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A B S T R A C T

Purpose: Motor function and recovery after stroke likely rely directly on the residual anatomical connections in
the brain and its resting-state functional connectivity. Both structural and functional properties of cortical
networks after stroke are revealed using multimodal magnetic resonance imaging (MRI). Specifically, functional
connectivity MRI (fcMRI) can extract functional networks of the brain at rest, while structural connectivity can
be estimated from white matter fiber orientations measured with high angular-resolution diffusion imaging
(HARDI). A model that marries these two techniques may be the key to understanding functional recovery after
stroke. In this study, a novel set of voxel-level measures of structurofunctional correlations (SFC) was developed
and tested in a group of chronic stroke subjects.
Methods: A fully automated method is presented for modeling the structure-function relationship of brain
connectivity in individuals with stroke. Brains from ten chronic stroke subjects and nine age-matched controls
were imaged with a structural T1-weighted scan, resting-state fMRI, and HARDI. Each subject's T1-weighted
image was nonlinearly registered to a T1-weighted 152-brain MNI template using a local histogram-matching
technique that alleviates distortions caused by brain lesions. Fractional anisotropy maps and mean BOLD images
of each subject were separately registered to the individual's T1-weighted image using affine transformations.
White matter fiber orientations within each voxel were estimated with the q-ball model, which approximates the
orientation distribution function (ODF) from the diffusion-weighted measurements. Deterministic q-ball trac-
tography was performed in order to obtain a set of fiber trajectories. The new structurofunctional correlation
method assigns each voxel a new BOLD time course based on a summation of its structural connections with a
common fiber length interval. Then, the voxel's original time-course was correlated with this fiber-distance
BOLD signal to derive a novel structurofunctional correlation coefficient. These steps were repeated for eight
fiber distance intervals, and the maximum of these correlations was used to define an intrinsic structurofunc-
tional correlation (iSFC) index. A network-based SFC map (nSFC) was also developed in order to enhance
resting-state functional networks derived from conventional functional connectivity analyses. iSFC and nSFC
maps were individually compared between stroke subjects and controls using a voxel-based two-tailed Student's
t-test (alpha = 0.01). A linear regression was also performed between the SFC metrics and the Box and Blocks
Score, a clinical measure of arm motor function.
Results: Significant decreases (p < 0.01) in iSFC were found in stroke subjects within functional hubs of the
brain, including the precuneus, prefrontal cortex, posterior parietal cortex, and cingulate gyrus. Many of these
differences were significantly correlated with the Box and Blocks Score. The nSFC maps of prefrontal networks in
control subjects revealed localized increases within the cerebellum, and these enhancements were diminished in
stroke subjects. This finding was further supported by a reduction in functional connectivity between the pre-
frontal cortex and cerebellum. Default-mode network nSFC maps were higher in the contralesional hemisphere
of lower-functioning stroke subjects.
Conclusion: The results demonstrate that changes after a stroke in both intrinsic and network-based structur-
ofunctional correlations at rest are correlated with motor function, underscoring the importance of residual
structural connectivity in cortical networks.
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1. Introduction

Resting-state functional magnetic resonance imaging and diffusion
MRI together provide unprecedented insight into the structure-function
relationships associated with changes in brain connectivity after stroke.
This information might be useful for prognosis after stroke and could
help to personalize rehabilitation strategies for individual patients.
Consequently, the purpose of this study was 1) to develop a novel
connectivity model that marries structural and functional connectivity
analyses, and 2) to demonstrate that this new technique provides un-
ique information about subject-specific changes in brain connectivity
that may be used to develop new imaging biomarkers for functional
recovery.

Diffusion magnetic resonance imaging has provided potentially
useful tools for detecting changes in white matter structure and struc-
tural connectivity following stroke. One such tool, high angular-re-
solution diffusion imaging (HARDI) (Tuch et al., 2002) measures the
diffusion coefficient within each voxel for many directions. From these
directional data, an orientation distribution function (ODF) of white
matter fibers within a voxel can be estimated with techniques such as q-
ball imaging (Tuch, 2004). Diffusion MRI tractography uses these di-
rectional diffusivity measurements to model white matter fiber path-
ways. Deterministic tractography approaches propagate modeled fibers
along the principle direction of diffusion (Zhang et al., 2009), while
probabilistic approaches add random perturbations to estimate a dis-
tribution of structural connections to a voxel (Behrens et al., 2007,
2003). Measures of structural connectivity of the brain can then be
calculated based on these tractography models, and applied to the brain
of stroke subjects. Structural connectivity analyses automatically locate
changes in fiber pathways after stroke (Yeh et al., 2013), and retained
connectivity is associated with higher motor function (Buch et al.,
2012; Crofts et al., 2011; Koch et al., 2016).

Resting-state functional magnetic resonance imaging (rs-fMRI) can
be used to measure low-frequency oscillations in cortical signals that
are associated with functional connectivity of the brain (Biswal et al.,
1995; Fox, 2010). In this approach, measurements are made while the
subject lies in a scanner with their eyes closed, making it attractive for
clinical use. The rs-fMRI data are often analyzed using an independent
components analysis (ICA) to automatically extract sets, or networks, of
voxels that follow a common pattern of signal change (Beckmann and
Smith, 2004; Beckmann and Filippini, 2009; Du and Fan, 2013; Park
et al., 2014; Rytty et al., 2013). Each independent component includes
a spatial volume of voxel contributions and a common signal time-
course. When applied to stroke, rs-fMRI connectivity analysis has pro-
vided evidence of cortical reorganization associated with motor re-
covery (Chen and Schlaug, 2016; van Meer et al., 2010; Wang et al.,
2010), with the most common finding of reduced interhemispheric
functional connectivity between sensorimotor cortices (Carter et al.,
2010; Rehme and Grefkes, 2013; Tang et al., 2016; Urbin et al., 2014).
These studies are promising; rs-fMRI might have clinical use in pre-
dicting outcomes and developing therapeutic interventions based on
monitoring of cortical reorganization (Carter et al., 2012; Ovadia-Caro
et al., 2014).

Multimodal MRI techniques that combine diffusion and functional
MRI approaches provide the opportunity to relate brain tract structure
to functional networks (Honey et al., 2010). In healthy individuals,
there is a strong correspondence between the default-mode network, a
distinct brain network that demonstrates strong functional connectivity
at rest, and the density of anatomical connections between its nodes
(Hagmann et al., 2008). This same concept that anatomical connec-
tions, measured using diffusion imaging, underlie functional con-
nectivity extends throughout the brain (Honey et al., 2009). An im-
portant factor in this relationship between anatomical connections and
functional connectivity is distance between nodes of interest. Specifi-
cally, an inverse relationship has been observed between node distance
and functional connectivity (Sporns, 2011).

