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Metabolic pathway reconstruction presents a challenge 
for understanding metabolic pathways in organisms of 
interest. Different strategies, i.e., reference-based vs. de 
novo, must be used for pathway reconstruction depend-
ing on the availability of well-characterized enzymatic 
reactions. If at least one enzyme is already known to 
catalyze a reaction, its amino acid sequence can be used 
as a reference for identifying homologous enzymes in the 
genome of an organism of interest. Where there is no 
known enzyme able to catalyze a corresponding reaction, 
however, the reaction and the corresponding enzyme 
must be predicted de novo from chemical transforma-
tions of the putative substrate-product pair. This review 
summarizes studies involving reference-based and de 
novo metabolic pathway reconstruction and discusses the 
importance of the classification and structure-function 
relationships of enzymes.
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Natural products serve as important sources of drugs [1] 
and provide insight into ecological factors, such as inter-
species relationships [2,3]. Within the plant kingdom, esti-

mates on the number of metabolites have ranged from 
200,000 [4,5] to 1,060,000 [6], while the number of human 
metabolites is believed to be over 40,000 [7]. Thus, across 
all of nature, the number of metabolites is likely to far exceed 
these values. Identification of these metabolites and their 
associated metabolic pathways has the potential to provide 
significant benefits, not only in terms of pharmaceuticals and 
the public health, but also in terms of agricultural and envi-
ronmental issues. However, the number of enzymes that 
have been verified experimentally and approved by the 
International Union of Biochemistry and Molecular Biology 
(IUBMB) is limited to approximately 5,600 [8], and the 
total number of reactions associated with those enzymes is 
approximately 8,100 [9]. Although experimentally verified 
metabolites and enzymatic reactions are not directly com
parable in number, this large discrepancy reveals that our 
knowledge of metabolites and metabolic pathways is limited 
to only a small portion of all natural products.

Experimental identification of metabolites is difficult, 
expensive, and time consuming. Recent advances in gas 
chromatography-mass spectrometry [10], liquid 
chromatography-mass spectrometry (LC-MS) [11,12], cap-
illary electrophoresis-MS [13,14], and nuclear magnetic 
resonance (NMR) spectroscopy [15] have enabled rapid and 
comprehensive analysis of numerous metabolites. However, 
analyzing the entire metabolome as part of a systems bio
logical approach remains impractical [16]. In particular, it is 

This review summarizes the in silico studies for reference-based and de novo metabolic pathway reconstruction problems. The availability of 
well-characterized enzymatic reactions determines which metabolic pathway reconstruction strategy we can choose to understand metabolic 
pathways in an organism of interest. The importance of the classification and structure-function relationships of enzymes is also discussed.
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list, some enzymes may have already been reported but may 
not be listed yet. Second, some enzymes may catalyze alter-
native reactions, but not all substrates and products may be 
listed exhaustively in the Enzyme List. Third, spontaneous 
reactions are not present in the Enzyme List.

Many reaction databases (such as BRENDA [21], KEGG 
[9], MetaCyc [22], and Rhea [23]) use the Enzyme List to 
reconstruct metabolic pathways and supplement with addi-
tional reactions to fill in the gaps. These reconstructed path-
ways can be represented as combined pathways that only 
describe chemical transformations without distinguishing 
between organisms (Fig. 2). For example, the glycolytic and 

difficult to structurally assess intermediates that are present 
at low concentrations. The experimental identification, puri-
fication, and characterization of enzymes also present chal-
lenges [17].

These challenges necessitate the use of in silico techniques 
for predicting the chemical structures of intermediate com-
pounds, putative reactions between compounds, and the 
enzymes responsible for reactions as comprehensively as 
possible. In this review, we provide an overview of recent in 
silico studies that have contributed to the field of metabolic 
pathway reconstruction.

