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Abstract

Quantum annealing has gained considerable attention because it can be applied to combi-

natorial optimization problems, which have numerous applications in logistics, scheduling,

and finance. In recent years, with the technical development of quantum annealers,

research on solving practical combinatorial optimization problems using them has acceler-

ated. However, researchers struggle to find practical combinatorial optimization problems,

for which quantum annealers outperform mathematical optimization solvers. Moreover,

there are only a few studies that compare the performance of quantum annealers with the

state-of-the-art solvers, such as Gurobi and CPLEX. This study determines that quantum

annealing demonstrates better performance than the solvers in that the solvers take longer

to reach the objective function value of the solution obtained by the quantum annealers for

the break minimization problem in a mirrored double round-robin tournament. We also

explain the desirable performance of quantum annealing for the sparse interaction between

variables and a problem without constraints. In this process, we demonstrate that this prob-

lem can be expressed as a 4-regular graph. Through computational experiments, we solve

this problem using our quantum annealing approach and two-integer programming

approaches, which were performed using the latest quantum annealer D-Wave Advantage,

and Gurobi, respectively. Further, we compare the quality of the solutions and the computa-

tional time. Quantum annealing was able to determine the exact solution in 0.05 seconds for

problems with 20 teams, which is a practical size. In the case of 36 teams, it took 84.8 s for

the integer programming method to reach the objective function value, which was obtained

by the quantum annealer in 0.05 s. These results not only present the break minimization

problem in a mirrored double round-robin tournament as an example of applying quantum

annealing to practical optimization problems, but also contribute to find problems that can

be effectively solved by quantum annealing.

Introduction

Quantum annealing [1] can be applied to combinatorial optimization problems, which have

numerous applications in logistics, scheduling, and finance. Quantum annealers, which are
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Editor: Gábor Vattay, Eötvös Loránd University,

HUNGARY

Received: October 19, 2021

Accepted: March 28, 2022

Published: April 8, 2022

Copyright: © 2022 Kuramata et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-3927-9059
https://doi.org/10.1371/journal.pone.0266846
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266846&domain=pdf&date_stamp=2022-04-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266846&domain=pdf&date_stamp=2022-04-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266846&domain=pdf&date_stamp=2022-04-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266846&domain=pdf&date_stamp=2022-04-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266846&domain=pdf&date_stamp=2022-04-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266846&domain=pdf&date_stamp=2022-04-08
https://doi.org/10.1371/journal.pone.0266846
http://creativecommons.org/licenses/by/4.0/


hardware devices that perform quantum annealing, are relatively noise resistant and consist of

an increasing number of quantum bits (qubits). In 2017, D-Wave Systems released a quantum

annealer with 2048 qubits, and have now released one with 5760 qubits [2]. Although several

problems [3] remain unresolved, the increase in the qubits and reduction in the noise of the

quantum annealer are among the primary advancements [4]. In recent years, quantum annea-

lers have been used to solve practical combinatorial optimization problems [5–10]. However,

researchers struggle to find practical combinatorial optimization problems, for which quan-

tum annealers outperform other mathematical optimization solvers. Moreover, only a few

studies [9, 11] have compared the performance of quantum annealers with mathematical opti-

mization solvers, such as Gurobi [12] and CPLEX [13]. One of the fields that quantum anneal-

ing can be applied is sports scheduling. We thus considered this field to perform our

comparison between quantum annealing and other solvers.

Sports scheduling involves the construction of a suitable schedule for sports competitions.

It has several practical constraints and splits into various combinatorial optimization problems

[14, 15]. Among them, in a round-robin tournament (RRT), where each team plays against

every other team once, in a double round-robin tournament (DRRT), where each team plays

against the others twice, and in a mirrored double round-robin tournament (MDRRT), which

is a DRRT with the same combination of games in the first and second halves, much research

has been conducted on the break minimization problem, which determines whether the game

is held in the venue of the team, or its opponent [15–21]. RRTs, DRRTs, and MDRRTs are

adopted in many professional sports, such as soccer and basketball [15, 22–25]. The break

minimization problem is derived from practical requirements, and is known to be very diffi-

cult to solve. To address this problem, methods such as integer programming [16, 18] and con-

straint programming [17] have been developed in the past.

The contributions of this study are as follows: First, we found that the break minimization

problem in an MDRRT is a practical combinatorial optimization problem, for which quantum

annealing demonstrates better performance than the mathematical optimization solvers in

that the solvers take longer to achieve the objective function values of the solutions obtained

by the quantum annealers. Second, we explain that the break minimization problem is easy to

solve using quantum annealers because of the sparse interaction between variables and the

lack of constraints. In this process, we demonstrate that the break minimization problem in an

MDRRT can be expressed as a 4-regular graph. Third, we solve this problem using the latest

quantum annealer D-Wave Advantage, and one of the most sophisticated mathematical opti-

mization solvers, Gurobi, and compare the quality of their solutions through computational

experiments. We also measure the time it takes for Gurobi to reach the objective function

value, which the quantum annealer reaches in 0.05 s.

Quantum annealing using D-Wave Advantage

Quantum annealing [1] is a method for solving combinatorial optimization problems using

quantum fluctuations. The solution of the combinatorial optimization problem is obtained by

first applying a strong transverse field, and then gradually weakening the transverse field. This

is similar to simulated annealing [26]; however, quantum annealing is performed using a

quantum annealer as a physical phenomenon, whereas simulated annealing is calculated using

a classical computer. Quantum annealing minimizes the energy of the Ising model (Eq (1)),

associated with the combinatorial optimization problem.

E ¼
X

i;j

Jijsisj þ
X

i

hisi; si ¼ �1; 8i 2 V: ð1Þ
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In Eq (1), Ji,j is the coupling strength between the ith and jth spin, and hi is the bias. V is a

set of spins, and each spin si takes the value 1 or −1. By defining si = 2xi − 1 in Eq (1), we obtain

quadratic unconstrained binary optimization (QUBO), which is suitable for representing com-

binatorial optimization problems. QUBO is defined as Eq (2).

minimize q>Qq

subject to q 2 f0; 1gL:
ð2Þ

In Eq (2), qi is a binary variable, and L is the number of binary variables. Q 2 RL�L
is a

matrix that characterizes the combinatorial optimization problem. QUBO is a problem that

determines the values of q that minimize q> Q q. Because this QUBO is equivalent to the Ising

model, we can solve the combinatorial optimization problem on a quantum annealer.