The objective of the current study was to combine diffusion MRI and
rs-MRI information into a single analysis of structurofunctional con-
nectivity. A number of previous studies assessing both structural and
functional connectivity have compared structural and functional con-
nectivity matrices obtained separately from diffusion MRI and fMRI
respectively (Damoiseaux and Greicius, 2009). More recently, a com-
bined structural-functional connectome (Horn et al., 2014) has been
described using correlations between the structural and functional
connections of all voxels of the brain. An important observation from
these studies is that functional connectivity is observed between regions
that are not connected by major white matter tracts. Fjell et al. (2017)
explored this concept in detail, calculating functional connectivity of
brain regions with and without direct structural connections, noting
that changes in functional connectivity are not strongly correlated with
changes in direct structural connections with aging (Fjell et al., 2017).
Thus, accounting for indirect structural connections could be an im-
portant factor in determining brain function, especially after an injury
(Kalinosky et al., 2013). In general, combining structural and functional
connectivity information might be particularly useful in describing
changes in functional connectivity following localized brain lesions of
structural networks, such as those associated with stroke (Rehme and
Grefkes, 2013). Here we describe a new automated analysis that ex-
presses functional connectivity in the context of structural connectivity
while avoiding constraints on either individual analysis. Our approach
first calculates the functional connectivity for all structurally connected
voxels of the brain. We then identify average levels of functional con-
nectivity to a voxel for regions that are structurally connected at similar
distances. A novel structurofunctional correlation (SFC) that identifies
maximum functional connectivity to a voxel across these distances can
then be obtained. This technique produced a voxel-level intrinsic metric
(iSFC) and an enhanced resting state network (RSN) map (nSFC). We
tested this approach in ten stroke subjects and nine age-matched con-
trols to validate the structurofunctional connectivity measures through
correlation with clinical assessment of arm motor function.

2. Methods

2.1. Data collection

2.1.1. Subject recruitment and functional testing
Ten individuals with chronic post-stroke hemiparesis (4 female, age

66.7 ± 7.94 years, at least 1.1 years since stroke), and nine age-mat-
ched control subjects (5 female, age 64.2 ± 7.73 years) participated in
this study. The experimental protocol was approved by the Institutional
Review Boards of Marquette University and the Medical College of
Wisconsin, and written consent was obtained from each subject.
Inclusion criteria included a history of stroke that occurred no< 6
months prior to recruitment. Stroke subject information is provided in
Table 1. Subjects with no ability to perform supination, pronation,
ulnar deviation, or radial deviation of the wrist were excluded. Note
that exact dates of the stroke, treatment history, or any other medical
records were not collected. Control subjects were comprised of in-
dividuals without history of stroke or other neurological impairments
that were age-matched (within 3 years) and gendered-matched to the
stroke subjects.

A certified physical therapist evaluated each stroke subject with
three clinical tests of motor function, including the upper extremity
(UE) portion of the Fugl-Meyer Assessment (Fugl-Meyer et al., 1975),
the Box and Blocks Test of Manual Dexterity (Mathiowetz et al., 1985)
and the Wolf Motor Function Test (Wolf et al., 2001) for upper ex-
tremity motor ability. In the Box and Blocks Test, a top-open plywood
box is divided into two square compartments by a partition 15.2 cm in
height. While sitting in front of the box, the subject uses one hand to
move as many wooden blocks as possible from one square compartment
to the other in 60 s. Every stroke subject repeated the test twice with
each hand, and the # of blocks was used as the score. In right-handed
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healthy adults of ages 20–75, Box and Blocks performance is
76.8 ± 11.5 blocks in 60 s (Mathiowetz et al., 1985). The Fugl-Meyer
Assessment quantifies impairment in motor function, sensation, and
balance in stroke patients with hemiplegia, and the upper extremity
score ranges from 0 to 126. Lower scores signify greater level of im-
pairment. The Wolf Motor Function Test (WMFT) uses time-based tasks
to evaluate upper extremity movement. Some of these tasks include
lifting a can or pencil, moving hand or forearms onto the table, stacking
checkers, and folding a towel (Wolf et al., 2008). Wolf motor scores
range from 0 to 76, with a higher score indicating greater function.

2.2. MRI scans

Every subject was screened for MRI safety according to the Medical
College of Wisconsin Institutional Review Board before entering the
magnetic environment. An axial T1-weighted anatomical image was
acquired using a fast spoiled gradient recalled (SPGR) pulse sequence,
with TE: 3.2 ms, TR: 8.16 ms, flip angle: 12°, prep time: 450, band-
width: 22.73, FOV: 240 mm, 156 1 mm slices, and matrix size:
256 × 240. Next, an axial q-ball high angular resolution diffusion
imaging (HARDI) sequence was acquired with a single-shot echo planar
imaging sequence, including 5 b = 0 images, 150 diffusion-weighted
directions, SENSE parallel imaging, TE: 72.3 ms, TR: 5700 ms, FOV:
250 mm, matrix size: 128 × 128 resampled to a 256 × 256 grid
(2 mm pixel width/height), and 57 2.5 mm slices. The 2.5 mm slice
thickness was needed for cerebellum coverage in subjects with larger
heads. For functional MRI, an axial view gradient-echo echo-planar
sequence was acquired with TE: 25 ms, TR: 2000 ms, flip angle: 77°,
FOV: 240 mm× 240 mm, 41 slices with 3.5 mm thickness. Subjects
were instructed to stay awake with the eyes closed for the 6-min
resting-state fMRI scan, during which 180 frames were acquired in 2 s
intervals. Supplementary Fig. S1 shows an axial slice from the T1-
weighted image of each stroke subject that includes the lesion location.

2.3. MRI data processing

A summary of the MRI processing pipeline is shown in Fig. 1 and
Table S1. Briefly, the MELODIC tool was used to decompose the fMRI
BOLD signal, S(x,t) into 83 independent components, each with a
spatial map, Mj(x,t) and time-course Aj(t). Diffusion MRI data were fit
to a q-ball fiber orientation model, and tractography was performed in
native subject space to reconstruct fiber pathways. Each subject's ana-
tomical T1-weighted image was spatially normalized to MNI space, and
affine registration was performed in native subject spaces to align
anatomical images with diffusion and mean BOLD images. Fiber tra-
jectories were transformed into MNI space, and a fiber-distance aver-
aged BOLD signal, Z(x,t), was calculated for each voxel. Intrinsic

structurofunctional correlation (iSFC) was calculated as the maximum
temporal correlation of Z(x,t) with voxel BOLD signals. The iSFC can
have values between 0 and 1. High iSFCmax indicates that for some fiber
length, ̂l , a strong correlation in BOLD fluctuations exists between a
voxel and the ensemble of its structurally connected voxels at that
distance. On the other hand, a low iSFCmax near zero occurs only if a
voxel is uncorrelated with its anatomical connections at all fiber
lengths. In this case, the voxel's direct structural connections do not
account for the variability in its BOLD signal. Enhanced resting-state
network maps (nSFCj) were derived by maximizing correlations of Z
(x,t) with independent component time-courses Aj(t). Again, values
ranged from 0 to 1, with higher values indicating an enhanced con-
nectivity to the standard network. A more detailed description of each
step in the data processing follows.

2.4. Image registration and lesion-side normalization

Fully automated techniques were used for intersubject and inter-
modality image registration. MRI data were also corrected to place le-
sions on the left side of the brain. Lesion-side normalization was per-
formed prior to registration by flipping each row of data in the x-
dimension in stroke subjects with right lesions. Anatomical T1-
weighted images were registered to the 152-MNI template from fMRI of
the Brain Software Library (FSL). First, the FLIRT tool from FSL
(Jenkinson and Smith, 2001) was used to perform linear affine regis-
tration to translate and rotate the brain. The anatomical images were
then deformed to MNI space using an ITK implementation of the
Maxwell's demons algorithm (Thirion, 1998).

Each subject's anatomical image was registered to native diffusion
MRI and fMRI spaces. Fractional anisotropy (FA) was calculated from
the diffusion coefficients (Basser et al., 1994), and the FA map was
flipped and registered to the subject's flipped T1-weighted image using
a 12-parameter affine registration. The fMRI data were similarly
flipped, and the mean BOLD image was registered to the anatomical
image. Registration transforms were concatenated in order to map each
subject's BOLD and diffusion images to MNI coordinates. Following
tractography described in subsequent sections, fiber trajectories were
similarly warped into MNI space. In subjects with right-side lesions,
fibers were first flipped over the mid-sagittal plane.

