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Because ≈90% of malaria cases occur in Africa, emergence 
of artemisinin-resistant Plasmodium falciparum in Africa pos-
es a serious public health threat. To assess emergence of 
artemisinin-resistant parasites in Uganda during 2014–2016, 
we used the recently developed ex vivo ring-stage survival 
assay, which estimates ring-stage–specific P. falciparum 
susceptibility to artemisinin. We conducted 4 cross-sectional 
surveys to assess artemisinin sensitivity in Gulu, Uganda. 
Among 194 isolates, survival rates (ratio of viable drug-
exposed parasites to drug-nonexposed controls) were high 
(>10%) for 4 isolates. Similar rates have been closely associ-
ated with delayed parasite clearance after drug treatment and 
are considered to be a proxy for the artemisinin-resistant phe-
notype. Of these, the PfKelch13 mutation was observed in 
only 1 isolate, A675V. Population genetics analysis suggest-
ed that these possibly artemisinin-resistant isolates originat-
ed in Africa. Large-scale surveillance of possibly artemisinin-
resistant parasites in Africa would provide useful information 
about treatment outcomes and help regional malaria control.

Despite reports of decreasing incidence and deaths 
from malaria, this disease remains a global health 

problem; in 2016, an estimated 216 million new cases 

and 445,000 deaths occurred (1). One of the main causes 
for the reduction of the malaria burden is the global de-
ployment of artemisinin-based combination therapies as 
a first-line treatment (1). However, since first reported 
in 2007–2008 (2), artemisinin-resistant Plasmodium fal-
ciparum parasites have spread into the Greater Mekong 
Subregion of Southeast Asia (3,4). In western Cambodia, 
recent increases in the prevalence of piperaquine-resistant 
parasites have further reduced effectiveness of dihydroar-
temisinin/piperaquine (5).

Until now, there was no clear evidence for the emer-
gence of P. falciparum artemisinin-resistant isolates in 
Africa (6). The standard for monitoring the emergence of 
artemisinin resistance has been the effectiveness of arte-
misinin-based combination therapies. In high-transmission 
regions, as in many parts of Africa where most persons 
have some immunity to malaria, partially immune persons 
may, however, experience some response to drug treatment 
even if they are infected by drug-resistant parasites (7,8). 
Interpretations of drug effectiveness could also be made 
difficult with the widely used ex vivo conventional drug-
susceptibility assay (3,9,10) because reduced susceptibility 
to artemisinin is limited to the very narrow early ring stage 
of the parasites (10–12).

The recently developed ring-stage survival assay 
(RSA) can evaluate ring-stage–specific reduction of arte-
misinin susceptibility (12). In this assay, ring-stage para-
sites are exposed to 700 nmol/L of dihydroartemisinin for 
6 h and then cultured for 66 h in the absence of the drug. 
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Levels of artemisinin susceptibility are estimated accord-
ing to the survival rate (i.e., the ratio of viable parasites 
exposed to 700 nmol/L dihydroartemisinin to parasites cul-
tured simultaneously in drug-free medium). In a study of 
isolates from 31 persons in Cambodia, all isolates classi-
fied as artemisinin resistant by ex vivo conventional assay 
(having parasite clearance half-lives >5 h after artemisinin 
treatment [4,13]) also had an ex vivo survival rate >10% 
by RSA (12).

In Africa, few attempts have been made to detect ar-
temisinin-resistant parasites by using ex vivo RSA. So far, 
only 2 studies have been reported, both of which showed 
the absence of P. falciparum isolates with survival rates 
>10% (14,15). Close monitoring is nevertheless valuable 
because parasites resistant to all widely used antimalarial 
drugs (chloroquine [16], pyrimethamine [17], and sulfa-
doxine [18]) have migrated from Southeast Asia to sub-Sa-
haran Africa. Also reported in Africa is indigenous emer-
gence of parasites, albeit all of minor lineages, resistant to 
these antimalarial drugs (19,20). 

During 2014–2016, to assess artemisinin sensitivity 
in Gulu, northern Uganda, we performed 4 cross-sectional 
surveys. We evaluated the emergence of artemisinin resis-
tance by using 3 methods: ex vivo RSA for dihydroartemis-
inin; conventional ex vivo drug susceptibility assay; and 
genotyping of PfKelch13, the gene responsible for artemis-
inin resistance in Southeast Asia (21–24).