Classification of enzyme functions
The naming of enzymes is essential for the reconstruction 

of metabolic pathways. Challenges arise when the same 
name is given to different enzymes or the same enzyme is 
given more than one name, and both situations should be 
avoided where possible. For this purpose, some attempts 
have been made to classify enzymes according to their func-
tions. The first such attempt was based on the number of 
substrates and products involved in the reaction [18], classi-
fying enzymes into three reaction types: (1) A+B=C+D,  
(2) A=B+C, and (3) A=B. However, this classification sys-
tem did not become widespread.

The second system for enzyme classification was devel-
oped in 1958 and classified 659 enzymes into hydrolyzing 
enzymes, transferring enzymes, and others [19]. This system 
was later improved, with enzymes being sorted into six 
classes according to the type of reaction, and became the 
current classification scheme used for the Enzyme List of the 
Nomenclature Committee of IUBMB (NC-IUBMB) [20]. In 
this system, each enzyme is given a unique four-digit code, 
the Enzyme Commission (EC) number, in which the first, 
second, and third digits represent a hierarchical classifica-
tion of enzymes (referred to as class, subclass, and sub-
subclass, respectively) (Fig. 1). The third edition of the 
NC-IUBMB Enzyme List was printed in 1992, comprising 
over 850 pages. Further printed versions were deemed unfea-
sible, not only because of the large number of pages required, 
but also because the data quickly become out of date. This 
led to an online version, ExplorEnz [8], which is the pri-
mary repository for all enzymes classified by the IUBMB. 
ExplorEnz accepts proposals for the addition of new enzymes 
or the modification of existing entries. Newly approved 
enzymes are regularly made public at http://www.enzyme- 
database.org/newenz.php.

Reference-based metabolic pathway reconstruction
Collective use of the Enzyme List enables the reconstruc-

tion of metabolic pathways. However, missing reactions are 
an issue for several reasons. First, the Enzyme List only 
contains enzymes that have been fully characterized experi-
mentally. Because it is difficult to automatically update the 

Figure 1 Hierarchical classifications of enzymes by the NC- 
IUBMB Enzyme List. Enzymes are given IDs, namely the Enzyme 
Commission (EC) numbers, consisting of four digits connected by dots 
(e.g., EC 1.1.1.1). The first digit represents one of the six classes, 1. 
oxidoreductases, 2. transferases, 3. hydrolases, 4. lyases, 5. isomerases, 
and 6. ligases. The second and third digits represent more detailed 
classification. The classification criteria are different dependent on the 
classes.
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with the amino acid sequences of the responsible enzyme 
proteins. Putative enzyme genes may be predicted based on 
orthology, i.e., homologous sequences descended from a 
common ancestral sequence. In other words, EC numbers 
may be predicted on the basis of amino acid sequence simi-
larity. With a comprehensive set of putative enzyme genes in 
an organism of interest, genes can be assigned to their appro-
priate positions in the pre-defined reference pathways based 
on orthology [25–34].

There have been some attempts at automated reference- 
based metabolic pathway reconstruction at the genome-wide 
scale. For example, MetaCyc provides reconstructed path-
way from BioCyc, a collection of organism-specific path-
ways [22], and the KEGG database provides organism-
specific pathways for complete genomes. Their reconstruction 
processes are based on ortholog assignments derived from 
best hits to the complete genomes of various organisms 
using sequence similarity search programs such as BLAST, 
followed by manual curation [9,22]. KEGG also provides an 
automated web-server named KEGG Automatic Annotation 
Server (KAAS: http://www.genome.jp/tools/kaas/), enabling 
reference-based metabolic pathway reconstruction on demand 
[35]. The model SEED, which uses a table-like represen
tation of functionally related enzyme genes called a sub
system, automates reconstruction using a completed genome 
sequence [36]. More recently, improved tools with greater 
efficiency and interpretability have been developed, includ-
ing MG-RAST [37] and MEGAN [38] for pathway recon-
struction and analysis of species distributions in large meta
genomic data, MAPLE [39] for easy interpretation of the 
availability of metabolic functions, and BlastKOALA and 
GhostKOALA [40] for efficient ortholog assignments using 
reduced sets of reference genome data. These programs can 
be used for gaining insight into the metabolic potential of 
various environments.