2.5. Resting-state network calculation

Resting-state networks (RSNs) were determined from raw BOLD
time-course data using the Multivariate Exploratory Linear
Decomposition into Independent Components (MELODIC) Version 3.14
available with the FSL (www.fmrib.ox.ac.uk/fsl). All 19 subjects were
time concatenated for a single group ICA. The data were high-pass fil-
tered with a cutoff of 100 s (Marchini and Ripley, 2000). Before time-
concatenation, five TRs were discarded from each subject, leaving 175
volumes over 350 s. The functional image volumes were motion cor-
rected using the MCFLIRT implementation (Jenkinson et al., 2002).
Slice-time correction was applied using linear interpolation. Skull-
stripping was automatically performed with the brain extraction tool
(BET) (Smith, 2002), and the data were spatially smoothed with a 4 mm
full-width half-max Gaussian kernel. The brain mask was used to ex-
clude non-brain voxels from the remaining analyses. All subjects were
spatially normalized to an anatomical MNI standard template using a
12-parameter affine registration implemented in FLIRT (Jenkinson and
Smith, 2001). The voxel BOLD times series were demeaned, variance
normalized, and whitened.

The number of independent components was estimated using a
Bayesian approach described in (Minka, 2000). Using Probabilistic In-
dependent Component Analysis (Beckmann and Smith, 2004), the
whitened time data were projected onto a 83-dimension subspace. A
fixed-point method (Hyvarinen, 1999) decomposed the data into 83

Table 1
Stroke subject information.

Subject ID S04 S05 S07 S08 S10 S12 S14 S15 S16 S18

Sex M M F M M F M F F M
Age 65 57 83 66 69 65 64 80 62 66
Lesion

location
Cort Subc BS Subc Cort Cort Cbl Subc Subc Subc

Lesion side R L L L L R L L L L
Arm affected L R R R R L L R R R
Dominant

post
R R L R R R R R R R

Dominant pre L R R R R Amb R R R R
Wolf motor 71 72 38 72 75 54 58 74 75 74
Fugl-meyer 124 106 82 122 124 97 120 126 124 122
Box & Blocks

(ND)
24.5 62.5 8 41 75.5 14.5 13 57 50 64

Cort = Cortical, Subc = Subcortical, BS = Brainstem, Cbl = Cerebellum,
Amb = Ambidextrous, R = Right, L = Left.
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independent components that accounted for variability in temporal,
spatial, and subject domains. The spatial components were normalized
by the variance of the residuals (Beckmann and Smith, 2004).

The ICA method decomposes the BOLD data S(x, t) as a function of
voxel x and time t into spatiotemporal vectors with independent spatial
maps and time-courses. The jth network has a spatial map, Mj(x), and
time-course, Aj(t). As described by Joel et al. (Joel et al., 2011), these
independent components are related to the original BOLD signal as

∑=
=

tS M A tx x( , ) ( ) ( )
j

J

j j
1 (1)

Once the group independent components were calculated, a dual
regression (Beckmann and Filippini, 2009) was used to estimate sub-
ject-specific spatial maps and time courses. Components with vertical
stripes in the axial view were associated with motion and excluded from
further analysis. 45 of the 83 components were excluded due to high
amounts of frequency content above 0.1 Hz or were determined to be
related to anatomical artifacts. The MELODIC tool was used to regress
these components out of each subject's original fMRI data.

2.6. Structural connectivity analysis

The high-angular resolution diffusion-weighted images were pro-
cessed with the Diffusion Toolkit to estimate the fiber orientation and

reconstruct fiber tracts (Wang et al., 2007). At each voxel, q-ball re-
construction was performed with 181 reconstruction points and 150
measurement points. Since access to the fiber trajectories was required
for our model, the deterministic tractography module was used from
the Diffusion Toolkit. Diffusion MRI tractography was performed in the
subject's native space. Stopping criteria included an angle threshold of
35°. At each voxel, 30 seeds were randomly distributed and fiber tra-
jectories were reconstructed. This path was lesion-side corrected and
warped into MNI space using a concatenation of the subject's inter-
modality registration and anatomical intersubject registration. These
fibers were stored for later data analyses.

2.7. Structurofunctional correlation

In this study, we were interested in the level of functional con-
nectivity to the ensemble of structural connections at different fiber
distances from a voxel. Every fiber endpoint voxel was treated as a
potential network node. All processing that combines structural and
functional connectivity was performed in MNI space. Thus, both BOLD
data and fiber trajectories were both spatially normalized using the
anatomical image registration. Note that voxels were not excluded
based on apriori knowledge of lesion location. By including only fiber
endpoints, gray matter voxels with direct damage or lost structural
connections due to a lesion are inherently excluded from the calculation
of metrics defined below.

Fig. 1. Pipeline overview for calculating struturofunctional cor-
relation (SFC) metrics. The cleaned BOLD signal S(x, t) from the
MELODIC analysis was processed with fiber-based averaging to
compute signal Z(x, t, l). Next, Z(x, t, l) was correlated with each
voxel's original BOLD signal and the time-course of each resting-
state network, giving two CZ correlations. The CZ correlations
were maximized by fiber-length to derive the intrinsic (iSFC) and
network-based (nSFC) metrics.
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Rather than analyzing the functional connectivity of a voxel to
every structurally connected location, signal averaging was first per-
formed across connections of a similar fiber path distance. Note that
this model makes an assumption that functionally connected nodes in a
network can be both distinguished and grouped by fiber distance in a
meaningful way. Also note that since averaging was performed with
fiber length fixed, metrics within this framework may be less affected
by dependence of functional connectivity on fiber distance as reported
in (Sporns, 2011).

To calculate structurofunctional correlation, first consider V(x , l) as
a map that provides a set of N voxel locations, {y1,y2,… ,yN}, that are
structurally connected to voxel x by fibers with length l. Although N
will vary with x, we write it as a constant in subsequent equations for
simplicity. Let S(x, t) be the BOLD signal at time t and physical location
x, with x∈ℝ3. Spatial averaging of S across all voxels included in Vgives
a new weighted time signal, Z(x, l, t). This structurally connected mean
BOLD signal is defined as

∑= ∈−
=

Z l t N S t V lx y y x( , , ) ( , ) : ( , )i ii

N1
1 (2)

The fiber-length BOLD correlation, CZ, of a voxel x and an arbi-
trary function f(t) at length l is

=C l f t Z l t f tx x( , , ( )) Corr( ( , , ), ( ))Z (3)

Maximizing CZ with respect to fiber length gives the structur-
ofunctional correlation (SFC), which represents the greatest fixed-
length correlation of f(t) with the structurally connected voxels to x.
Here, we denote ̂l as the fiber length that maximizes CZ, given as

̂ = xl f t arg max C l f tx( , ( )) ( , , ( ))
l

Z
(4)

Furthermore, the SFC is

= xf t max C l f txSFC( , ( )) ( , , ( ))
l

Z (5)

2.8. Intrinsic and network-based SFC metrics

The first metric introduced is intrinsic structural-functional con-
nectivity (iSFC), which is defined as the maximum temporal correlation
between a voxel's BOLD signal with the fiber-length averaged BOLD
signal of its structural connections. In the case that f(t) in Eq. (5) is the
original fMRI signal at x, then SFC provides the functional connectivity
of voxel x to its own structural connections. The intrinsic structur-
ofunctional correlation (iSFC) is defined as

= Sx x xiSFC( ) SFC( , ( , t)) (6)

As a correlative measure, iSFC can have values between −1 and 1.
High iSFC indicates that for some fiber length, ̂l , a strong correlation in
BOLD fluctuations exists between a voxel and the ensemble of its
structurally connected voxels at that distance. On the other hand, an
iSFC with absolute value near zero occurs only if a voxel is not corre-
lated with its anatomical connections at any fiber length. In this case,
the voxel's direct structural connections do not account for the varia-
bility in its BOLD signal. There are multiple potential causes for this
scenario. First, resting-state activity may be influenced by indirect
connections via multiple neuron pathways. Additionally, a voxel may
have a similar number inhibitory and excitatory functional connections
at a fixed fiber length.