However, to solve the QUBO transformed into the Ising model using the quantum annea-

ler, a minor-embedding is necessary. Minor embedding refers to associating the Ising model

with qubits in the quantum processing unit topology (Fig 1). Fig 1 is a Pegasus graph mounted

on D-Wave Advantage, a quantum annealer with 5760 qubits. In Fig 1, the blue circles repre-

sent the qubits and the solid black lines represent the connections between the qubits. As

shown in Fig 1, because the connectivity between qubits is sparse, multiple qubits may be

required to represent one logical variable. In particular, QUBO with many non-zero elements

of Q in Eq (2) consumes many qubits to embed it in a quantum annealer. This is difficult in

practice; however, D-Wave Systems have resolved the problem. The maximum degree of the

Chimera graph, the hardware graph made by D-Wave Systems, is 6. The maximum degree of

the Pegasus graph, the more recent hardware graph, is 15 [2]. Therefore, it is easier to repre-

sent combinatorial optimization problems in a Pegasus graph, than in a Chimera graph.

Break minimization problem on a mirrored double round-robin

tournament

Definition of the problem

An RRT is a competition that meets the following conditions.

1. Each team meets every other team once.

2. Each team has its own venue in its home town. A home game for a team is an away game

for its opponent.

3. Each game is played at the home of either of the teams, or its opponent.

A DRRT is a competition that meets the following four conditions.

1. Each team meets every other team twice.

2. Each team has its own venue in its home town.

3. Each game is played at the home of either the team or its opponent.

4. If the first game against an opponent is played at the team’s home (/ away) venue, then the

second game is played at the away (/ home) venue.

An MDRRT is a DRRT where the first half is the same as the second half, except for

exchanging the home games and away games.

We define the symbols. The timetable shows the opponents of all teams and their slots. The

slots refer to dates. A home-away assignment (HA-assignment) defines which team’s home
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ground, the game will be hosted at. The symbols used in the mathematical expressions are as

follows.

• 2n: the number of teams. n is an integer of 2 or greater.

• T 2 {1, 2, . . ., 2n}: a set of teams.

• S 2 {1, 2, . . ., 2(2n − 1)}: a set of slots.

• τ(t, s) 2 T × S: the opponent that plays against team t at slot s.

• T : a timetable. The (t, s) entry of T is τ(t, s).

• a(t, s): a(t, s) = 1 if team t plays against team τ(t, s) in slot s at team t’s home, a(t, s) = 0

otherwise.

• A: this represents an HA-assignment. The (t, s) entry of A is a(t, s).

Table 1 is a timetable T for n = 2. In Table 1, the vertical axis represents the teams and the

horizontal axis represents the slots. Each entry (t, s) of the timetable T is an opponent τ(t, s).
Because Table 1 is the timetable for the MDRRT, τ(t, s) = τ(t, s + 2n − 1) (8(t, s) 2 T × {1, . . .,

Fig 1. Pegasus graph. The blue circles represent the qubits and the solid black lines represent the connections between

the qubits.

https://doi.org/10.1371/journal.pone.0266846.g001
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2n − 1}) holds. Table 2 shows the HA-assignment A corresponding to the timetable in Table 1.

Each entry (t, s) of A indicates whether a game in which team t plays against team τ(t, s) in slot

s is a home game or an away game. The game between team t and team τ(t, s) in slot s is held at

the home of team t if a(t, s) = 1 and at the home of team τ(t, s) if a(t, s) = 0. A break means that

a team plays at two home games or two away games in a row. For example, in Table 2, Team 2

has a break in slot 2 because of the two consecutive away games. Similarly, Team 2 has a break

in slot 4 because of the two consecutive home games. Breaks should be avoided as much as

possible to ensure fairness among teams.

As described in [22] and [23], in practical application, various constraints must be consid-

ered in scheduling sports tournaments. Further, Régin [17] divided the scheduling in an RRT

into a first stage, where many practical constraints are involved, and a second stage, where

there are no constraints; the first and second stages are as follows.

• Considering various constraints, the schedule is created without deciding the assignment of

the venue.

• Each game is assigned to either the home game or away game.

This approach is useful when there are many constraints in the creation of a schedule. The

second stage corresponds to the break minimization problem. In this study, the break minimi-

zation problem in an MDRRT is defined as follows, similar to [27].

Break minimization problem in an MDRRT. INPUT: A timetable in an MDRRT with-

out an HA-assignment.

TASK: Find an HA-assignment with the smallest number of breaks for a given timetable.

Trick [16] points out that solving the break minimization problem is more difficult than

determining the timetable corresponding to the first stage. In this study, we focus on solving

the break minimization problem, similar to Régin [17] and Trick [16].

Previous studies

The break minimization problem in an RRT has been studied by many researchers [16, 18,

20]. In particular, De Werra and Dominique [28] proved that the number of breaks in an RRT

is more than 2n − 2, and the number of breaks in an MDRRT is more than 6n − 6. As

explained in Section “Definition of the problem”, 2n is the number of teams. Although these

properties were clarified, it is very difficult to solve the break minimization problem in an

Table 1. Timetable.

Slot 1 2 3 4 5 6

team 1 2 3 4 2 3 4

team 2 1 4 3 1 4 3

team 3 4 1 2 4 1 2

team 4 3 2 1 3 2 1

https://doi.org/10.1371/journal.pone.0266846.t001

Table 2. Home away assignment.

Slot 1 2 3 4 5 6

team 1 1 0 1 0 1 0

team 2 0 0 1 1 1 0

team 3 1 1 0 0 0 1

team 4 0 1 0 1 0 1

https://doi.org/10.1371/journal.pone.0266846.t002
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RRT, a DRRT, and an MDRRT. To solve this problem, constraint programming [17], integer

programming [16, 18], and an approximation algorithm [20] have been studied in the past. In

recent years, Urdaneta et al. [18] demonstrated, through numerical experiments that formulat-

ing the problem as an unconstrained quadratic integer programming problem and solving it

using the mathematical optimization solver is superior to other formulations with constraints.