An increasing number of new genome-scale metabolic 
models have been reconstructed, indicating the value of 
reference-based metabolic pathway reconstruction [41]. 
Experimental validation remains necessary to ensure the 
validity of the metabolic models, and improvement of the 
models enables more precise prediction of physiological 
characteristics. This in silico approach represents an attempt 
at assigning well-defined reactions to putative enzyme genes 
(or enzyme proteins), i.e., predicting EC numbers from 
sequence similarity. High sequence similarity alone, how-
ever, is not thought to be sufficient to assign an EC number, 
as a minor sequence change may alter enzyme activity or 
specificity (e.g., stilbene synthase and chalcone synthase 
[42]) and enzyme proteins may be bifunctional (e.g., ribulose 
1,5-bisphosphate carboxylase/oxygenase [43] and luciferase 
[44]). Thus, incorporation of other types of evidence is nec-
essary to reconstruct more accurate metabolic models, such 
as gene orders, phylogenetic profiles, and gene expression 
profiles [32,33,45–50].

tricarboxylic acid (TCA) cycle pathways are present in 
human cells, but the gluconeogenesis pathway is not. Never-
theless, these three pathways share some common com-
pounds and thus can be combined when we only consider 
chemical transformations. Such combined pathways are 
referred to as “reference pathways” [24].

These reference pathways are useful when comparing 
metabolic models in different organisms (Fig. 2(c)). Most 
(but unfortunately not all) EC numbers can be associated 

Figure 2 Reference-based metabolic pathway reconstruction. Cir-
cles and rectangles represent metabolic compounds (metabolites) and 
enzymes, respectively. (a) Substrate-product relationships in enzymatic 
reactions, which can be derived from the NC-IUBMB Enzyme List. (b) 
The reference pathway is reconstructed by connecting reactions with 
common metabolites. The reference pathway only concerns chemical 
transformations of metabolites, and does not take into account any dif-
ferences in specific organisms. In other words, the reference pathway is 
a combined pathway taken from many organisms. (c) An organism-
specific pathway is derived by mapping putative enzymes in the 
genome of interest. In order to achieve this goal, it is necessary to find 
known enzyme proteins that are similar to the putative enzyme pro-
teins.
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transformation rules based on the actual activity in soil [58]. 
PathPred [56] deals with biosynthesis of plant secondary 
metabolites as well as biodegradation of xenobiotic com-
pounds. It applies a similarity search against the KEGG 
database to prioritize intermediates similar to known com-
pounds.

A common strategy of these studies is to limit the number 
of chemical transformation rules. It is generally known that 
every specific pathway, such as biodegradation of xenobiotic 
compounds, primarily follows its own specific chemical 
transformation rules [59]. This enables a computational 

De novo metabolic pathway reconstruction
Reconstructed pathways are inherently incomplete due to 

the lack of experimentally identified enzymes and metabo-
lites. There may be gaps (missing reactions) between known 
reactions even in central metabolic pathways. These missing 
reactions may lead to erroneous interpretations during meta-
bolic analysis. In addition, most natural products are pro-
duced in only a subset of organisms. Such natural product 
pathways are mostly unknown, as previously explained. In 
such cases, reference-based metabolic pathway reconstruc-
tion is not possible.

This necessitates de novo metabolic pathway reconstruc-
tion, i.e., the prediction of reactions based on the chemical 
structures of metabolites. These methods are classified into 
two categories: the first predicts pathways by generating 
intermediate compound structures where necessary (Fig. 3), 
and the second uses pre-defined chemical compounds and 
predicts pathways by filling in the reactions between them 
(Fig. 4).