Function f(t) can also be selected as the time-course signal Aj(t) of
the jth network from the independent component analysis. Effectively,
SFC is then the maximum BOLD correlation of x’s structural connec-
tions with the network time-course. We define the network-based
structurofunctional correlation (nSFC) as

= A tx xnSFC ( ) SFC( , ( ))j j (7)

In example Fig. 2a, the iSFC is shown for multiple voxels within the

brain. Voxel x1 is connected to cortical voxels x2 and x3 by fibers with
length l2. The fiber-length BOLD correlation CZ(x1, l2) of function f(t)
=S(x1, t) is its correlation with mean BOLD signal (S(x2, t)+S(x3, t))/2,
shown to be 0.6. Likewise, at fiber length l1, x1 is structurally connected
to brainstem voxel x0. Then, CZ(x1, l1) is the correlation of S(x1, t) with S
(x0, t), given as 0.4. The iSFC(x1) is the maximum of these two corre-
lations, being 0.6. Similarly, since x3 and x4 are exclusively connected
by fibers with length l3, then CZ(x3, l3) and CZ(x4, l3) are both equal to
the functional connectivity between x3 and x4, being near 0.8 as in-
dicated by the red fibers and fill color.

Fig. 2b demonstrates the network-based SFC (nSFC) for the right
sensorimotor network. Voxels within the red-filled regions in the right
sensorimotor cortex and left cerebellum have BOLD signals that are
highly correlated with the sensorimotor network time-course A(t).
These regions are nodes within the sensorimotor network or its inter-
network functional connections. Since voxels x0, x1, and x4 have direct
structural connections to the RSN nodes, they will have increased
nSFCj, even though some may not be originally a member of the sen-
sorimotor network. Thus, nSFC enhances voxels that have direct
structural connections to the nodes of a resting-state functional net-
work.

2.9. Implementation of iSFC

The signal Z(x, l, t) was calculated independently using Eq. (2) for
each time frame, t, and fiber length interval, lk. The full range of fiber
lengths was chosen such that the longest projection fibers in the control
group would fall within the highest bin. Shown in Fig. S2, the dis-
tribution of geodesic fiber length was calculated in every subject from
reconstructed fiber pathways from diffusion MRI tractography. The
maximum fiber lengths originating from the cortex across all control
subjects was near 22 cm. Thus, six intervals were centered between 2,
4, 7, 10, 13, 16, 19, and 22 cm. A 4-D dataset with the same dimensions
as the original fMRI data was created to store the filtered data for each
fiber length interval. The BOLD signal S(x, t) was estimated for each
gray matter fiber endpoint. Specifically, the signal at the endpoint of
each tract was defined as the mean of the BOLD signals across the three
endmost points of the fiber. Values at each of these three fiber points
were extracted from the original fMRI signal by trilinear interpolation
within MNI space. At each voxel, x, the fiber-length BOLD signal Z
(x, l, t) was calculated by averaging S(x, t) of all structurally connected
voxels. Z(x, l, t) was calculated for fibers within the every specified
length interval l.

According to Eqs. (3), each voxel's intrinsic fiber-based correlation
CZ(x, l,S(x, t)) was calculated for every fiber length interval l. Next,
using Eq. (4), the fiber length, ̂l , maximizing CZ was determined. Fol-
lowing Eqs. (5) and (6), the iSFC at each voxel was calculated as the

̂l S tx xC ( , , ( , ))Z .

2.10. Calculation of structurofunctional RSN maps

Resting-state networks that were analyzed in this study included the
posterior default-mode network (DMN), the prefrontal network (ante-
rior DMN), the primary visual network, the ipsilesional and contrale-
sional sensorimotor networks, the bilateral cerebellar network, and the
basal ganglia network. These networks were identified from the in-
dependent components from the MELODIC analysis.

In order to validate the level of network map enhancement, the
nSFC was compared to the correlation coefficient between BOLD signal
S(x, t) and each independent component time course Aj(t). Note that the
independent component spatial maps, Mj(x), in Eq. (6) are not corre-
lation coefficients. The correlation of the network's timecourse with the
original BOLD signal provided a network map with the greatest weight
given to the jth network. We denote this baseline correlation as RSNj.
Based on in Eq. (7) we then use a similar notation to define the
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enhanced correlation as nSFCj. The difference between the Fisher-
transformed nSFCj and RSNj was then used as a measure of network
enhancement. The original and enhanced correlation maps were vi-
sualized for comparison using 3D isosurfaces at multiple isovalues.

2.11. Statistical analysis of SFC metrics

Voxel-based based analysis was used to measure differences in five
metrics between stroke subjects and age-matched controls. Motion
parameters were used as covariates when calculating all metrics. First,
intrinsic measures iSFC, ̂l , and their product were calculated in all
subjects. Next, the conventional RSN map, RSNj, and the SFC-enhanced
map, nSFCj, were calculated for seven networks of interest. These in-
cluded the primary visual, the default-mode, left and right sensor-
imotor, prefrontal, cerebellar, and basal ganglia networks. The Fischer
transform was used to normalize nSFCj and RSNj for statistical testing.
Stroke and control groups were compared by merging the groups to-
gether and computing Box and Blocks contrast maps for each metric.
Box and Blocks scores were generated for control subjects by using
population statistics based on age in healthy subjects (Mathiowetz and
Weber, 1985). An F-test with ∝= 0.001 was used to calculate the
significance of the regression slope of each contrast. In order to correct
the p-values for multiple comparisons, the 3dclustsim tool in AFNI was
used to determine a minimum cutoff cluster volume of 700 mm3, cor-
responding to a corrected p-value of 0.05. From these correlation-based
clusters, the mean metric value was calculated for each subject. Posthoc
Student's t-tests (∝ = 0.05) were performed on cluster means between
stroke and control groups. A linear regression between cluster mean
and Box and Blocks was performed with stroke patients only. Cluster-
based post-hoc tests were further corrected for multiple cluster com-
parisons using false discovery rate (q < 0.05).

3. Results

3.1. Control iSFC maps and group differences

Intrinsic structurofunctional connectivity was characterized in each
brain using iSFC, ̂l , and the product of these two metrics, iSFC ̂∙l , from
Eqs. (4)–(6). The greatest iSFC was observed in the posterior parietal
and sensorimotor regions of the brain. Shown by isosurfaces of the iSFC
metric in Fig. 3 (top left), the voxels with greatest iSFC were located

within the precuneus, anterior cingulate gyrus, and sensorimotor
cortex. In turn, voxels having the greatest fiber length that maximizes
functional connectivity ( ̂l ) were within the prefrontal, posterior par-
ietal cortex, and cerebellum regions (top center images in Fig. 3). The
product of iSFC and ̂∙l , which gives greater structurofunctional
weighting to long connections, demonstrated greatest values in the
prefrontal and parietal portions of the cingulate gyrus. These three
structurofunctional metrics were next compared between stroke and
control groups.