In this section, we introduce the study by Urdaneta et al. [18].

Before describing formulations in [18], we explain certain symbols required in the formulations.

KðkÞ ¼ fðtk; skÞ; ðtk; s
0

kÞ; ðt
0

k; skÞ; ðt
0

k; s
0

kÞg ð3Þ

In Eq (3), KðkÞ represents the games and their slots between the two teams of the kth com-

bination. k can be any integer between 1 and 2n
2

� �
. tk and t0k represent the two teams in the kth

combination, respectively. The slot of the first game between tk and t0k is sk, and the slot of the

second game is s0k. For any k, Eq (4) holds.

jKðkÞj ¼ 4; k 6¼ k0 ) KðkÞ \Kðk0 Þ ¼ ;; T � S ¼
[nð2n� 1Þ

k¼1

KðkÞ: ð4Þ

jKðkÞj ¼ 4 indicates that KðkÞ contains four games in the timetable. k 6¼ k0 ) KðkÞ \
Kðk0 Þ ¼ ; also indicates that two different KðkÞ do not contain the same games. T � S ¼
Snð2n� 1Þ

k¼1
KðkÞ indicates that adding up all the combinations equals the original timetable.

The binary variable yts takes 1 if team t plays at home in slot s and 0 if it plays away. Eq (5)

holds for any k 2 {1, 2, . . ., n(2n − 1)} to satisfy the conditions of the DRRTs.

ytksk þ yt0ksk ¼ 1

ytksk þ ytks0k ¼ 1

� ytksk þ yt0ks0k ¼ 0

ð5Þ

The first constraint is that each team plays at its home or at its opponent’s home. The second

constraint implies that a team plays at home (/ away) against its opponent first, and then plays

away (/ home) against its opponent second. The third implies that the first game is played at the

home (/ away) of the team, and the second game is played at the home (/ away) of the opponent.

These represent the second, third, and fourth of the four conditions for a DRRT, respectively.

Urdaneta et al. did not provide a specific formulation for the break minimization problem.

They demonstrated that the constrained optimization problem (Eq (6)), which represents a

break minimization problem in a DRRT, can be expressed as an unconstrained optimization

problem (Eq (8)).

minimize lðyÞ ¼ c>y þ
1

2
y>Hy

subject to ytksk þ yt0ksk ¼ 1 ð8k 2 f1; 2; . . . ; nð2n � 1ÞgÞ;

ytksk þ ytks0k ¼ 1 ð8k 2 f1; 2; . . . ; nð2n � 1ÞgÞ;

� ytksk þ yt0ks0k ¼ 0 ð8k 2 f1; 2; . . . ; nð2n � 1ÞgÞ;

yt;s 2 f0; 1g ð8t 2 T; 8s 2 SÞ:

ð6Þ
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The constraints are the same as in Eq (5). We define zk as zk :¼ ytksk for the first component

(tk, sk) of KðkÞ. The variables relating to the components of KðkÞ can be replaced, as in Eq (7).

ytksk ¼ zk; yt0ksk ¼ 1 � zk; ytks0k ¼ 1 � zk; yt0ks0k ¼ zk ð7Þ

Thus, substituting the transformation described in Eq (7) into the constrained formulation

in Eq (6) yields the unconstrained formulation in Eq (8).

minimize �lðzÞ ¼ �a þ �c>zþ
1

2
z> �Hz

subject to z 2 f0; 1gnð2n� 1Þ
:

ð8Þ

In Eq (8), �a, �c, and �H are obtained by substituting Eq (7) for Eq (6).

Formulation and analysis of the problem

In Section “Formulating the break minimization problem in a mirrored double round-robin

tournament”, we specify the formulation by Urdaneta et al. [18] as a break minimization prob-

lem in an MDRRT. In Section “Analysis: Benefits of the sparsity of the problem” and “Analysis:

Benefits of no constraints”, we show that the problem satisfies certain theoretical and experi-

mental characteristics that make it more suitable for the quantum annealers and may account

for their ability to obtain high-quality solutions rapidly.

Formulating the break minimization problem in a mirrored double round-

robin tournament

As mentioned earlier, Urdaneta et al. [18] does not provide a specific objective function for

Eqs (6) and (8). Further, we set the objective function as the total number of breaks in the

MDRRT. Our formulation corresponding to Eq (6) is Eq (9).

minimize f ðyÞ ¼
P

t2T

P
s2Snf4n� 2g

ðytsytsþ1 þ ð1 � ytsÞð1 � ytsþ1ÞÞ

subject to ytksk þ yt0ksk ¼ 1 ð8k 2 f1; 2; . . . ; nð2n � 1ÞgÞ;

ytksk þ ytks0k ¼ 1 ð8k 2 f1; 2; . . . ; nð2n � 1ÞgÞ;

� ytksk þ yt0ks0k ¼ 0 ð8k 2 f1; 2; . . . ; nð2n � 1ÞgÞ;

yts 2 f0; 1g ð8t 2 T; 8s 2 SÞ:

ð9Þ

The objective function f(y) consists of the sum of yts yt,s+1, which represents a break corre-

sponding to the two consecutive home games and (1 − yts)(1 − yts+1), which represents a break

corresponding to the two consecutive away games. As Urdaneta et al. did, we transform the

constrained formulation in Eq (9) into the unconstrained formulation in Eq (10) using the
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transformation described in Eq (7).

minimize
P

tk2T

P
sk2Snf4n� 2g

aðtk; skÞðzkzk0 þ ð1 � zkÞð1 � zk0 ÞÞ

þ bðtk; skÞðð1 � zkÞzk0 þ zkð1 � zk0 ÞÞ

þ cðtk; skÞðzkð1 � zk0 Þ þ ð1 � zkÞzk0 Þ

þ dðtk; skÞðzkzk0 þ ð1 � zkÞð1 � zk0 ÞÞ

subject to zk 2 f0; 1g ð8k 2 f1; 2; . . . ; nð2n � 1ÞgÞ:

ð10Þ

In Eq (10), k0 satisfies ðtk; sk þ 1Þ 2 Kðk0Þ for any k. Let a(tk, sk) = 1 if

ðytksk ¼ zkÞ ^ ðytkskþ1 ¼ zk0 Þ; otherwise, a(tk, sk) = 0. Let b(tk, sk) = 1 if

ðytksk ¼ 1 � zkÞ ^ ðytkskþ1 ¼ zk0 Þ, otherwise b(tk, sk) = 0. Let c(tk, sk) = 1 if

ðytksk ¼ zkÞ ^ ðytkskþ1 ¼ 1 � zk0 Þ, otherwise c(tk, sk) = 0. Let d(tk, sk) = 1 if

ðytksk ¼ 1 � zkÞ ^ ðytkskþ1 ¼ 1 � zk0 Þ, otherwise d(tk, sk) = 0. Eq (10) is the QUBO formulation.