Materials and Methods

Study Site, Design, and Patients
During 2014–2016, we conducted 4 cross-sectional surveys 
in Gulu, northern Uganda (Figure 1). In this region, malaria 
transmission is high; estimated prevalence is ≈60%. Each 
year, weak seasonal fluctuation is observed; peaks occur 
in May and October. All 4 surveys were performed during 
peak malaria seasons: October–November 2014, May–June 
2015, October–November 2015, and June–July 2016. The 
major mosquito vector in this region is Anopheles funestus 
(25), and the entomological inoculation rate was estimated 
at >100 infective mosquito bites/person/year (26). Since 
2004, artemether/lumefantrine has been used as a first-line 
treatment for uncomplicated malaria (27). Persons who vis-
ited St. Mary’s Hospital Lacor, Gulu, Uganda, with signs 
and symptoms suggestive of malaria were screened by mi-
croscopic examination of Giemsa-stained blood smears. 
We enrolled those with P. falciparum monoinfection (para-
sitemia >0.1%) if written informed consent was obtained 
from a parent/guardian (for patients <7 years of age), from 
a parent/guardian and from the patient (for patients 7–17 
years of age), or from adult patients (>18 years of age). 
Ethics approval for the study was obtained from the Lacor 
Hospital Institutional Research and Ethics Committee (LH 

021/09/13), the Ugandan National Council for Science and 
Technology (HS 1395), and the institutional review board 
at Juntendo University in Tokyo, Japan (2014168).

Ex Vivo RSA 
We performed the ex vivo RSA as described previously, 
with some modifications (12,28). In brief, 1 mL of ve-
nous blood was immediately transferred to the hospital 
laboratory. After plasma removal, erythrocyte pellets were 
washed 3 times in RPMI-1640 (Thermo Fisher Scientific, 
Waltham, MA, USA) with 100 µg/mL gentamicin. Washed 
infected erythrocytes were suspended in RPMI-1640, 25 
mM HEPES (4-[2-hydroxyethyl]-1-piperazineethanesul-
fonic acid), 2 mM l-glutamine supplemented with 100 µg/
mL gentamicin and heat-inactivated 10% serum type AB 
from Japanese volunteers, and stored at 4°C before initia-
tion of the ex vivo RSA. All procedures were performed 
within 4 h after blood collection. 

The next morning, 100 µL/well of parasite culture 
mixture adjusted to 2% hematocrit was dispensed with 
700 nmol/L dihydroartemisinin (Tokyo Chemical Indus-
try Co. Ltd, Tokyo, Japan). As nonexposed control, 0.1% 
DMSO (dimethyl sulfoxide) was used. Parasitemia >1% 

Figure 1. Site of study of ex vivo ring-stage Plasmodium  
falciparum survival rates, Gulu (black circle), northern Uganda, 
2014–2016.
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was adjusted to 1% by adding uninfected O-type erythro-
cytes. Cultures were incubated in a gas atmosphere with 
5% CO2 and 5% O2 by using the AnaeroPack malaria cul-
ture system (Mitsubishi Gas Chemical Co. Inc., Tokyo, 
Japan). After 6 h of exposure to dihydroartemisinin, pel-
lets were washed 3 times in RPMI-1640 with gentamicin, 
resuspended in fresh culture medium, and incubated for 
another 66 h. Assays were performed in duplicate for all 
samples except those obtained October–November 2014 
because of insufficient sample volume. 