There were multiple brain areas in stroke subjects with significantly
lower intrinsic structurofunctional connectivity (P < 0.01) compared
to controls. Specifically, there were three main regions of the brain that
demonstrated significant decreases in iSFC (P < 0.01; t values cor-
rected for multiple comparisons based on cluster size) in stroke com-
pared to control brains. These regions included the right lateral cere-
bellum, the midbrain, and thalamus. Conversely, there were increases
in iSFC within the left dorsolateral prefrontal cortex (Fig. 3, left col-
umns). Stroke subjects also had significant differences in the fiber dis-
tance, ̂l , associated with maximum intrinsic functional connectivity to
a voxel. Stroke subjects had lower ̂l within the superior parietal lobule
and precuneus, while ̂l was greater in stroke subjects within the tha-
lamus, contralesional inferior temporal gyrus, and ipsilesional inferior
prefrontal cortex. (Fig. 3, middle columns). The product of the max-
imum functional connectivity and the fiber distance associated with
that connectivity was significantly lower (P < 0.01) within the su-
perior parietal lobule, the supplementary motor area, the medial pre-
frontal cortex, the posterior portion of the inferior temporal gyrus, and
the contralesional inferior frontal gyrus (Fig. 3, right column).

Voxel-wise linear regression was performed between each metric
and Box and Blocks score to locate regions associated with upper ex-
tremity function (Fig. 4 and Table 2). An F-test was used to calculate a
P-value at each voxel, and clusters of significant voxels (P < 0.01) are
reported. The mean metric value of each cluster was compared between
stroke and controls with a Student's t-test, and linearly regressed with
Box and Blocks score. These clusters for iSFC, ̂l , and their product are
listed in Table 2. For each stroke subject, a Box and Blocks z-score was
calculated based on age-specific normative data in healthy individuals
(Mathiowetz et al., 1985). Six subjects with z < −3 were classified as
lower functioning. These subjects are shown in Fig. 4 with red-colored
data points, whereas the other stroke subjects are encoded in black. One
main spatial cluster in the right cerebellum had a mean iSFC that was

Fig. 2. iSFC and nSFC Example. Diagram
depicting the intrinsic (a) and network-
based (b) structural-functional correlation
(SFC). The SFC provides a maximum tem-
poral correlation, CZ, of a function f(t) to
the structural connections of each voxel xi.
a) Letting f(t) be the original BOLD signal
of xi, SFC becomes a voxel-based intrinsic
connectivity measure (iSFC). b) On the
other hand, SFC represents an enhanced
resting-state network if f(t) is the time-
course of an RSN. Shown here is the left
sensorimotor RSN with red filled regions
correlated with Aj(t) in the right sensor-
imotor cortex and left cerebellum. Voxels
x1 and x4 have high nSFC since they are
structurally connected to regions with
BOLD signals correlated with Aj(t).
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correlated with the Box and Blocks Score (Fig. 4a). The left portion of
Fig. 4a shows the location of the cluster, color coded with the P-value
for significance of the correlation. The cerebellum iSFC was correlated
with Box and Blocks score (P < 0.01), and the cluster mean was sig-
nificantly different between the stroke group and controls (P = 0.027).
The low functioning (red markers in scatter plots) did have a sig-
nificantly different iSFC within this cluster (P < 0.001). Spatial con-
trasts in iSFC with Wolf Motor and Fugl-Meyer Assessment scores were
similar to the Box and Blocks contrasts, as shown in supplementary Fig.
S3. However, p-values did not survive multiple comparisons correc-
tions. We believe this was largely due to a ceiling effect on the Fugl-
Meyer and Wolf Motor scores, with over half of the stroke subjects
achieving near perfect scores.

Maximum correlation fiber-length ̂l , shown in Fig. 4, there were
clusters with both positive and negative significant correlations with
Box and Blocks score. Positively correlated clusters were located within
the inferior temporal gyrus, cingulate gyrus, and superior frontal gyrus.
Clusters with a negative correlation between mean ̂l and Box and
Blocks score were in the left middle temporal gyrus, thalamus, and
midbrain. Across all stroke subjects, the mean ̂l was significantly dif-
ferent in clusters that were correlated with Box and Blocks score
(P < 0.01). The lower functioning subjects were significantly different
from controls within these same clusters. Two clusters with significant
positive correlations between Box and Blocks and the mean product of
the iSFC and ̂l were located within the medial prefrontal cortex
(P < 0.01). Furthermore, the cluster means were also significantly
lower in stroke subjects (P < 0.01).

3.2. Stroke-related differences in fiber-length averaged BOLD correlations

Voxel-wise differences in CZ between stroke subjects and age-mat-
ched controls reveal that intrinsic structurofunctional correlations can
be delineated at specific fiber lengths. As shown in Fig. 5 for fiber
distance between 40 and 70 mm (l = 1), the precentral gyrus had an
increased functional connectivity (P < 0.001) with its structural

neighbors for stroke subjects. Likewise, stroke subjects had lower
functional connectivity (P < 0.001), correlated with Box and Blocks
(R2 = 0.58), between the contralesional lateral orbitofrontal cortex and
its neighbors at a 70–100 mm (l = 2) fiber length.

3.3. Behavioral correlations of enhanced resting-state network spatial maps

The network-based structurofunctional correlation (nSFC) maps
showed structural connections between conventional functional net-
works and the rest of the brain. Four examples of this analysis for
controls are shown in Fig. 6, with the left column showing the resting
state network (RSN), the middle column showing the nSFC, and the
right column showing the difference. The basal ganglia network nSFC
was greatest in the amygdala, precentral gyrus, and frontal areas. Si-
milarly, the primary visual network was enhanced by nSFC along the
pathway from V1, to the thalamus, and finally the orbitofrontal gyrus.
The prefrontal network nSFC enhanced the precuneus, the cerebellum,
and brainstem areas. An independent component that was localized to
the cerebellum demonstrated structurofunctional connectivity
throughout the brain at projection fiber endpoints. In general, nSFC
demonstrated expected structurofunctional connectivity to the resting
state network. Because this analysis expands the networks, we refer the
nSFC maps as the SFC-enhanced networks.

3.4. Reduced nSFC in motor networks correlated with impairment

Group differences in the SFC-enhanced (nSFC) ipsilesional sensor-
imotor network are shown in Fig. 7a. In control subjects, the enhanced
network was spatially distributed in the left sensorimotor cortex and
structurally connected regions. These regions included the prefrontal
and posterior parietal areas of the left hemisphere and regions in the
right hemisphere connected by commissural fibers (Fig. 7a, upper left).
In stroke subjects, the nSFC in the contralesional superior temporal
gyrus and inferior frontal gyrus was lower in subjects with greater
impairments and was correlated with Box and Blocks score (R2 = 0.9,

Fig. 3. Intrinsic structurofunctional correlation (iSFC) in stroke and controls. On the left, group differences in the structurofunctional correlation metric (iSFC) indicative of a voxel's
maximum functional connectivity to structurally connected neighbors at a fixed fiber distance are shown. Isosurfaces of distance associated with the maximum correlation ( ̂l ) are shown
in the center column. On the right, the iSFC ̂l product displays the group averages and differences for the product of the first two metrics. The bottom row shows clusters of significantly
different voxels (P < 0.01) with a minimum cluster size of 700mm3. Blue clusters indicate significant decreases in stroke, compared to controls. Red clusters indicate significant
increases. Lesion side is the left in these images. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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t =−4.48) (Fig. 7a, right). This effect was observed across stroke
subjects, with higher functioning subjects presenting with greater ex-
tent of enhanced sensorimotor networks (Fig. 7a, lower row). Although
nSFC was similar for stroke and control subjects within the ipsilesional
hemisphere, higher functioning stroke individuals had a greater level of
contralesional enhancement.

