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Purpose: Respiratory protective equipment is widely used in healthcare settings to protect clinicians whilst treating patients with 
COVID-19. However, their generic designs do not accommodate the variability in face shape across genders and ethnicities. 
Accordingly, they are regularly overtightened to compensate for a poor fit. The present study aims at investigating the biomechanical 
and thermal loads during respirator application and the associated changes in local skin physiology at the skin–device interface.
Materials and Methods: Sixteen healthy volunteers were recruited and reflected a range of gender, ethnicities and facial anthro
pometrics. Four single-use respirators were evaluated representing different geometries, size and material interfaces. Participants were 
asked to wear each respirator in a random order while a series of measurements were recorded, including interface pressure, 
temperature and relative humidity. Measures of transepidermal water loss and skin hydration were assessed pre- and post-respirator 
application, and after 20 minutes of recovery. Statistical analysis assessed differences between respirator designs and associations 
between demographics, interface conditions and parameters of skin health.
Results: Results showed a statistically significant negative correlation (p < 0.05) between the alar width and interface pressures at the 
nasal bridge, for three of the respirator designs. The nasal bridge site also corresponded to the highest pressures for all respirator 
designs. Temperature and humidity significantly increased (p < 0.05) during each respirator application. Significant increases in 
transepidermal water loss values (p < 0.05) were observed after the application of the respirators in females, which were most apparent 
at the nasal bridge.
Conclusion: The results revealed that specific facial features affected the distribution of interface pressures and depending on the 
respirator design and material, changes in skin barrier function were evident. The development of respirator designs that accommodate 
a diverse range of face shapes and protect the end users from skin damage are required to support the long-term use of these devices.
Keywords: respiratory protective equipment, skin health, goodness of fit, interface pressure, physiological response

Introduction
Since the outbreak of COVID-19, healthcare workers have been required to use respiratory protective equipment (RPE) 
for prolonged periods, for example a 12-hour shift which is often repeated over consecutive days. Altough the use of 
respirators minimises the risk of transmission of COVID-191 adverse skin reactions have been reported associated with 
their prolonged use, and there are reports of fitting issues which are shown to affect 42–97% of clinical personnel. 
A recent review reported that the skin damage detected in medical staff were predominantly located on the nasal bridge 
and cheeks, including pressure-induced damage, moisture-associated skin dermatitis and skin tears, all associated with 
RPE devices.2 In addition to the direct injury, skin irritation, itchiness and dry skin were commonly reported. Indeed, 
a cumulative effect of repetitive RPE usage was observed to increase the response rate of reactions, which could be 
associated with a decrease in skin tolerance over time. Unfortunately, these events do not represent a new occurrence. 
Indeed, skin damage from medical devices have been widely documented among patients and healthcare providers.3 In 
addition, there have been reports of ill-fitting RPE devices for particular sub-groups of the population who showed higher 
rates of adverse skin reactions, prior to the outbreak of the pandemic.4
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Correctly fitting RPE is critical for filtering efficiency that N95 or FFP3 respirators aim to provide. Indeed, it is 
important for efficient device function that there is no loss of seal at the face–respirator interface. However, creating an 
effective seal between the device and the face is challenging due to the variability in face shape and the limited number 
of geometries, sizes, and materials in the current commercial respirator market. For example, the standards (EN-149) by 
which many respirators are manufactured relies on a panel of anthropometric features derived from a white male cohort.5 

Thus, the current design template provides limited diversity in terms of size and geometry, and it is often unable to 
accommodate specific facial shapes and asymmetry. As a result, several studies have reported that females and those 
from Black and Asian ethnic minority groups have a lower success rate in respirator fitting.6 Thus, there is a critical need 
to improve the design criteria of RPE to provide a range of respirators to accommodate the user population. This could 
provide a means to address the root cause of ill-fitting devices.

Individuals with poorly fitting RPE devices regularly over-tighten the straps, resulting in high non-uniform pressures, 
particularly at bony locations of the face, such as the bridge of the nose.7 This highlights the importance of an effective 
fitting process prior to use.