At the end of the culture period, by counting 20,000 
erythrocytes and using thin blood smears, 2 investiga-
tors independently determined the number of viable 
parasites with normal morphologic appearance that de-
veloped into ring stages, trophozoites, and schizonts. 
Parasites that appeared pyknotic were considered to be 
dead (28,29). When the proportion of viable parasites 
in the nonexposed culture at 72 h was higher than the 
initial parasitemia at 0 h, the samples were considered 
to be interpretable (29). The investigators calculated 
survival rates as the ratios of parasites in exposed and 
nonexposed cultures (12); if the survival rates calculated 
by 2 researchers differed by >50%, a third researcher as-
sessed the slides. Based on previous comparative stud-
ies of ex vivo RSA and in vivo drug susceptibility tests 
(12), the cutoff for a high survival rate by RSA was 
>10%. This cutoff has 89% sensitivity and 91% specific-
ity in predicting parasites likely to have >5 h of clear-
ance half-life after artemisinin treatment. As a reference 
for ex vivo RSA, we used laboratory-adapted artemis-
inin-susceptible (3D7) and artemisinin-resistant clones 
(MRA-1236 and MRA-1240) (12). The P. falciparum 
artemisinin-resistant strains IPC 3445 Pailin Cambodia 
2010 (MRA-1236) and IPC 5202 Battanbang Cambodia 
2011 (MRA-1240) were contributed by Didier Ménard 
and provided by the Malaria Research and Reference 
Reagent Resource Center (part of BEI Resources, Na-
tional Institute of Allergy and Infectious Diseases, Na-
tional Institutes of Health, Rockville, MD, USA).

Ex Vivo Conventional Drug-Susceptibility Assay
For each sample, 100 μL of parasite culture with parasit-
emia adjusted to 0.05% at 2.5% hematocrit was pipetted 
per well into predosed culture plates and incubated under 
the same conditions as the ex vivo RSA for 72 h. Wells 
A–H were dosed with 0 (control), 0.25, 0.5, 1, 2, 4, 8, or 
16 nmol/L of dihydroartemisinin, respectively. Samples 
were then frozen (–20°C overnight) and thawed until com-
plete hemolysis was obtained. We assessed parasite growth 
by using an ELISA that quantifies parasite histidine-rich 
protein 2, as reported previously (30). We established the 
effective concentration of dihydroartemisinin needed to in-
hibit growth of P. falciparum by 50% (IC50) by nonlinear 

regression in the online ICEstimator software (http://www.
antimalarial-icestimator.net) (31).

Genotyping
We extracted parasite DNA from blood-spotted filter pa-
per (ET31CHR; Whatman Limited, Kent, UK) by using 
QIAcube (QIAGEN, Hilden, Germany). The sequence 
of 6 propeller domains in PfKelch13 was determined as 
previously reported (32). From isolates showing high 
RSA rates of survival, we determined the following 6 
mutations suggested as background genetic changes for 
artemisinin resistance as described (32,33): D193Y in 
ferredoxin (fd), T484I in multidrug resistance protein 
2 (mdr2), V127M in apicoplast ribosomal protein S10 
(arps10), I356T in chloroquine resistance transporter 
(crt), V1157L in protein phosphatase (pph), and C1484F 
in phosphoinositide-binding protein (pibp). Samples with 
minor peaks >50% the height of the major peak were con-
sidered mixed genotypes.

Whole-Genome Sequencing and Variant Detection
For 3 isolates with high survival rates by RSA, we ex-
tracted genomic DNA from leukocyte-removed blood with 
Acrodisc filters (Pall Corporation, New York, NY, USA) 
by using a QIAamp DNA Blood Mini Kit (QIAGEN). We 
prepared DNA libraries by using a TruSeq DNA PCR-Free 
Library Preparation Kit (Illumina, San Diego, CA, USA) 
after amplification of the genomic DNA with an Illustra 
GenomiPhi DNA Amplification Kit (GE Healthcare, Chi-
cago, IL, USA) or without genome amplification with 
a Nextera XT DNA Sample Prep Kit (Illumina). We ob-
tained ≈1–1.5 Gb of data per sample, consisting of paired-
end reads 100 or 150 bp long by using Illumina instruments 
(Miseq and Hiseq2000). Data are available at the DDBJ 
Sequence Read Archive (http://trace.ddbj.nig.ac.jp/dra/in-
dex.html) under accession nos. DRA005346, DRA005347, 
and DRA005348.