Therefore, we transformed Eq (10) into an equivalent Ising model and solved it using quantum

annealing. As described in Section “Analysis: Benefits of the sparsity of the problem”, the

break minimization problem in an MDRRT is suitable for solving the problem using a quan-

tum annealer.

Analysis: Benefits of the sparsity of the problem

In this section, we show that the break minimization problem in an MDRRT has a sparse

graph representation, which makes it more suitable for the quantum annealers. As in [29], we

refer to the graph representation of QUBO as the source graph, and the quantum processing

unit topology of a quantum annealer as the target graph. The source graph contains nodes that

represent logical variables and edges that represent the interaction between variables. The tar-

get graph has nodes that represent qubits and edges that represent the connections between

the qubits, as shown in Fig 1. Fig 2 shows the source graph of the break minimization problem

Fig 2. Source graph of the break minimization problem defined by Table 1. The blue nodes represent logical

variables, and the solid black lines represent the interaction between variables.

https://doi.org/10.1371/journal.pone.0266846.g002
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for the schedule defined in Tables 1 and 2. As can be observed from Fig 2, the source graph of

the break minimization problem in an MDRRT is a 4-regular graph.

Proposition 1 The source graph of the break minimization problem in an MDRRT is a 4-reg-
ular graph.

Proof As shown in Eq (7), the variable zk represents the four games denoted by

fytsjðt; sÞ 2 KðkÞg. In addition, in an MDRRT, the combination of opponents for the games

before and after a certain game is the same for the first and second halves, and thus, zk is

related to the four variables. Therefore, the source graph of a break minimization problem in

an MDRRT is a 4-regular graph.

Regardless of the number of teams in an MDRRT, the source graph is a 4-regular graph,

which means that the graph is very sparse. However, the source graph in a DRRT is not always

a regular graph, and its degree is less than, or equal to 8.

Proposition 2 The degree of the source graph of a break minimization problem in a DRRT is
less than or equal to 8.

Proof The variable zk represents the four games denoted by fytsjðt; sÞ 2 KðkÞg. In contrast

to an MDRRT, in a DRRT, the combination of opponents in the games before and after a cer-

tain game is not always equal in the first and second halves. Therefore, when the degree of the

source graph is the largest, zk is related to eight variables that represent the before and after of

the game in the first and second halves. Thus, the maximum degree of the source graph of the

break minimization problem in a DRRT is 8.

In Tables 3 and 4, we demonstrate the minor embeddings of the source graph of the break

minimization problem in an MDRRT and a DRRT, respectively. The minor embeddings are

in the target graph of the D-Wave Advantage. We perform minor embedding using the

method described in [1]. We randomly create five break minimization problems in both,

MDRRTs and DRRTs. Tables 3 and 4 show the number of nodes (Nodes in the tables) and

edges (Edges in the tables) in the source graph of the break minimization problem in an

MDRRT and a DRRT, the total number of qubits used (Qubits in the tables), and the number

of qubits used per node in the source graph (Qubits/Nodes in the tables). Teams in the tables

represent the number of teams included in the problems.

In the target graph of D-Wave Advantage, we were able to minor-embed up to 48 teams in

an MDRRT, and up to 28 teams in a DRRT. Therefore, up to 48 teams can be considered in

Table 3, and up to 28 teams can be considered in Table 4. In Tables 3 and 4, we can observe

that the break minimization problem in an MDRRT and a DRRT is sparse. Comparing Tables

Table 3. Number of nodes and edges of the source graph and used qubits in MDRRTs.

Teams Nodes Edges Qubits Qubits/Nodes

4 6 12 8 1.333333

8 28 56 39 1.392857

12 66 132 112 1.696970

16 120 240 209 1.741667

20 190 380 370 1.947368

24 276 552 547 1.981884

28 378 756 755 1.997354

32 496 992 1467 2.957661

36 630 1260 1663 2.639683

40 780 1560 1973 2.529487

44 946 1892 3215 3.398520

48 1128 2256 3975 3.523936

https://doi.org/10.1371/journal.pone.0266846.t003
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3 and 4, we can observe that the source graph in an MDRRT is sparser than that in a DRRT,

and the number of qubits used is smaller. In [30], the authors investigated how the degree of

the graph of MAX-CUT problems affects the quality of the solution obtained from a quantum

annealer, and demonstrated that the smaller the degree of the graph, the better the quality.

Thus, it is expected that the break minimization problem in an MDRRT is easier to solve, than

in a DRRT, using a quantum annealer. This is also confirmed by the experimental results

shown in Tables 8 and 9. The size of the problem that can be solved on the quantum annealer

is also larger for an MDRRT than for a DRRT. We were able to solve problems with up to 48

teams in an MDRRT and up to 28 teams in a DRRT, using D-Wave Advantage.

Analysis: Benefits of no constraints

In this section, we show that the break minimization problem in an MDRRT is an uncon-

strained optimization problem, which makes it more suitable for the quantum annealers. As

shown in Eq (10), the break minimization problem can be expressed naturally as an uncon-

strained optimization problem. In other words, all solutions searched for by quantum anneal-

ing are feasible solutions, and thus, the search conducted using quantum annealing is efficient.