We refer to the first category (Fig. 3) as belonging to a 
“compound-filling framework”. The computer programs in 
this category accept a query compound and iterate the pro-
cess of automatically generating the chemical structures of 
the next compound(s) in the predicted pathway. A similar 
problem has been tackled in the field of synthetic organic 
chemistry [51], where computer programs assist in design-
ing strategies for synthesizing compounds of interest [52]. In 
both metabolic pathway reconstruction and synthetic organic 
chemistry, analysis is based on pre-defined chemical trans-
formation rules, but the collection of the rules differs 
between the two fields. For example, carboxylic halide or 
carboxylic anhydride is usually used in acylation reactions 
in synthetic organic chemistry, whereas carboxylic thioester 
is mainly used in acylation reactions in metabolic pathways. 
Thus, the pre-defined chemical transformation rules and 
their prioritizations are the keys for effectively predicting 
pathways.

Several methods for de novo prediction of metabolic path-
ways using a compound-filling framework have been pub-
lished [53–55], and more recently, freely available web 
servers have been developed [56,57]. Each defines its own 
chemical transformation rules that are repetitively applied to 
the compounds, resulting in de novo metabolic pathways. 
Compounds generally have more than one substructure that 
can undergo chemical transformation, and the number of 
such substructures increases as compounds become larger. 
Additionally, as synthetic pathways become longer, the num-
ber of possible intermediates expands in a combinatorial 
explosion. These methods, however, avoid such difficulties 
by their own design.

The Pathway Prediction System (PPS) [57] focuses on 
biodegradation of xenobiotic compounds in soil and pro-
vides an interactive interface that enables users to select only 
the reaction of interest. It also prioritizes some chemical 

Figure 3 Compound-filling framework of de novo metabolic path-
way reconstruction. (a) The input is the chemical structure of a xeno
biotic compound for a biodegradation prediction, or a final product 
compound for a biosynthesis prediction. (b) Pre-defined chemical trans-
formation rules are applied so that the structures of intermediate com-
pounds are automatically generated. (c) This process is iterated until it 
reaches to a known chemical compound.
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represented by a chemical fingerprint (a binary vector that 
describes the chemical characteristics of a compound) or a 
chemical descriptor (an integer vector that describes the 
chemical characteristics of a compound) [67]. A compound 
pair consisting of a substrate and a product is represented by 
the feature vector generated from the chemical fingerprints/
descriptors of the substrate and the corresponding product. 
The feature vector is designed to extract conserved and 
altered features during the putative reaction and is used for a 
reaction-similarity learning process based on the support 
vector machine (SVM).

The use of chemical fingerprints/descriptors allows for 
rapid searching of molecules from a vast number of mole-
cules in a database, and this technique has been especially 
utilized for pharmaceutical purposes. For the purpose of met-
abolic pathway reconstruction in the reaction-filling frame-
work, existing eight fingerprints (CDK fingerprint, CDK 
extended fingerprint, CDK graph only fingerprint, CDK 
hybridization fingerprint, E-state fingerprint, Klekota-Roth 
fingerprint, MACCS fingerprint and PubChem fingerprint) 
[67] were used for performance comparison, however, no 
significant difference was observed among them [66]. This 
problem may be caused by the nature of binary vectors (1 for 
presence or 0 for absence), which is not suited for metabolic 
pathway reconstruction. For example, in the case of a reac-
tion where a carboxylate group in the substrate turns into an 
amide group in the product, if the substrate has only one 
carboxylate group and the product has only one amide group, 
then the feature vectors of the reaction can adequately 
describe the chemical change. Such binary vectors, however, 
can only describe the presence or absence of functional 
groups and not the number of such groups; thus, they are not 
suitable for describing reactions where the substrate has 
more than one carboxylate group and/or the product has 
more than one amide group.