For comparative analyses, we obtained raw sequence 
data (fastq files) of 31 P. falciparum isolates from vari-
ous regions in Asia (n = 19) and Africa (n = 12) from the 
Short Read Archive at the National Center for Biotechnol-
ogy Information (https://www.ncbi.nlm.nih.gov/sra) (online 
Technical Appendix Table 1, https://wwwnc.cdc.gov/EID/
article/24/4/17-0141-Techapp1.pdf). Among 19 isolates 
from Asia, 6 harbored mutant alleles in PfKelch13. We 
mapped all short-read data onto the 3D7 reference genome 
(National Center for Biotechnology Information BioProject 
ID PRJNA148) by using CLC Genomics Workbench soft-
ware (QIAGEN) with default parameters. We then used the 
resulting files for detecting single-nucleotide polymorphisms 
(SNPs) by using the Basic Variant Detection program in 
CLC Genomics Workbench. SNPs were called at all genom-
ic positions with >80% frequency of >10 reads support.
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Population Genetic Analyses
To clarify lineages of isolates exhibiting high rates of sur-
vival according to RSA, we performed principal compo-
nent analysis and STRUCTURE analysis (34). SNPs with 
minor allele frequency >25% were used after standardiza-
tion. For principal component analysis, we used BellCurve 
for Excel (Social Survey Research Information Co., Ltd, 
Tokyo, Japan). We used STRUCTURE 2.3.3 to assign 
individual isolates from all populations to 2 clusters (i.e., 
K = 2). For each run, a burn-in period of 10,000 steps was 
followed by 10,000 iterations under the admixture model 
and the assumption of uncorrelated haplotype frequencies 
among populations.

Results

Ex Vivo RSA
In the ex vivo RSA study, we enrolled 249 patients (Table 
1). Most patients were children; median age was 3 years. 
Fever >37.5°C was reported for 83% of patients. Other 
signs and symptoms were present for 7%–22% of enrolled 
patients. Examination of blood smears and species-specific 
PCR revealed that all blood samples contained monoinfec-
tions with P. falciparum.

We obtained successful ex vivo RSA results for dihy-
droartemisinin for 194 (77.9%) patients. Unsuccessful re-
sults were mostly caused by insufficient parasite growth (n 
= 28) or inability to count 20,000 erythrocytes because of 
low-quality blood smears and limited amounts of blood (n 
= 27). We found no significant differences for patient back-
ground characteristics or parasitemia in all enrolled and ex 
vivo RSA–successful patients (Table 1; online Technical 
Appendix Table 2). Artemisinin-susceptible laboratory 
clone 3D7 showed no parasites at 700 nmol/L, whereas 
artemisinin-resistant laboratory clones MRA-1236 and 
MRA-1240 showed survival rates (± SEM) of >10% (14.3 
± 0.5% and 27.0 ± 2.7%, respectively) (Table 2).

Among the study samples, 4 (2.1%) were classified as 
having high parasite survival rates by RSA; mean survival 
rates (± SEM) ranged from 13.3% ± 1.5% (isolate H2) to 
34.3% (isolate H1) (Figure 2, Table 2). We assayed all ex-
cept 1 isolate (H1) in duplicate. We observed these resistant 

isolates in all sampling periods except October–November 
2015. One isolate (H1) had higher survival rates (34.3%) than 
the 2 artemisinin-resistant laboratory clones from Cambodia 
(MRA-1236 and MRA-1240). Developmental stages of the 
parasites at enrollment were microscopically determined (on-
line Technical Appendix Figure). In the 3 isolates with high 
survival rates by RSA, proportions of early ring-stage para-
sites at enrollment were high (72%–98%) (online Technical 
Appendix Table 3), except for 1 isolate (H3), which had a 
lower proportion of early ring-stage parasites. For parasites 
with survival rates ≈10% (I1, I5, and I7), early ring-stage par-
asites were ≈51.9%–57.7% and the rest were late ring-stage 
parasites. These observations show that the developmental 
stages of the parasite before start of the RSA was not biased or 
skewed so as to influence RSA results. In fact, survival rates 
of samples with an almost 50:50 ratio of parasites in early and 
late stages might be underestimated because susceptibility to 
artemisinin occurs only during the early ring stage (10–12).