However, for problems with hard constraints, such as quadratic assignment problems [31] and

traveling salesman problems [32], many of the solutions explored using quantum annealing

are deemed infeasible. As an example, we consider an optimization problem with severe con-

straints (Eq (11)), such as the quadratic assignment problem or traveling salesman problem,

wherein the objective function is assumed to return 0 regardless of the solution.

minimize 0

subject to
Pn

i¼1
xij ¼ 1 ð8j 2 f1; 2; . . . ; ngÞ;

Pn
j¼1

xij ¼ 1 ð8i 2 f1; 2; . . . ; ngÞ;

xij 2 f0; 1g ð8i 2 f1; 2; . . . ; ng; 8j 2 f1; 2; . . . ; ngÞ:

ð11Þ

By transforming the optimization problem (Eq (11)) into the QUBO formulation, we obtain

Eq (12).

minimize
Pn

i¼1
ð1 �

Pn
j¼1

xijÞ
2
þ
Pn

j¼1
ð1 �

Pn
i¼1

xijÞ
2

subject to xij 2 f0; 1g ð8i 2 f1; 2; . . . ; ng; 8j 2 f1; 2; . . . ; ngÞ:
ð12Þ

In this case, n2 binary variables are required. The set of solutions explored using quantum

annealing has 2n2

elements. However, the set of feasible solutions has n! elements. Therefore,

Table 4. Number of nodes and edges of the source graph and qubits used in DRRTs.

Teams Nodes Edges Qubits Qubits/Nodes

4 6 10.4 7.2 1.200000

8 28 83.2 50.8 1.814286

12 66 232.8 212.0 3.212121

16 120 441.6 613.2 5.110000

20 190 676.0 1167.8 6.146316

24 276 998.4 2412.4 8.740580

28 378 1411.2 3878.4 10.260317

https://doi.org/10.1371/journal.pone.0266846.t004
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the set of feasible solutions is exponentially smaller than the set of solutions explored using

quantum annealing, which makes the search inefficient.

We solved Eq (12) using the quantum annealer D-Wave Advantage and obtained 10000

solutions. In the experiment, we set 10, 30, 50, 70, and 90 μs as the annealing time and used the

well-tuned chain strength parameters for each problem size. We describe the tuning of chain

strength parameters in Table in S1 Table. The results are summarized in Table 5. In Table 5,

per_f represents the percentage of feasible solutions. For various annealing time parameters,

Table 5 shows that as the problem size n increases, the probability of obtaining a feasible solu-

tion decreases.

This experiment shows that quantum annealers struggle to obtain feasible solutions even

for the example model in Eq (12), whose exact solutions are apparent. Therefore, at least par-

tially, this difficulty will be encountered in solving constrained problems using a quantum

annealer. This is also consistent with the result in [33]. Moreover, the penalty terms make the

source graph dense and the problem more difficult because the variables in the penalty terms

are squared. Because unconstrained optimization problems do not face these difficulties, quan-

tum annealers are more suitable for solving unconstrained optimization problems than con-

strained optimization problems.

Numerical experiments and discussion

The break minimization problem is a problem of finding an HA-assignment that minimizes

the number of breaks for a given timetable. We conducted two experiments to compare our

method based on quantum annealing with two integer programming approaches [16, 18],

which exhibited excellent results. In the first experiment, we solved the break minimization

problem in an MDRRT using quantum annealing, and two other integer programming

approaches presented by Urdaneta et al. [18] and Trick [16], respectively. Further, we com-

pared the quality of the solutions and the computational time. In the second experiment, we

measured the time it took for the integer programming approach given by Urdaneta et al. to

reach the objective function value, which the quantum annealer obtained in 0.05 s. To demon-

strate the advantage of the sparse source graph, we also conducted the same experiments for

the break minimization problem in a DRRT, as well as an MDRRT. Tables 6 and 7 show the

Table 5. Probability of obtaining feasible solutions with the tuned chain strength parameters.

n (chain strength) per_f(10μs) per_f(30μs) per_f(50μs) per_f(70μs) per_f(90μs)

2 (0.1) 1.0000 0.9998 1.0000 1.0000 0.9999

3 (0.3) 0.9948 0.9981 0.9983 0.9977 0.9986

4 (0.5) 0.8977 0.9245 0.9493 0.9463 0.9584

5 (0.7) 0.4128 0.5176 0.6163 0.6258 0.6309

6 (0.7) 0.2088 0.3021 0.3376 0.3912 0.3907

7 (0.8) 0.0615 0.1212 0.1362 0.1615 0.1659

8 (0.8) 0.0088 0.0182 0.0266 0.0327 0.0318

9 (0.9) 0.0018 0.0021 0.0049 0.0046 0.0069

10 (0.9) 0.0002 0.0001 0.0004 0.0003 0.0005

11 (0.9) 0.0005 0.0007 0.0012 0.0006 0.0011

12 (0.9) 0.0000 0.0000 0.0000 0.0000 0.0000

per_f represents the probability of obtaining feasible solutions. The figures in parentheses in per_f refer to the annealing time parameters. The figures in parentheses in

n refer to the chain strength parameters. We used the quantum annealer Advantage_system4.1, taking 10000 samples.

https://doi.org/10.1371/journal.pone.0266846.t005
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results for the first experiment for MDRRTs and DRRTs, respectively. Tables 8 and 9 show the

results for the second experiment for MDRRTs and DRRTs, respectively.

The timetables of the MDRRTs used in the computational experiments were created using

the following method.

1. Creating an RRT timetable using the Kirkman method [34].

2. Shuffling the order of the slots in the timetable created in step 1.

3. Concatenating the two identical timetables that are shuffled in step 2.

In this manner, we created five timetables for each number of teams and used common

timetables in both computational experiments. The experimental results (Tables 6–9) show the

average of the results obtained by solving the break minimization problems defined by the five

timetables. In the computational experiments, we compared the following three methods:

• QA: we solve Eq (10) with quantum annealing.

• IP(Urdaneta): we solve Eq (10) using the integer programming approach by Urdaneta et al.
[18], and we use Gurobi [12] as an integer quadratic programming solver.

• IP(Trick): we solve the problem that equals to the break minimization problem with integer

programming approach by Trick [16], and we use Gurobi [12] as an integer linear program-

ming solver.

Table 6. QA vs. IP in MDRRTs.