A type of chemical descriptor termed KEGG Chemical 
Function and Substructures (KCF-S) was designed to tackle 
this issue and improve de novo metabolic pathway recon-
struction [68]. This integer vector counts the numbers of 
substructures, including various functional groups. KCF-S 
defines substructures based on seven attributes (atom, bond, 
triplet, vicinity, ring, skeleton, and inorganic), imitating the 
terminology and process of recognizing substructures in 
organic chemistry or biochemistry. The most fundamental 
substructure attribute is referred to as the KEGG Atoms, 
which take physicochemical environmental properties into 
account and are able to discriminate between important 
functional groups, such as aldehyde and carboxylate. This 
new chemical descriptor is more efficient than previously 
existing fingerprints and descriptors for de novo metabolic 
pathway reconstruction and has exhibited clear improve-
ments in predictive performance [68].

Another attempt to improve de novo metabolic pathway 
reconstruction involves a method for distinguishing regio-
isomers (positional isomers), information that is critical for 

reduction to some extent. Nevertheless, the computational 
costs of the compound-filling framework can become pro-
hibitive, and it is not suitable for predicting pathways for 
several compounds simultaneously.

We refer to the second category (Fig. 4) of de novo path-
way reconstruction as belonging to a “reaction-filling frame-
work”, which uses many pre-defined chemical compounds 
and predicts pathways by filling in reactions between them. 
This approach is becoming more widely available owing to 
the availability of databases containing increasing numbers 
of chemical compounds for which the chemical structures 
have been identified. The database can be screened to search 
for candidate compounds with values that are obtained 
experimentally, such as accurate mass [60,61].

The reaction-filling methods can be classified into those 
that depend on pre-defined chemical transformation rules 
[62,63] and those that do not [64,65]. These methods face 
what can be regarded as a problem of enzymatic reaction-
likeness, i.e., whether the given pairs of metabolites can be 
chemically interconverted by individual enzymatic reactions. 
These methods suffer from huge computational costs, and 
large-scale prediction is not computationally feasible.

Recently, a method was published to predict the presence/
absence of enzymatic reactions between compounds; this 
method is computationally efficient enough to deal with 
tens of thousands of metabolites at a time using supervised-
learning [66]. In this method, each chemical compound is 

Figure 4 Reaction-filling framework of de novo metabolic path-
way reconstruction. (a) The input is a set of chemical structures of 
metabolites. (b) Putative reactions (that are not known yet) are pre-
dicted between the input compounds.
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sub-subclass, designated by the third digit of the EC number 
(Fig. 1). The first method to automatically suggest a list of 
corresponding EC sub-subclasses was devised in 2004 and 
used a template-matching method of chemical transforma-
tion rules between known and query substrate-product pairs 
[74]. This prediction program, named E-zyme, was later 
improved in terms of both accuracy and coverage by apply-
ing multi-layered partial template matching and a weighted 
major voting scheme [75]. Note that this prediction of EC 
numbers is based not on amino acid sequence similarity but 
on chemical structure similarity. Several other methods to 
predict EC numbers from chemical structures have been 
subsequently developed [76–83], including EC-BLAST [83], 
which allows one to search for enzymatic reactions with EC 
numbers that are similar to the query reaction based on bond-
change, reaction-center, or reaction-structure similarity.

Enzyme classification and enzyme protein similarity
Enzyme classification by EC number is done according to 

a hierarchical structure (Fig. 1), and thus it is sometimes 
used as a measure of enzymatic reaction similarity. How-
ever, the purpose of the EC number system is to give unique 
names to enzymes, and therefore it is not appropriate to say 
that enzymes are dissimilar simply because their EC num-
bers are different. For example, as illustrated in Figure 6(a), 

appropriate interpretation of metabolome data [61] but 
cannot be distinguished by many chemical fingerprints/
descriptors. A chemical graph alignment algorithm was 
applied to detect the positions and numbers of chemical 
changes between two chemical compounds and exhibited 
better performance in distinguishing regioisomers [69].