Shown in Fig. 7b and Table 3, the enhanced cerebellar network in
control subjects had structurofunctional correlations in frontal and
parietal cortical areas, the bilateral cerebellum, brainstem, and tha-
lamus. In this enhanced network, nSFC was reduced in the right cere-
bellum of stroke subjects, and these differences were larger in subjects
with greater impairment (R2 = 0.72, t= −3.8) (Fig. 7b, right). Similar
to the sensorimotor network, the enhanced cerebellar network showed
greater extent in higher functioning stroke subjects (Fig. 7b, lower
row).

3.5. Stroke-related nSFC increases in contralesional hemisphere

Group differences in the enhanced prefrontal network, shown in
Fig. 8a and Table 3, had mixed correlations with Box and Blocks scores.
The control group had greatest nSFC within the prefrontal cortex and
precuneus (Fig. 8a, upper left), while nSFC in stroke subjects was

highest in the prefrontal cortex and contralesional superior temporal
gyrus (Fig. 8a, upper middle). The nSFC within the prefrontal resting-
state network was correlated with Box and Blocks score in the pre-
cuneus (R2 = 0.72), although the stroke group was not significantly
different from controls (t= −0.20). However, nSFC was greater in the
contralesional superior temporal gyrus and inferior frontal gyrus
(t= 2.8) and was correlated with Box and Blocks score (R2 = 0.58)
(Fig. 8a, right). In contrast, the prefrontal network in the low-func-
tioning stroke subjects had lower nSFC in the ipsilesional middle tem-
poral gyrus (R2 = 0.61, t= −2.76).

Structurofunctional correlations of the posterior default-mode net-
work, which was distributed in the amygdala, anterior cingulate, pre-
cuneus, and posterior parietal cortex (Fig. 8b), generally had negative
correlations with the Box and Blocks scores. The DMN had increased
nSFC to the contralesional hemisphere and cerebellum (Table 3) in
stroke subjects. Specifically, nSFC was greater within the precentral
gyrus (t= 2.45, tlow = 3.70), postcentral gyrus (t= 1.56, tlow = 2.92),
and right cerebellar crus IV (t= 3.0, tlow = 3.48) for stroke subjects.
These differences were correlated with Box and Blocks score
(P < 0.05), with all significant correlations being negative (i.e. higher
connectivity in lower-functioning stroke subjects) (Fig. 8b, right;
Table 3).

Fig. 4. Scatter plots of clinical correlations with iSFC. Spatial maps and scatterplots of the correlation between structurofunctional metrics and the Box and Blocks score. Spatial maps
indicate the location of significantly correlated clusters, color coded by P-value after correction for multiple comparisons. The scatterplots show the individual subject data and regression
line for the correlation analyses. t-values indicate the comparison between the stroke subjects (circles) and controls (triangles), where tlow indicates the t value for comparison of the
stroke subjects with non-normal Box and Block score (red triangles) and controls. A. The significant cluster (P < 0.01, corrected) with a positive structurofunctional (iSFC) correlation
with Box and Blocks was located in the right cerebellum. B. Significant negative correlations between ̂l and Box and Blocks score were observed in the thalamus and right cerebellum. C.
Correlations between iSFC ̂∙ l and Box and Blocks score were observed in the superior frontal gyrus (SFG).
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4. Discussion and conclusions

The results of this study indicated a decrease in structurofunctional
connectivity to key integrative areas of the brain, including the cere-
bellum, midbrain and thalamus. These areas are critical to motor
function and iSFC in the cerebellum was significantly correlated to
hand motor function (i.e. the Box and Blocks score). Thus, connectivity
of the cerebellum based on iSFC might be a key indicator of sensor-
imotor function in stroke subjects. This observation with voxel-based
iSFC measures was supported by observations of changes in con-
nectivity of the cerebellar network identified by an ICA analysis of
resting state fMRI data. A comparison of the SFC-enhanced cerebellar
network across stroke and control subjects demonstrated decreases in
connections to the cerebellum that were correlated with hand function.
These observations strongly suggest that connections to the cerebellum
are important indicators of motor function in stroke subjects.

Although complex, a married structural-functional connectivity
both complements and builds upon the studies that focus on either
structural or functional connectivity. Enhancing well-documented
resting-state networks from fMRI studies with established structural
connectivity techniques may reveal network-specific mechanisms un-
derlying pathology and recovery. This paper developed a novel metric
that is not limited to stroke populations. Regions structurally connected

to a damaged functional network may be central to cortical re-
organization. These local areas may have direct structural connections
to the perilesional tissue. SFC-enhancement is a novel way for in-
vestigators to focus in on specific RSNs to investigate the structure-
function relationship at the voxel level.

Stroke subjects had reduced voxel-wise intrinsic structurofunctional
connectivity, iSFC, in highly integrative cortical areas, while structur-
ofunctional resting-state networks revealed changes in organization.
The iplesional sensorimotor network and cerebellar network both had
reduced structurofunctional connectivity that was correlated with Box
and Blocks Score. The default-mode network and prefrontal network
each had increased structurofunctional connectivity to the contrale-
sional hemisphere. These group differences and functional correlations
were often located in regions that were outside but structurally con-
nected to the conventional resting-state networks.

Our novel analysis paradigm successfully married structural and
functional connectivity. Indeed, the results indicate that intrinsic
functional connectivity distributions can be expressed as a function of
fiber length. Although resting-state functional connectivity in itself can
detect differences in stroke subjects that are correlated with function,
SFC may predict the broader impact of lesions on these same networks.
For example, the posterior default-mode network was enhanced by SFC
within the anterior cingulate gyrus, but this enhancement was lower in

Table 2
Localized stroke-related differences and behavioral contrasts with the intrinsic structurofunctional connectivity (iSFC) metrics. Voxel-wise contrasts with Box and Blocks scores were
calculated for iSFC, the maximum-correlation fiber-length, and fiber-length specific functional connectivity (SFC). Pearson correlation coefficients were thresholded (p < 0.01, un-
corrected) to identify significant clusters, which were corrected for multiple comparisons by imposing a minimum size of 700mm3 (p < 0.05, corrected). The MNI coordinate of the
maximum behavioral correlation is reported for each cluster. In order to test for group differences within each correlation cluster, the mean metric value was calculated within each
cluster for every subject. Post-hoc t-tests and Box and Blocks correlations were performed on the means and were corrected for multiple comparisons using false-discovery rate
(q < 0.05).