QA IP(Urdaneta) IP(Trick)

Teams Breaks Time(s) Breaks Time(s) OPTIMAL Breaks Time(s) OPTIMAL

4 6.0 0.05 6.0 0.033974 1.0 6.0 0.039900 1.0

8 19.6 0.05 19.6 0.063883 1.0 19.6 0.288907 1.0

12 38.8 0.05 38.8 0.157146 1.0 38.8 1.951506 1.0

16 66.0 0.05 66.0 0.681240 1.0 66.0 40.549676 1.0

20 106.8 0.05 106.8 3.449914 1.0 106.8 300.039447 0.0

24 161.6 0.05 156.4 52.528646 1.0 - - -

28 224.8 0.05 214.0 252.368946 0.2 - - -

32 280.4 0.05 267.2 288.295851 0.2 - - -

36 368.8 0.05 346.0 300.026792 0.0 - - -

40 453.6 0.05 422.4 300.032120 0.0 - - -

44 553.6 0.05 520.8 300.024345 0.0 - - -

48 663.6 0.05 618.8 300.024338 0.0 - - -

https://doi.org/10.1371/journal.pone.0266846.t006

Table 7. QA vs. IP in DRRTs.

QA IP(Urdaneta) IP(Trick)

Teams Breaks Time(s) Breaks Time(s) OPTIMAL Breaks Time(s) OPTIMAL

4 5.6 0.05 5.6 0.035595 1.0 5.6 0.028979 1.0

8 26.8 0.05 26.8 0.089388 1.0 26.8 0.560439 1.0

12 65.6 0.05 65.6 0.645643 1.0 65.6 10.696434 1.0

16 116.4 0.05 113.2 89.337958 0.8 114.4 300.021179 0.0

20 184.4 0.05 173.6 237.070479 0.4 256.0 300.028045 0.0

24 276.0 0.05 247.6 300.023959 0.0 - - -

28 409.6 0.05 362.0 300.023397 0.0 - - -

https://doi.org/10.1371/journal.pone.0266846.t007
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QA, IP(Urdaneta), and IP(Trick) are abbreviations for each method. Although all three

methods were compared in the first experiment (Tables 6 and 7), we compared our quantum

annealing approach with the integer programming approach presented by Urdaneta (IP(Urda-

neta)) in the second experiment (Tables 8 and 9) because the integer programming approach

presented by Urdaneta et al. is superior to that of Trick in the first experiment.

The computational environment for IP(Urdaneta) and IP(Trick) is as follows: we used the

Gurobi Optimizer(version 9.1.2) on an Intel Core i7–7700HQ 2.80 GHz CPU with four cores

and eight threads. We terminated the computation by Gurobi after 300 s because we were

required to solve a large number of problems. The parameters for QA are as follows. We used

the quantum annealer, D-Wave Advantage. The version of D-Wave Advantage is Advantage_-

system1.1 and has 5760 qubits. The annealing_time is 50 μs and num_reads is 1000. Therefore,

the execution time was 0.05 s. We minor-embed the problem using the method in [35] onto

the D-Wave Advantage. We automatically set the chain strength parameters using uniform tor-
que compensation, which was developed by D-Wave Systems [36].

The abbreviations in Tables 6 and 7 are as follows: Teams is the number of teams, Breaks is

the average number of breaks in the solution obtained using each method, and Time is the

average computational time. OPTIMAL is the percentage of optimal solutions obtained in 300

s using integer programming approaches. For example, OPTIMAL = 0.2 means that one opti-

mal solution out of five was obtained. The abbreviations in Tables 8 and 9 are as follows:

Teams is the number of teams. Breaks(QA) are the average number of breaks in the solution

obtained from the quantum annealer. Time(Urdaneta) is the average computational time

required for IP(Urdaneta) to reach the number of breaks in the solution obtained from the

quantum annealer in 0.05 s.

We now explain the results of the first experiment in the MDRRT (Table 6). Both IP(Urda-

neta) and IP(Trick) took longer to compute as the number of teams increased. Up to 24 teams,

IP(Urdaneta) obtained optimal solutions for all problems within 300 s. However, in problems

with more than 28 teams, the obtained solution was either not optimal or the optimality could

not be confirmed. The results of IP(Trick) were inferior to those of IP(Urdaneta). IP(Trick)

obtained the optimal solutions within 300 s for problems with 16 teams or less. For problems

with more than 20 teams, we did not obtain any feasible solutions within 300 s. However, QA

obtained optimal solutions for problems with 20 teams or less in 0.05 s. For problems with 24

teams, the difference between the optimal solution and the solution given by QA was only 5.2.

For problems with more than 28 teams, the gap between QA and IP(Urdaneta) gradually

Table 8. QA vs. IP(Urdaneta) in MDRRTs.

Teams Breaks(QA) Time(Urdaneta)

4 6.0 0.039347

8 19.6 0.062397

12 38.8 0.148171

16 66.0 0.351599

20 106.8 2.837216

24 161.6 8.021498

28 224.8 26.003237

32 280.4 49.271526

36 368.8 84.806435

40 453.6 75.338228

44 553.6 57.133598

48 663.6 6.880923

https://doi.org/10.1371/journal.pone.0266846.t008
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became wider. We also conducted the same experiment for DRRTs, and the results are sum-

marized in Table 7. Table 7 shows that the gap between Breaks of QA and IP(Urdaneta) is

larger in DRRTs, than in MDRRTs, as the number of teams increased. This is because the

break minimization problems in MDRRTs are sparser than in DRRTs, as explained in Section

“Analysis: Benefits of the sparsity of the problem”. To evaluate how the change in annealing

time parameters affects the results, we performed the same additional experiments for QA

with various annealing time parameters. When the annealing time was increased, the results

(Table 10) showed that the quality of the solutions was improved.