Toward better prediction of reaction sequences in 
metabolic pathways

Reactions in metabolic pathways do not occur at random: 
reaction sequences exhibit many conserved patterns, termed 
reaction modules [70,71]. The concept of “enzymatic 
reaction-likeness” can be generalized as “k-step reaction 
sequence-likeness”, predicting how many (k) reactions are 
required to convert the starting compound into the goal com-
pound [72]. Intermediate compounds are also predicted by a 
recursive procedure using step-specific classifiers (that pre-
dict the n-th compounds in the k-step reactions) based on 
chemical substructures. This resembles the compound-filling 
framework but is actually based on a reaction-filling frame-
work because the intermediate compounds are taken from a 
pre-defined set of compounds. The advantage of k-step reac-
tion sequence-likeness is the ability to predict the number of 
reaction steps between given pairs of compounds. Thus, 
combined with the compound-filling framework, this method 
would provide the computational efficiency necessary to 
consider unknown intermediates in the de novo metabolic 
pathway reconstruction.

Experimental annotation of metabolites using 
substrate-product relationships

The concept of substrate-product pairs has proven valu-
able to the experimental annotation of metabolites. Morreel 
et al. [73] assigned structures to the peaks derived from 
reversed-phase LC-negative electrospray ionization-MS pro-
filing of plants by considering retention time and mass dif-
ferences. This work demonstrated the potential of substrate-
product pairs to experimentally identify metabolites and the 
enzymes responsible for reactions.

Prediction of EC numbers from substrate-product 
pairs

Having assigned a substrate-product relationship, corre-
sponding enzyme genes may be predicted using two differ-
ent strategies. If at least one enzyme is already known to 
catalyze the corresponding reaction, its amino acid sequence 
can be used to search for a homologous enzyme in the 
organism (genome) of interest (Fig. 2). Where no enzyme 
is known to catalyze the corresponding reaction, chemical 
structure information must be used to predict the corre-
sponding enzyme (Fig. 5).

In general, similar reactions are present within each EC 

Figure 5 Prediction of enzymes from chemical structures. Differ-
ent from the reference-based metabolic pathway reconstruction, this 
process aims to predict enzymes where no enzymes have been identi-
fied so far. In order to achieve this goal, it is necessary to find known 
reactions (not proteins) that are similar to the putative reactions.
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erable numbers of enzymes in different EC sub-subclasses 
are more similar to each other than they are to other enzymes 
in the same EC sub-subclasses (Fig. 7). This reflects the 
widely known fact that EC classification and protein 3D 
structures are not well-correlated [84].

Prediction of enzyme proteins from substrate- 
product pairs

A number of methods have been proposed to assign EC 
sub-subclasses from chemical transformations, but they do not 
suggest catalytic enzyme gene/protein sequences. Recently, 
an extension of the E-zyme strategy was proposed to search 
for enzyme genes that catalyze the most similar reactions to 
those of the query substrate-product pair [85]. This method 
assesses enzyme specificity by scoring the substructures that 
are preserved in reactions catalyzed by orthologous enzymes, 

the amino acid sequence of the enzyme labeled EC 1.3.8.7 
is more similar to those of other EC 1.3.8 enzymes than to 
those of EC 1.3 enzymes belonging to other sub-subclasses. 
In such cases, it would be appropriate to use EC number as a 
proxy for enzyme similarity. However, there are many 
enzymes for which the EC hierarchy does not reflect enzyme 
similarity. For example, EC 1.14.13.39 enzymes are gener-
ally more similar to other oxidoreductases (EC 1 enzymes) 
than to other enzymes in EC 1.14 (Fig. 6(b)). Similarly, EC 
2.7.10.1 enzymes are generally more similar to non-transferase 
enzymes than to other transferases (EC 2 enzymes) (Fig. 
6(c)). EC 3.4.21.26 enzymes are generally less similar to 
other proteases (EC 3.4 enzymes) than to those in EC 3.4.21 
but are exceptionally similar to some proteases that are not 
classified in EC 3.4.21 (Fig. 6(d)), consistent with the NC- 
IUBMB’s statement that EC 3.4 enzymes remain inadequately 
covered [20]. These examples are not rare cases, as consid-