Metric Cluster Stroke vs controls Box & Blocks

ROI x y z nVox t (all) t (low) R

iSFC Cbl_R 42 −61 −40 30† −2.419†† −6.005†† 0.86††

iSFC SFG_L −10 75 12 34 −2.819†† −4.284†† 0.60††

̂l Midbrain −6 −13 −12 37 2.349†† 3.127†† −0.85††

̂l Thal −22 −21 −4 25 3.085†† 4.985†† −0.69††

̂l MTG_L −66 −29 −8 52 1.533†† 2.438†† −0.75††

∙̂l iSFC SFG_R 2 39 44 44 −2.660†† −3.524†† 0.84††

∙̂l iSFC IFG_R 34 15 4 14 −2.894†† −4.350†† 0.82††

∙̂l iSFC Amyg_L −22 −225 −20 106 −2.882†† −3.648†† 0.69††

CZ(l=1) SFG_L 538 −169 40 111 −3.885†† −5.102†† 0.62††

CZ(l=3) PFC_L 346 −145 12 78 −2.932†† −4.575†† 0.66††

CZ(l=1) PFC_L −6 −145 16 54 −2.538†† −4.581†† 0.82††

CZ(l=2) MFG_L 146 −193 56 51 4.254†† 4.947†† −0.68††

CZ(l=1) Cbl_R 46 −269 −44 41 −3.123†† −5.813†† 0.71††

CZ(l=2) AG_L 130 −277 40 30 1.818†† 4.324†† −0.84††

CZ(l=2) Midbrain 170 −237 −12 30 −1.959†† −3.287†† 0.75††

† p < 0.05.
†† p < 0.01.

Fig. 5. Scatter plots showing fiber-length BOLD correlation
group differences. Correlations between CZ at l = 2 and Box and
Blocks score for stroke subjects (circles) and controls (triangles)
are shown for two significant regions. a) Stroke subjects have
increased functional connectivity of the left (ipsilesional) angular
gyrus (AG) with surrounding structural connections within fiber
distance interval l = 1. b) The right (contralesional) precentral
gyrus (PrCG) has decreased functional connectivity at fiber dis-
tance interval l = 2.
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stroke subjects.
Stroke subjects had reduced intrinsic structurofunctional con-

nectivity (e.g. iSFC) between areas connected at greater fiber path
distances, as shown in Fig. 3. These differences were notably seen in
regions that are associated with nodes of integrative cortical networks,
such as the cerebellum and prefrontal cortex. The medial prefrontal
cortex is densely connected to the precuneus and posterior parietal
areas, forming the core of the default-mode network (DMN). It is pos-
sible that the nodes of integrative networks, such as the DMN or cere-
bellar networks, reorganize their connections after stroke. Whether
these changes are compensatory or maladaptive remains speculation.
This result is consistent with studies that have found reduced anterior-
posterior DMN connectivity in aging (Vidal-Piñeiro et al., 2014). Vidal-
Pineiro et al. found that white matter integrity of the cingulum was
correlated with reduced DMN functional connectivity in the aging po-
pulation. The results in this study suggest that anterior-posterior DMN
connectivity is further reduced after stroke when compared to age-
matched individuals.

We speculate that differences in the structurofunctional networks of
the cerebellum and prefrontal cortex after stroke may be compensatory
or maladaptive mechanisms of reorganization. Weakened sensorimotor
and cerebellar networks may be shift to shorter distance connections to
default-mode and prefrontal network nodes. The right cerebellum,
which had reduced intrinsic SFC, also had lower SFC within the cere-
bellar and ipsilesional sensorimotor networks. This result complements
other studies that have found decreased functional connectivity be-
tween the ipsilesional sensorimotor cortex and contralateral cerebellum
(Tang et al., 2016). However, the default-mode network had increased
structurofunctional connectivity to the right cerebellum. The contrale-
sional superior temporal gyrus had increased SFC to the prefrontal
network but decreased SFC to the ipsilesional sensorimotor network,
suggesting an adaptive role of the prefrontal cortex. This result is
consistent with stroke subjects having a reduced iSFC and ̂l product

within the prefrontal cortex, as shown in Fig. 4, which suggested that
the prefrontal cortex shifts its connectivity to shorter distances.

In the stroke group, there were differences in intrinsic structur-
ofunctional connectivity at specific fiber path lengths. As shown in
Fig. 5, a cluster within the ipsilesional precentral gyrus had increased
iSFC at the fiber length range 7–10 cm. These differences were nega-
tively correlated with Box and Blocks Score, suggesting that greater
motor impairment is associated with the sensorimotor cortex increases
its functional connectivity with nearby areas. Furthermore, we spec-
ulate that residual structural connectivity to perilesional cortical areas
may guide cortical reorganization following a stroke.

Structurofunctional resting-state network analysis is a viable ex-
tension to conventional ICA methods when structural connectivity in-
formation is also available. Our technique may be the first to explicitly
fuse structural and functional connectivity by combining BOLD signals
across fiber endpoints. We believe that our technique is the first to
express each voxel's intrinsic functional connectivity distribution as a
function of fiber length. This work is also the first to produce a new
fMRI time course at each voxel that is a combined signal of its structural
connections. The structurofunctional correlation technique is different
from others that combine structural and functional connectivity.
Methods introduced in the past use structural connectivity to impose
constraints on functional connectivity and dynamic causal models
(Sporns et al., 2000; Stephan et al., 2009). The current approach at-
tempts to enhance rather than constrain functional networks in order to
estimate a broader network.

Lack of task-based fMRI data is another limitation when interpreting
behavioral correlations with brain function metrics. Resting-state and
task-based functional connectivity have shown different changes in the
stroke population versus healthy individuals. However, since lower
functioning stroke subjects often exhibit more head movement during a
motor task, task-based fMRI data are more susceptible to motion arti-
facts. Moreover, these artifacts contaminate behavioral spatial maps.

Fig. 6. 3D visualization of structurofunctional resting-state
networks in healthy individuals. Shown are four selected
resting-state independent components from conventional
MELODIC time-concatenated group ICA (RSN) (left
column) and the same components enhanced with the
structurofunctional correlation metric (nSFC) (middle
column). Note that these maps show the mean voxel-wise
mean across the control group. The right column shows the
difference in RSN and nSFC. In general, voxels that were
structurally connected to the resting state network were
enhanced by the correlation. Isosurface colors for in-
dividual RSN and nSFC maps correspond to positive cor-
relation coefficients of 0.3, 0.4, 0.5, 0.6, and 0.7. In the
nSFC−RSN column (right), an isovalue of 0.3 was ex-
tracted, and the surface is colored by nSFC−RSN ranging
from −1 to 1, with Red: 1.0; Green: 0.0; Blue: −1.0. (For
interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this ar-
ticle.)
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Our approach shares many of the same limitations as functional MRI
and diffusion MRI tractography. Functional connectivity MRI assumes
that voxels with correlations in BOLD signal are co-active and thus
functionally connected. Due to the course temporal resolution of fMRI
and the slow nature of the hemodynamic response, this modeled con-
nectivity is left undirected. The accuracy of structural connectivity es-
timated by diffusion MRI tractography approaches is limited by the
fiber orientation model. Models of the orientation distribution function
at each voxel make the assumption that axon organization is the prime
contributor to diffusion directionality.

A common limitation of diffusion MRI tractography is that voxels
with crossing white matter fibers can lead to inaccurate structural
mappings. Most tractography fibers originating in the cerebellum, for
example, fail to cross at the pons, thus leading to many positive con-
nections with the ipsilateral hemisphere and false negative connections
with the contralateral hemisphere. In this study, we chose to exclude
fibers that did not cross at the pons in order to mitigate the connectivity
bias introduced by this limitation of tractography. However, it is known
that there are in fact fibers that synapse at the red nucleus and influence
the ipsilateral hemisphere. Thus, our technique was not able to detect
these connections that may indeed play a role in alternative pathways

after stroke.
Structurofunctional connectivity analysis has additional limitations

associated with its principle assumptions. First, the SFC model assumes
that every reconstructed fiber endpoint contains neurons that are con-
nected to the neurons located at the other endpoint. Since there are
cases in which reconstructed fibers terminate within the white matter,
our current implementation occasionally mixes the BOLD signals of
gray matter voxels with white matter voxels. These violations of our
assumption led to the enhancement of white matter pathways within
our resulting maps. Another limitation was the usage of deterministic
tractography, which does not provide a connectivity distribution for
every voxel as do probabilistic approaches. Probabilistic approaches are
capable of generating more fibers from the cerebellum that cross at the
brainstem, which would have been beneficial for studying the cere-
bellum's structural-functional connectivity. In the case of a stroke, there
are alterations of the vasculature and white matter microstructure
within and nearby the lesion that may impact the SFC model's as-
sumptions.