We explain the results of the second experiment as follows (Table 8). Because the results of

IP(Urdaneta) were superior to those of IP(Trick) in the first experiment (Table 6), we did not

conduct the second experiment for IP(Trick). In the second experiment, we measured the

time required for IP(Urdaneta) to reach the objective function value, which QA obtained in

0.05 s. Time(Urdaneta) in Table 8 shows that as the number of teams increased, the time

taken for IP(Urdaneta) to reach the QA’s objective function value also increased, and that the

longest time of 84.8 s was required for 36 teams. This demonstrates that quantum annealing

has better performance than the solvers in that the solvers take longer to achieve the objective

function value of the solution obtained by the quantum annealers. When the number of teams

was 40 or more, the time consumed by IP(Urdaneta) gradually shortened. We consider that

this is because the quality of the QA solutions deteriorates when there are a large number of

Table 9. QA vs. IP(Urdaneta) in DRRTs.

Teams Breaks(QA) Time(Urdaneta)

4 5.6 0.026426

8 26.8 0.055700

12 65.6 0.421455

16 116.4 5.954419

20 184.4 11.851826

24 276.0 9.063769

28 409.6 1.988316

https://doi.org/10.1371/journal.pone.0266846.t009

Table 10. QA in MDRRTs with various annealing time parameters.

Teams Breaks(10μs) Breaks(30μs) Breaks(50μs) Breaks(70μs) Breaks(90μs) Breaks(110μs)

4 6.0 6.0 6.0 6.0 6.0 6.0

8 19.6 19.6 19.6 19.6 19.6 19.6

12 38.8 38.8 38.8 38.8 38.8 38.8

16 66.4 66.0 66.0 66.0 66.0 66.0

20 108.8 107.6 106.8 106.8 106.8 106.8

24 170.0 162.0 162.4 163.2 159.2 162.4

28 232.4 226.8 226.8 223.6 225.2 222.4

32 296.4 287.2 284.8 279.2 280.4 276.8

36 388.0 378.0 370.8 374.8 364.0 368.8

40 468.0 456.4 442.8 443.2 443.6 440.0

44 578.0 550.0 557.6 550.0 548.8 538.4

48 718.4 669.2 672.8 648.4 654.0 652.0

The figures in parentheses refer to the annealing time parameters. We used the quantum annealer Advantage_system4.1.

https://doi.org/10.1371/journal.pone.0266846.t010
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teams. As can be observed from Qubits/Nodes in Table 3, the number of qubits required to

represent a variable increases as the number of teams increases. Because the connectivity

between qubits is sparse, multiple qubits are required to represent one variable, which may

deteriorate the quality of the solutions. By contrast, the experimental results in a DRRT

(Table 9) show that IP(Urdaneta) takes up to 11.8 s to reach the objective function value,

which QA obtained in 0.05 s. This result is inferior to that of MDRRTs; therefore, we suggest

that the break minimization problem in an MDRRT is more suitable for solving using a quan-

tum annealer, than in a DRRT.

As can be observed from the two experiments, while solving the break minimization prob-

lem in an MDRRT, our method that employs the quantum annealer is much faster than integer

programming approaches using Gurobi. There are two main reasons for this result. First, as

explained in Section “Analysis: Benefits of the sparsity of the problem” and “Analysis: Benefits

of no constraints”, the break minimization problem in an MDRRT is sparse and has no con-

straints; thus, it is suitable to solve using a quantum annealer. Second, as Trick [16]

highlighted, the break minimization problem is highly symmetric, and it is difficult to solve

using an integer programming approach. In addition, our results differ from those of [9] in

that the quantum annealer is faster as the size of the problems increases. In [9], the quantum

annealer was faster than Gurobi, but only for small-scale problems.

Conclusion

In recent years, with the technical development of quantum annealers, extensive research on

solving practical combinatorial optimization problems using quantum annealers has been con-

ducted [5–10]. However, researchers struggle to find practical combinatorial optimization

problems, for which quantum annealers outperform other mathematical optimization solvers

[9, 11]. We determined that the break minimization problem in an MDRRT is a problem for

which a state-of-the-art solver such as Gurobi [12] takes longer to achieve the objective func-

tion value of the solution obtained by the quantum annealers. We formulated the QUBO of

the break minimization problem in an MDRRT by referring to existing studies [18]. Further,

we used the two effective existing methods based on integer programming, and our method

based on quantum annealing to solve the break minimization problem in an MDRRT, and

compared the quality of the solution and computational time. We used Gurobi as an integer

programming approach in our experiments. Quantum annealing was able to obtain the exact

solution in 0.05 s for the problems with 20 teams, which is a practical size. In the case of 36

teams, it took 84.8 s for the integer programming method to reach the objective function

value, which was obtained by a quantum annealer in 0.05 s. The advantage of the method

based on quantum annealing is that it is not limited to small-scale problems, which is different

from [9]. Our study is also one of the few to compare quantum annealers with commercial

solvers, such as Gurobi.

We provided two primary reasons as to why quantum annealers can successfully solve the

break minimization problem in an MDRRT. First being, that the break minimization problem

in an MDRRT has a sparse structure. We demonstrated that the break minimization problem

in an MDRRT can be represented as a 4-regular graph. Such a sparse problem is suitable to

solve using quantum annealers. Second being, that the break minimization problem in an

MDRRT is unconstrained. We highlighted that the unconstrained optimization problem is

suitable to solve because the number of solutions explored using quantum annealing is equal

to the number of feasible solutions. These provide an idea about the types of problems that

should be solved using a quantum annealer.
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Supporting information

S1 Table. Tuning chain strength parameters. We solved Eq (12) using an annealing time of

50μs and considering 10000 samples. This table shows the percentage of feasible solutions for

each chain strength parameter. “NaN” indicates that we did not conduct an experiment for

this chain strength parameter. Bold letters indicate the highest percentage.
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19. Elf M, Jünger M, Rinaldi G. Minimizing breaks by maximizing cuts. Operations Research Letters. 2003;

31(5):343–349. https://doi.org/10.1016/S0167-6377(03)00025-7

20. Miyashiro R, Matsui T. Semidefinite programming based approaches to the break minimization prob-

lem. Computers & Operations Research. 2006; 33(7):1975–1982. https://doi.org/10.1016/j.cor.2004.

09.030

21. Suzuka A, Miyashiro R, Yoshise A, Matsui T. The home–away assignment problems and break minimi-

zation/maximization problems in sports scheduling. Pacific Journal of Optimization. 2007; 3:113–33.

