 2). This fact can be explained by the
stabilization of a CS state, hindering the required charge
recombination (CR) to reach the triplet manifold.16

Accordingly, these trimers show phosphorescence emission
placed at 680−770 nm with a lifetime of ≤100 μs (Figure S9)
measured from aerated solutions at room temperature. The
effect of the trimer geometry on its behavior as a ROS
photosensitizer can be rationalized in a similar way. Once
again, the highest singlet oxygen efficiencies are achieved for
2−8′-linked trimer 10, whereas the 3−8′ connection decreases
the level of singlet oxygen photogeneration (see trimer 11 in
Figure 2). The enhancement of the CS when it involves
position 3 in the BODIPY−BODIPY linkage enables non-
radiative relaxation channels from the ICT state, decreasing
both fluorescence and ISC pathways. Further evidence is
gathered upon inspection of the ROS generation capability of
the corresponding dimers. These dimers show sizable
efficiency (Table S3), though 2−8′-linked 1b enables 1O2

Scheme 2. Synthesis of All-Orthogonal BODIPY Trimers
9−12 with Different Geometriesa

aReaction conditions: (i) (a) 2,4-dimethylpyrrole, TFA, CH2Cl2; (b)
DDQ; (c) BF3·Et2O/Et3N.

Figure 2. Fluorescence and singlet oxygen efficiency of all-orthogonal
BODIPY trimers involving 2−8′ (10), 2−8′ and 3−8′ (9 and 12),
and 3−8′ (11) BODIPY−BODIPY linkages in different solvents. Full
photophysical data are listed in Table S1.
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generation even in polar media, while the rest of the dimers
and the trimer show low efficiency (Figure 3). As mentioned

above, the trimers are more prone to undergoing SBCT, the
level of ROS generation being therefore high but more
sensitive to the solvent polarity and the molecular geometry.
Therefore, all of the developed trimers should be able to kill
cells by PDT, but only the dual photonic behavior of trimer 10
and, to a lesser extent, 12 should allow phototheragnostic
capability (Figure 2).
Accordingly, we evaluated the PDT activity of 9−12. For

this purpose, human melanoma cell line SK-Mel-103 and the
cell viability WST-1 assay were selected. The cells were treated
with increasing doses of the corresponding BODIPY trimer for
24 h and subsequently irradiated with LED light (475 nm, 36
W) for 0.5 h. As shown in Figure 3, all of the studied trimers
display evident phototoxicity in a concentration-dependent
manner [half-maximal inhibitory concentrations, IC50, between
0.69 and 2.80 μM (see Figure S10 and Table S4)]. By contrast,
in the absence of light, no significant adverse effect on cells was
detected. These results support trimers 9−12 being platforms
for the development of PDT agents.
The significant fluorescent behavior of 10 and 12, in

conjunction with their PDT activity (Figures 2 and 3),
prompted us to conduct further investigations to support their
potential as phototheragnostic agents. Thus, we investigated
the capability of these dyes to act as fluorescent intracellular
makers. To our satisfaction, confocal laser scanning micros-
copy (CSLM) demonstrated that both dyes are internalized
well into living SK-Mel-103 cells, preferably accumulating in
the lysosomes without triggering cell death under the used
microscopy conditions [e.g., Pearson’s correlation coefficient
Rr of 0.70 ± 0.06 for 12 using LysoTracker Deep Red (see
Figure 4 and Table S5)]. In contrast, when using the
mitochondria and endoplasmic reticulum trackers, the two
channels do not completely overlap with Pearson’s correlation
coefficients decreasing (see Table S5 and Figures S11 and
S12). All of these results demonstrate the capability of 10 and

12 to act as fluorescent intracellular probes, supporting their
potential to serve as phototheragnostic agents. Moreover,
apoptosis was confirmed as the main cell-death mechanism
upon light irradiation (PDT treatment) when both dyes are
individually used as PDT agents. Thus, flow cytometry shows
an increase in the number of Annexin-V positive cells (a
hallmark of apoptosis) after the selected PDT treatment (SK-
Mel-103 cells; incubation with the dye for 24 h; 475 nm, 36 W,
0.5 h) with an increase in the concentration of the dye. For
example, trimer 12 triggers cell death through apoptosis only
after irradiation.19 The average percentage of early and late
apoptotic cell population increased from 30.5% to 90.1% when
the the dye concentration was increased from 2.84 μM [IC50
(see Figure 4)] to 5.00 μM. In contrast, the percentage of
necrotic cells was not significant in either case, thus confirming
apoptotic cell death (see Figure S13). A similar result was
obtained when using 10 instead of 12 (see Figure S14). All of
these studies and results support the potential of all-orthogonal
BODIPY trimers 10 and 12 to serve as platforms for the
development of advanced phototheragnostic agents.
In summary, a new synthetic strategy based of the