 
Table 1. Baseline characteristics of patients enrolled in study of 
Plasmodium falciparum ex vivo RSA survival rates, Uganda, 
2014–2016* 

Characteristics Enrolled 
RSA results 

obtained 
No. patients 249 194 
 2014 Oct 16 15 
 2015 May 74 43 
 2015 Oct 63 51 
 2016 June 96 85 
Sex, no. patients   
 M 126 92 
 F 123 102 
Age, y   
 Median (IQR) 3.0 (2.0–4.5) 2.9 (2.0–4.4) 
Fever >37.5°C   
 No. (%) patients 207 (83) 177 (92) 
 Median (IQR) body  
 temperature, °C 

39 (38.0–39.4) 39 (38.3–39.5) 

Signs and symptoms, % patients  
 Cough 22 29 
 Vomiting 21 25 
 Abdominal pain 11 21 
 Headache 10 19 
 Diarrhea 7 10 
 Convulsion 7 8 
Day 0 parasitemia, 
median (IQR), % 

1.71 (0.17–4.13) 1.95 (0.85–4) 

*IQR, interquartile range; RSA, ring-stage survival assay. 

 

 
Table 2. Characteristics of Plasmodium falciparum isolates with high ex vivo ring-stage survival rates and patients enrolled in study of 
Plasmodium falciparum survival rates, Uganda, 2014–2016* 

Sample name 
Patient 
age, y 

Patient 
sex Signs and symptoms 

Day 0 
parasitemia, % 

Early ring-stage 
parasites at day 0, % 

Mean parasite 
survival rate, %, 

 SEM 
H1 3.0 M Fever, headache, cough 0.85 80.4 34.3 
H2 2.0 M Fever 15.0 98.2 13.3 ± 1.5 
H3 3.2 M Fever 0.76 51.9 18.9 ± 0.9 
H4 4.5 F Fever 2.56 72.0 18.1 ± 1.4 
3D7 NA NA NA NA NA 0 ± 0 
MRA-1236 NA NA NA NA NA 14.3 ± 0.5 
MRA-1240 NA NA NA NA NA 27.0 ± 2.7 
*Survival rate, parasitemia at 700 nmol/L dihydroartemisinin exposed/parasitemia at 0 nmol/L control  100; mean value  SEM in 2 (H2, H3, and H4) and 
3 (3D7, MRA-1236, and MRA-1240) independent trials. Day 0, day of enrollment. NA, not applicable. 
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Conventional Ex Vivo Drug Susceptibility Assay  
for Dihydroartemisinin
We performed a conventional ex vivo dihydroartemisinin-
susceptibility assay in all but 1 survey (June–July 2016) 
and successfully determined ex vivo RSA and conventional 
ex vivo IC50 values for 93 patients (Figure 3). IC50 values 
were not correlated with survival rates by RSA. Geometric 
mean IC50 for isolates with high survival rates by RSA (3.3 
nmol/L) were similar to those for the artemisinin-suscepti-
ble isolates (2.25 nmol/L).

Genotypes of PfKelch13 and Potential  
Background Mutations
Only 5 (2.6%) isolates (C469Y, M472V, A621S, V666I, 
A675V) harbored nonsynonymous mutations at propel-
ler domains in PfKelch13, all of which were observed as 
singletons (online Technical Appendix Table 4). Among 4 
parasites with high survival rates by RSA, 1 harbored the 
A675V mutation and the other 3 harbored the wild-type 
allele (Figure 2). We observed no background genetic 
changes for artemisinin resistance (D193Y in fd, T484I in 
mdr2, V127M in arps10, I356T in crt, V1157L in pph, and 
C1484F in pibp; data not shown).

Lineages of Parasites with High Survival Rates by RSA
To clarify whether parasites with high survival rates by 
RSA indigenously originated in Africa or migrated from 
Southeast Asia, we performed principal component and 
STRUCTURE analyses. Whole-genome sequences were 
determined for all except 1 (H1) parasite isolate with a 
high survival rate by RSA. As reference, we used 31 P. 
falciparum isolates with origins from Asia or Africa. High-
quality whole-genome sequence data enabled identification 
of 174,266 SNPs, of which 168,908 were biallelic SNPs. 
Among these, we used 14,341 SNPs with minor allele 
frequency >25% for the analyses. In principal component 

analysis, the first principal component clearly separated 
isolates from Africa from those from Southeast Asia (Fig-
ure 4, panel A). All 7 reference isolates harboring mutant 
PfKelch13 were located in the cluster from Southeast Asia. 
In contrast, all 3 isolates from Uganda with high survival 
rates by RSA were inside the cluster from Africa. STRUC-
TURE analysis also clarified the distinct population struc-
ture of isolates from Southeast Asia compared with all 
isolates from Africa, including the 3 isolates with high sur-
vival rates by RSA (Figure 4, panel B).