22. Nemhauser GL, Trick MA. Scheduling a major college basketball conference. Operations research.

1998; 46(1):1–8. https://doi.org/10.1287/opre.46.1.1

23. Schreuder JA. Combinatorial aspects of construction of competition Dutch professional football lea-

gues. Discrete Applied Mathematics. 1992; 35(3):301–312. https://doi.org/10.1016/0166-218X(92)

90252-6

24. Rasmussen RV. Scheduling a triple round robin tournament for the best Danish soccer league. Euro-

pean Journal of Operational Research. 2008; 185(2):795–810. https://doi.org/10.1016/j.ejor.2006.12.

050

25. Ribeiro CC, Urrutia S. Scheduling the Brazilian soccer tournament with fairness and broadcast objec-

tives. In: International Conference on the Practice and Theory of Automated Timetabling. Springer;

2006. p. 147–157.

26. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. science. 1983; 220

(4598):671–680. https://doi.org/10.1126/science.220.4598.671 PMID: 17813860

27. Miyashiro R, Matsui T. Round-robin tournaments with a small number of breaks. Department of Mathe-

matical Informatics, The University of Tokyo, Mathematical Engineering Technical Reports METR.

2003;29:2003.

28. De Werra D. Scheduling in sports. Studies on graphs and discrete programming. 1981; 11:381–395.

https://doi.org/10.1016/S0304-0208(08)73478-9

29. D-Wave Systems Inc. dwave-system Documentation Release 1.6.0; 2021. Available from: https://docs.

ocean.dwavesys.com/_/downloads/system/en/stable/pdf/.

PLOS ONE Solving large break minimization problems in a mirrored double round-robin tournament using quantum annealing

PLOS ONE | https://doi.org/10.1371/journal.pone.0266846 April 8, 2022 17 / 18

https://doi.org/10.1038/s41598-021-82740-0
http://www.ncbi.nlm.nih.gov/pubmed/33568714
https://doi.org/10.1371/journal.pone.0227538
https://doi.org/10.1371/journal.pone.0227538
http://www.ncbi.nlm.nih.gov/pubmed/32053622
https://doi.org/10.3389/fcomp.2019.00009
https://doi.org/10.3389/fcomp.2019.00009
https://doi.org/10.1109/TITS.2019.2891235
https://doi.org/10.1371/journal.pone.0206653
https://doi.org/10.1371/journal.pone.0206653
http://www.ncbi.nlm.nih.gov/pubmed/30532243
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1111/j.1475-3995.2011.00819.x
https://doi.org/10.1016/j.ejor.2007.05.046
https://doi.org/10.5540/03.2018.006.01.0311
https://doi.org/10.1016/S0167-6377(03)00025-7
https://doi.org/10.1016/j.cor.2004.09.030
https://doi.org/10.1016/j.cor.2004.09.030
https://doi.org/10.1287/opre.46.1.1
https://doi.org/10.1016/0166-218X(92)90252-6
https://doi.org/10.1016/0166-218X(92)90252-6
https://doi.org/10.1016/j.ejor.2006.12.050
https://doi.org/10.1016/j.ejor.2006.12.050
https://doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
https://doi.org/10.1016/S0304-0208(08)73478-9
https://docs.ocean.dwavesys.com/_/downloads/system/en/stable/pdf/
https://docs.ocean.dwavesys.com/_/downloads/system/en/stable/pdf/
https://doi.org/10.1371/journal.pone.0266846


30. Hamerly R, Inagaki T, McMahon PL, Venturelli D, Marandi A, Onodera T, et al. Experimental investiga-

tion of performance differences between coherent Ising machines and a quantum annealer. Science

advances. 2019; 5(5):eaau0823. https://doi.org/10.1126/sciadv.aau0823 PMID: 31139743

31. Koopmans TC, Beckmann M. Assignment problems and the location of economic activities. Econome-

trica: journal of the Econometric Society. 1957; p. 53–76. https://doi.org/10.2307/1907742

32. Dantzig G, Fulkerson R, Johnson S. Solution of a large-scale traveling-salesman problem. Journal of

the operations research society of America. 1954; 2(4):393–410. https://doi.org/10.1287/opre.2.4.393

33. Kuramata M, Katsuki R, Nakata K. Larger Sparse Quadratic Assignment Problem Optimization Using

Quantum Annealing and a Bit-Flip Heuristic Algorithm. In: 2021 IEEE 8th International Conference on

Industrial Engineering and Applications (ICIEA). IEEE; 2021. p. 556–565.

34. Kirkman TP. On a problem in combinations. Cambridge and Dublin Mathematical Journal. 1847; 2:191–

204.

35. Cai J, Macready WG, Roy A. A practical heuristic for finding graph minors. arXiv preprint

arXiv:14062741. 2014.

36. D-Wave Systems Inc. D-Wave System Documentation: Uniform Torque Compensation; 2018. Avail-

able from: https://docs.ocean.dwavesys.com/projects/system/en/latest/reference/generated/dwave.

embedding.chain_strength.uniform_torque_compensation.html#dwave.embedding.chain_strength.

uniform_torque_compensation.

PLOS ONE Solving large break minimization problems in a mirrored double round-robin tournament using quantum annealing

PLOS ONE | https://doi.org/10.1371/journal.pone.0266846 April 8, 2022 18 / 18

https://doi.org/10.1126/sciadv.aau0823
http://www.ncbi.nlm.nih.gov/pubmed/31139743
https://doi.org/10.2307/1907742
https://doi.org/10.1287/opre.2.4.393
https://docs.ocean.dwavesys.com/projects/system/en/latest/reference/generated/dwave.embedding.chain_strength.uniform_torque_compensation.html#dwave.embedding.chain_strength.uniform_torque_compensation
https://docs.ocean.dwavesys.com/projects/system/en/latest/reference/generated/dwave.embedding.chain_strength.uniform_torque_compensation.html#dwave.embedding.chain_strength.uniform_torque_compensation
https://docs.ocean.dwavesys.com/projects/system/en/latest/reference/generated/dwave.embedding.chain_strength.uniform_torque_compensation.html#dwave.embedding.chain_strength.uniform_torque_compensation
https://doi.org/10.1371/journal.pone.0266846