regioselective formation of formylBODIPY-based dimers
allows easy access to all-orthogonal BODIPY trimers with
well-defined final geometries. Photophysical studies demon-
strate that the involvement of 2−8′ BODIPY−BODIPY
linkages in these trimers is advantageous for counterbalancing
singlet oxygen generation and fluorescence toward photo-
theragnostic purposes. However, further CT state stabilization
induced by the presence of 3−8′ linkages is detrimental for
both key properties, sustaining the fundamental role of the fine
control of the CT to develop smart phototheragnostic agents.
Biological studies using SK-Mel-103 cells corroborate trimer
photophysics, showing that all of the developed trimers display
significant photocytoxicity, which is complemented by
bioimaging capability (probing lysosomes) in the case of 10
and 12 involving 2−8′ linkages. These results support the
utility of the developed synthetic strategy and the revealed
privileged designs (based on 2−8′ BODIPY−BODIPY link-
ages) for the development of advanced heavy-atom-free PDT
agents, including valuable phototheragnostic agents.
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Figure 3. Cell viability of SK-Mel-103 cancer cells treated with
trimers 9−12 (different concentrations) for 24 h in the absence
(black) and presence (gray) of visible light (475 nm, 36 W) for 0.5 h.
Values are expressed as means ± SEM of at least three independent
experiments, and statistical significance was assessed by two-way
ANOVA and Tukey’s post-test. **p < 0.010 and ****p < 0.0001
indicate statistically significant changes.

Figure 4. Confocal fluorescence images of subcellular co-localization
studies of trimer 10 (2.5 μM) and trimer 12 (5.0 μM) in SK-Mel-103
cells stained with LysoTracker Deep Red. Areas of co-localization
appear in yellow/orange in the Merge panels. Pearson’s co-
localization coefficient (Rr), provided in the column of two-
dimensional intensity, represents a correlation between pixel
intensities between trimers and tracker channel in the close-up
image. The scale bar is 10 μm.
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Bañuelos, J.; Agarrabeitia, A. R.; Ortiz, M. J. FormylBODIPYs by
PCC-Promoted Selective Oxidation of α-MethylBODIPYs. Synthetic
Versatility and Applications. Org. Lett. 2019, 21, 4563.
(10) (a) Kolemen, S.; Cakmak, Y.; Kostereli, Z.; Akkaya, E. U.
Atropisomeric Dyes: Axial Chirality in Orthogonal BODIPY
Oligomers. Org. Lett. 2014, 16, 660. (b) Ozdemir, T.; Bila, J. L.;
Sozmen, F.; Yildirim, L. T.; Akkaya, E. U. Orthogonal Bodipy Trimers
as Photosensitizers for Photodynamic Action. Org. Lett. 2016, 18,
4821. (c) Teng, K.-X.; Chen, W.-K.; Niu, L.-Y.; Fang, W.-H.; Cui, G.;
Yang, Q.-Z. BODIPY-Based Photodynamic Agents for Exclusively
Generating Superoxide Radical over Singlet Oxygen. Angew. Chem.,
Int. Ed. 2021, 60, 19912.
(11) Yu, C.; Jiao, L.; Yin, H.; Zhou, J.; Pang, W.; Wu, Y.; Wang, Z.;
Yang, G.; Hao, E. α-/β-Formylated Boron−Dipyrrin (BODIPY)
Dyes: Regioselective Syntheses and Photophysical Properties. Eur. J.
Org. Chem. 2011, 2011, 5460.
(12) Wu, W.; Cui, X.; Zhao, J. Hetero Bodipy-dimers as heavy atom-
free triplet photosensitizers showing a long-lived triplet excited state
for triplet−triplet annihilation upconversion. Chem. Commun. 2013,
49, 9009.
(13) Epelde-Elezcano, N.; Palao, E.; Manzano, H.; Prieto-Castañeda,
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