The SFC-metric results in this study may have been impacted by
data artifacts in resting-state fMRI data caused by head motion. Head
motion was corrected using affine image registration, and these motion

a)

b)

nS
FC

nS
FC

Fig. 7. Behavioral correlations of nSFC in sensorimotor and cerebellar networks.
Network-based structurofunctional correlations (nSFC) of the ipsilesional sensorimotor network (a) and cerebellar network (b) are shown for controls (upper left in each subfigure) stroke
subjects (to the right of the controls) and individual stroke subjects (lower row in each subfigure). For t-value maps, blue and red surfaces indicate negative and positive t-values, where a
negative t value indicates stroke subjects had lower nSFC than controls. Box and Blocks maps indicate clusters with significant correlations between nSFC and the Box and Blocks score
(P < 0.05). The numbers over individual nSFC maps indicate the Box and Blocks scores for those subjects. Correlation plots for the Box and Blocks are shown for the right superior
temporal gyrus (STG R) (a) and right cerebellum (Cbl R) (b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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regressors were treated as covariates in all functional connectivity
analysis. However, recent resting-state fMRI studies have introduced a
scrubbing technique that excludes frames based on frame-by-frame
change in percent BOLD signal (Power et al., 2012). Strong spikes in the
global BOLD signal may have then impacted the temporal correlations
used to identify RSNs. The distribution of frame-by-frame global BOLD
signal in each subject is shown in Fig. S4. There were no significant
differences between stroke subjects and controls in framewise dis-
placement (FD) nor DVARS. Additionally, these metrics were not cor-
related with the behavioral measures collected.

Another critical source of potential error in any voxel-based ap-
proach is intersubject and intermodality image registration. This study
involved coregistration of functional, structural, and diffusion MRI
within and between subjects. Each of these modalities has its own un-
ique artifacts. Spatial distortions inherent to echo-planar imaging have
different characteristics between diffusion and functional MRI, leading
to a nonlinear mapping between voxels. An additional field-correction
map can be acquired before the EPI scan in order to correct the dis-
tortions. This study did not include this field-map in its acquisition. In
order to improve mappings between diffusion and functional MRI
spaces, a nonlinear deformable registration was performed on mean
BOLD images between subjects. Such a registration between functional
images has been subject to criticism.

In this study, respiration and cardiac cycle were not treated as
coregressors, which leaves them as potential confounds. These physio-
logical processes have been shown to introduce artifacts into resting-
state connectivity analyses. It has been recommended that these data be
collected during the scan and be treated as coregressors during the ICA
and/or seed-based connectivity analyses. However, other investigators
have argued against this correction measure since that there may be
important cortical activity that is highly correlated with respiration and
heart rate. Independent components that were determined to be related
to artifact or noise were regressed out of our data before applying our
analyses.

The innovative significance of the structurofunctional correlation
metrics is governed by the biological interpretation of BOLD signals
averaged at fixed fiber distances. Transmission time of an action po-
tential depends not only on physical distance, but also on conduction
velocity. Conduction velocity increases with axon diameter and can

scale tenfold in the presence of myelin (Caminiti et al., 2013; Hartline
and Colman, 2007). On the other hand, the time-scale of the hemody-
namic response and BOLD signal fluctuations is over multiple seconds.
Thus, conduction velocity is not expected to have a significant impact
on the SFC model.

Hemodynamic lag in resting-state data (Mitra et al., 2014) was not
estimated in this study and may have contributed to the differences in
functional connectivity. However, since differences in hemodynamic
lag may be influenced by more than one fiber pathway, incorporating
such delay estimates into our model is nontrivial. The impact of he-
modynamic lag on SFC network enhancement will need to be in-
vestigated in future studies.

The residual structural and functional connectivity of the brain after
stroke may be used to select a personalized treatment that maximizes
functional outcomes. In such an approach, structurofunctional resting-
state networks would allow for targeting specific functional systems
while incorporating both types of connectivity information.

In conclusion, our novel analysis can detect changes in structure-
function interactions in cortical networks after stroke. Future work will
investigate changes in structurofunctional networks between acute and
chronic phases of stroke, and potential applications for personalized
rehabilitation will be considered. Additionally, SFC will be validated
with a publicly available collection of young healthy adults.
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Table 3
Voxel-based group differences in SFC-enhanced networks. Clusters of significantly different voxels between stroke and age-matched controls are reported for the SFC-enhancement
resting-state networks. Acronyms: Crus: AG: angular gyrus, CGH: cingulate gyrus, Fu: fusiform gyrus, IFG: inferior frontal gyrus, Ins: insular cortex, ITG: inferior temporal gyrus, MFG:
middle frontal gyrus, MFOG: middle fronto-orbital gyrus, MTG: middle temporal gyrus, PoCG: postcentral gyrus, PrCG: precentral gyrus, PreCu: precuneus, SFG: superior frontal gyrus,
SMG: supramarginal gyrus, STG: superior temporal gyrus, Thal: thalamus.

Network Cluster Stroke vs controls Box & Blocks

Independent component ROI x y z nVox t (all) t (low) R

Right insula SS_L −42 −18 −16 31† 1.472†† 2.896†† −0.75††

Prefrontal Cbl_R 11 −75 −40 57 2.024†† 3.280†† −0.80††

Left insula STG_R 27 14 −32 130 2.848†† 4.281†† −0.77††

STG_R 55 −14 0 42 1.759†† 3.933†† −0.67††

Default-mode (post) SFG_R 27 −2 65 378 2.086†† 3.444†† −0.77††

Cbl_R 15 −51 −32 150 3.669†† 4.954†† −0.64††

Cbl_L −34 −63 −52 114 2.704†† 3.449†† −0.66††

Cbl_R 31 −79 −48 46 3.741†† 3.844†† −0.62††

Basal ganglia Cbl_R 23 −59 −48 226 2.049†† 3.879†† −0.77††

Caud_L −18 10 16 235 2.093†† 4.060†† −0.90††

SFG_R 7 6 57 266 2.187†† 2.831†† −0.64††

Right sensorimotor IFG_R 27 14 25 55 −4.400†† −3.731†† 0.48††

PrCG_L −18 −18 53 39 −3.851†† −4.185†† 0.44††

Left amygdala Cbl_L −34 −39 −36 31 1.631†† 2.773†† −0.73††

Left sensorimotor IFG_R 35 −18 0 487 −2.485†† −6.045†† 0.91††

MFG_R 51 14 41 175 −1.400†† −2.885†† 0.88††

Network acronyms: Salience: salience network nodes in anterior cingulate gyrus and bilateral insula, SM: sensorimotor network and contralateral cerebellum, Cerebellum: bilateral
cerebellum network, DMN ant: default-mode network anterior half, Prefrontal: prefrontal cortex near anterior surface, aCingG: anterior cingulate gyrus.

† p < 0.05.
†† p < 0.01.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2017.07.002.
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