Figure 6 Smith-Waterman (SW) scores of enzyme proteins in different EC levels. The boxplot represents the minimum, the first quartile, the 
second quartile (median), the third quartile, and the maximum of SW scores derived from SSEARCH36 program with the default settings. (a) The 
“1.3.8.7” column shows the distribution of SW scores among the enzyme proteins that are given the annotation label “EC 1.3.8.7” in various organ-
isms in KEGG. The “1.3.8.*” column shows the distribution of SW scores between the enzyme proteins with the label “EC 1.3.8.7” against the 
enzyme proteins with the “EC 1.3.8.*” label (belonging to the EC 1.3.8 sub-subclass but are not given EC 1.3.8.7) in various organisms. The 
“1.3.*.*” column shows the distribution of SW scores between the proteins of “EC 1.3.8.7” against the proteins with the “EC 1.3.*.*” label (belong-
ing to the EC 1.3 subclass but not to EC 1.3.8 sub-subclass) in various organisms. The “1.*.*.*” column shows the distribution of SW scores 
between the proteins of “EC 1.3.8.7” against the proteins with the “EC 1.*.*.*”label (belonging to the EC 1 class but not to EC 1.3 subclass) in 
various organisms. The “*.*.*.*” column shows the distribution of SW scores between the proteins of “EC 1.3.8.7” against the enzymes that are not 
in EC 1 class in various organisms. The same procedures were conducted for (b) EC 1.14.13.39, (c) EC 2.7.10.1, and (d) EC 3.4.21.26.
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Concluding remarks
In this review, we briefly discussed the challenges involved 

in metabolic pathway reconstruction. Understanding what 
information is available is critical, as it determines poten-
tial strategies, i.e., reference-based or de novo. Additional 
research and development is still needed in order to predict 
enzymatic reactions from enzyme proteins and vice versa. 
Sequence homology and best-hit strategies are successful in 
many cases, but it must be remembered that a single amino 
acid mutation may alter enzyme activity and/or specificity. 
While some studies have attempted to analyze reaction 
similarities, methods remain insufficient for prediction of 
enzyme proteins from reactions alone. In order to under-
stand broad patterns in metabolism, information regarding 
enzymes and reactions must be effectively organized and the 
structure-function relationships of enzyme proteins must be 
thoroughly and systematically analyzed.
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Ontology to describe substrate-product pairs
Proteins, including enzymes, often consist of conserved 

partial structures, such as protein domains. Similarly, enzy-
matic reactions also consist of conserved partial reaction 
characteristics. For example, EC 5 (isomerases) includes intra-
molecular oxidoreductases (EC 5.3), intramolecular trans-
ferases (EC 5.4), and intramolecular lyases (EC 5.5), which 
share reaction characteristics with oxidoreductases (EC 1), 
transferases (EC 2), and lyases (EC 4), respectively. In order 
to organize the data according to these reaction character
istics, an ontology—the Enzymatic Reaction Ontology for 
Partial Information (PIERO) [86]—was recently developed. 
This ontology focuses on reducing reaction equations to 
substrate-product pairs and providing names to those pairs. 
Further improvement of this ontology would allow the 
substrate-product terminology to be used for building rela-
tionships between putative reactions that are not yet fully 
characterized and identification of corresponding enzyme 
proteins.

Figure 7 Comparison of SW scores between the enzyme proteins within the same EC sub-subclasses and in different EC sub-subclasses. Each 
circle represents a group of enzyme proteins having the same EC number in various organisms. The horizontal axis represents the median SW scores 
between proteins within the same EC sub-subclasses. The vertical axis represents the median SW scores against the proteins in different EC sub-
subclasses. The diagonal line represents where the SW scores in horizontal and vertical axes are the same. SW scores were derived from SSEARCH36 
program with the default settings.
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