Discussion
Emergence and spread of artemisinin-resistant P. falci-
parum outside the Greater Mekong Subregion pose a seri-
ous public health threat, especially in sub-Saharan Africa, 
the region that in 2015 accounted for 90% of global ma-
laria cases and 92% of malaria deaths (35). The recently 
developed ex vivo RSA found that 4 (2.1%) isolates from 
Uganda showed high (>10%) survival rates, levels of which 
are reported to be closely associated with slow-clearing 
P. falciparum infections (12). Among these, mutation in 
PfKelch13 was observed in only 1 isolate. Population ge-
netic analysis with whole-genome sequences demonstrated 
that these isolates belong to the cluster from Africa, sug-
gesting an indigenous origin rather than migration from 
Southeast Asia.

So far, 2 ex vivo RSA results have been reported in sub-
Saharan Africa: in Cameroon (15) and in Kampala, Uganda, 
≈300 km from our study site (14). Neither study found iso-
lates with high survival rates. In our analysis, 4 (2.1%) iso-
lates had survival rates >10%. In addition, 3 (1.5%) isolates 
with survival rates of ≈10% had lower proportions of early 
ring-stage parasites (51.9%–57.7%) at patient enrollment. 
Because artemisinin resistance is known to be confined to 
the early ring stage (10–12), the observed survival rate for 
these isolates might be underestimated. For our analysis, we 

Figure 2. Distribution of ex 
vivo ring-stage Plasmodium 
falciparum survival rates, by 
RSA during each study period, 
2014–2016. Susceptibility 
to dihydroartemisinin was 
determined by using ex vivo RSA 
survival rates. Survival rate was 
calculated as follows: (parasitemia 
at 700 nmol/L dihydroartemisinin 
exposed/parasitemia at 0 nmol/L 
control) × 100. Broken line 
indicates the cutoff value for what 
we consider to be high ex vivo 
RSA survival rates (>10%). RSA, 
ring-stage survival assay.
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assumed that an overall 2%–4% of isolates had artemisinin-
resistant potential. Since the discovery of PfKelch13 as an 
artemisinin-resistant responsible gene in 2013 (21), numer-
ous molecular epidemiologic studies identified >200 muta-
tions in this gene (4,35,36). The correlation with clinical and 
laboratory artemisinin resistance in 6 mutations (N458Y, 
Y493H, R539T, I543T, R561H, C580Y) has been validated 
(37). In our study, 1 isolate with a high survival rate by RSA 
harbored a mutation allele in PfKelch13 (A675V). This mu-
tation is reported to have a level of parasite clearance half-
life similar to that of the most prevalent C580Y mutation 
(4,38) and has thus been regarded as candidate artemisinin-

related mutation (37). The allele is distributed in Southeast 
Asia (Thailand–Myanmar border) and sub-Saharan Africa 
(Democratic Republic of the Congo and Rwanda) (4,38–40). 
However, our population genomic analysis revealed that this 
isolate belongs to African lineage, suggesting that artemis-
inin-resistant migration of A675V from Southeast Asia to 
Africa is less likely than the indigenous emergence of this 
mutation in Africa.

Three other isolates with high survival rates by RSA 
harbored a wild-type allele in PfKelch13. A similar find-
ing in Cambodia has been recently reported (41). The para-
siticidal mechanism of artemisinin is known to result from 
induction of highly reactive carbon-centered radicals that 
inactivate multiple crucial proteins (42). To combat this ef-
fect, resistant parasites are believed to enhance the oxida-
tive stress response, altering the cell cycle (29,36,39,43–
45). Recent population transcriptome analyses that used 
1,043 clinical P. falciparum isolates obtained directly from 
patients with acute falciparum malaria demonstrated asso-
ciations between PfKelch13 mutations and upregulation of 
unfolded protein response, one of the stress response sys-
tems, and PI3K/PI3P/AKT pathways (46). One possible hy-
pothesis to explain the absence of a PfKelch13 mutation in 
the ex vivo RSA artemisinin-resistant isolates is the activa-
tion of alternate pathways by yet unknown mechanism(s).

Witkowski et al. showed a strong correlation between 
ex vivo RSA survival rates and in vivo parasite clearance 
half-lives in Cambodia (12). When the ex vivo RSA sur-
vival rate cutoff of 10% is applied to their study, 29 of 30 
infections are accurately identified as artemisinin resistant 
and artemisinin susceptible (12). This cutoff point produced 
89% sensitivity and 91% specificity for in vivo artemisinin 
resistance in the parasites from Cambodia (12). However, a 
similar correlation study is lacking for isolates from Africa. 
Because many factors such as levels of host immunity and 
pharmacokinetics could complicate drug clinical effective-
ness, further correlation of ex vivo RSA and in vivo studies 
is strongly required in the various malaria-endemic regions 
with different population ethnicities and malaria ecologies.

Our study has several limitations. Parasites were not 
cryopreserved; thus, survival rate was not reconfirmed by 
in vitro RSA with culture-adapted parasites. Reconfirma-
tion was not performed because of the difficulties in logis-
tics and cryopreservation of natural parasites at our field 
site and transportation to our laboratory. However, we 
performed ex vivo RSA duplicate (except during October–
November 2014), enabling confirmation via independently 
performed assays. In addition, we did not obtain clinical 
confirmation of artemisinin resistance for all 4 isolates with 
high survival rates by RSA because clinical study in 2014 
was performed only during October–November, and only 
in 9 random isolates was artemether/lumefantrine treat-
ment efficacy assessed.

Figure 3. Distribution of IC50 of Plasmodium falciparum values 
by dihydroartemisinin in conventional ex vivo drug susceptibility 
assay. IC50 values to dihydroartemisinin in conventional ex vivo 
drug susceptibility assay are plotted. Geometric mean IC50 
values in isolates with survival rates of 0, >0 to <10%, and >10% 
(high RSA survival) were 3.0 nmol/L (n = 74), 1.9 nmol/L (n = 
14), and 3.3 nmol/L (n = 3), respectively. In the conventional 
ex vivo drug susceptibility assay, replication of parasites was 
monitored after continuous exposure to dihydroartemisinin for 72 
h. Dashed line indicates geometric mean IC50 value of all isolates 
(2.25 nmol/L). IC50, concentration needed to inhibit 50% growth; 
RSA, ring-stage survival assay.
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In the conventional ex vivo artemisinin susceptibil-
ity assay, parasites are exposed to dihydroartemisinin for 
48–72 h, affecting trophozoite and schizont stages. Strictly, 
therefore, this assay theoretically underestimates the level 
of artemisinin resistance. Using ex vivo assays, we found 
that the mean IC50 in isolates with high survival rates by 
RSA was similar to that for those isolates characterized as 
having low survival rates or those that are completely sus-
ceptible (showed no survival by RSA). This finding was 
similar to previous field observations in Cambodia, where 
a lack of correlation was found between ex vivo survival 
rates by RSA and IC50s to dihydroartemisinin in conven-
tional ex vivo drug susceptibility assay (12), supporting the 
notion that conventional ex vivo assays may not be useful 
for properly distinguishing isolates with decreased artemis-
inin susceptibility in the field.

In conclusion, our analysis has revealed the poten-
tial emergence of P. falciparum with high survival rates 
by RSA in Uganda. One of these parasites harbored a 
PfKelch13 A675V mutation. Because ≈90% of malaria 
cases occur in Africa (35), emergence and spread of arte-
misinin resistance impose substantial obstacles for effec-
tive malaria control and the approach toward elimination. 
It is thus imperative to perform further intensive surveil-
lance for artemisinin resistance in various malaria-endemic  

regions in Africa and to elucidate genetic changes that con-
fer resistance to artemisinin in parasites in Africa. Use of 
ex vivo RSA would help solve these challenges.
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Antimicrobial
Resistance

Antibiotics and similar drugs, together called  
antimicrobial agents, have been used for the 
past 70 years to treat patients who have infec-
tious diseases. Since the 1940s, these drugs have 
greatly reduced illness and death from infectious 
diseases. However, these drugs have been used 
so widely and for so long that the infectious or-
ganisms the antibiotics are designed to kill have 
adapted to them, making the drugs less effective.

Each year in the United States, at least 2 million 
people become infected with bacteria that are re-
sistant to antibiotics and at least 23,000 people 
die each year as a direct result of these infections.
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