Recent studies have examined the relationship between facial dimensions and goodness-of-fit (GoF) in different sub- 
populations, identifying specific facial measures as predictors of fitting outcomes.8,9 However, this precludes generalising 
the findings to a wider population reflective of the healthcare workforce, which is characterised by gender and ethnicity 
diversity. In addition, there is limited knowledge of the association between GoF and markers of skin health, as result of 
RPE application. There are several measurement approaches to characterise the boundary between a device and the skin 
interface, and to monitor the skin response following application.10 These parameters include interface pressures, 
microclimate and skin physiology at the face–respirator interface. The combination of these measurements has been 
used to monitor tissue viability at the medical device interface, for example during the application of non-invasive 
ventilation masks (NIV).11 Indeed, it has been reported that prolonged pressure and excess moisture alone, or in 
combination, can compromise the integrity of the skin barrier.12

Recent studies investigated the effect on skin physiology and microclimate of a single-use respirator device of the 
type KN95 or KF94.13–15 Results showed changes in the skin barrier function and microclimate at specific facial 
locations such as the cheek, even after relatively short periods. An accumulation effect was also observed, with skin 
physiology parameters and temperature increasing over time, and returning to baseline levels after prolonged periods of 
non-use (>12 hours).13,14 Limitations of these studies include the fact that the nasal bridge was not included as 
investigation site, despite being a frequently reported site of RPE-related facial injuries.11 By contrast, Peko et al15 

investigated the contact force at the respirator interface at both nasal bridge and cheeks, with the latter subjected to 
a higher force. However, investigating a single respirator design precludes generalising findings to the variety of RPE 
devices that are used by the healthcare workforce. In addition, the aforementioned studies were conducted on single 
ethnic populations, such as Korean or White Caucasian, limiting the comparison between ethnic groups and not reflecting 
the diversity in ethnic background of the healthcare workforce population.6,16

This motivated the present study, which aimed to evaluate the biomechanical, thermal and physiology responses at the 
face–respirator interface following the application of four different RPE devices.

Materials and Methods
A randomized crossover design study with a cohort of health volunteers was used in the present study. The study follows 
the guidelines outlined in the Declaration of Helsinki.

Participants
A convenience sample of participants reflecting different genders and ethnic backgrounds was recruited from the local 
university population. Participant recruitment was conducted by means of poster advertisements and word of mouth. 
Exclusion criteria involved past or present skin conditions, including skin diseases or allergies. Written informed consent 
was obtained from each participant prior to testing. Ethics approval was granted by the University of Southampton Ethics 
Committee (FOHS-ERGO-61418).

https://doi.org/10.2147/MDER.S370142                                                                                                                                                                                                                               

DovePress                                                                                                                                     

Medical Devices: Evidence and Research 2022:15 242

Caggiari et al                                                                                                                                                         Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Test Equipment
Interface pressures were monitored using a commercial system (Mk III; Talley Medical, Romsey, UK), which incorpo
rated individual 18 mm diameter cells with a reported mean error of 12 ± 1% and repeatability of ±0.53 mmHg.17 

Microclimate at the device–skin interface was recorded using combined sensors (SHT75; Sensiron AG, Switzerland), 
sampling relative humidity and temperature at a frequency of 1 Hz. The sensors have a reported accuracy of ±0.5% RH 
and ±0.8°C, respectively.

Biophysical skin properties before and after respirator application were measured with an array of tools. This included 
the skin barrier function assessed using an open-chamber probe, measuring transepidermal water loss (TEWL) at 
a sampling frequency of 1 Hz (TM 300w, Courage & Khazaka Electronic GmbH, Germany).18 The moisture content 
of the stratum corneum (skin hydration) was also recorded using a probe assessing the dielectric constant of the skin at 
a depth of 10–20 µm (Corneometer, CM 825, Courage & Khazaka Electronic GmbH, Germany). Both probes were 
applied to the skin surface, ensuring gentle contact whilst recording.

A white light non-contact handheld scanner (GoScanner, Creaform) was used to capture 3D facial scans of each 
participant, prior to respirator application. The scanner has been shown to have a surface height error magnitude of up to 
0.33 mm, across 95% of the target surface.19

Respirators
Four single-use commercial FFP3 respirators, representing the most frequently supplied at regional hospital sites, were 
carefully chosen to reflect different geometries, sizes and material interfaces. Two respirators were characterised by 
a similar unvalved 3-panel foldable geometry, representing a small (R1) and a large (R3) size. By contrast, the other two 
respirators were characterised by an unvalved (R2) and a valved (R4) rigid shell geometry, respectively. The latter 
incorporated self-tightening straps (R4). For all respirators, participants were instructed to pull the bottom and top straps 
over the head, place the former around the neck, below the ears, and the latter on top of the head, according to 
manufacturer’s guidelines for application. For the respirator with self-tightening straps, participants were instructed to 
tighten them until they felt a balance between comfort and seal. Where relevant, participants were asked to mould the 
nosepiece to the shape of their nose and thereafter to cover the respirator completely with hands and exhale sharply. If air 
escaped, they were asked to readjust the respirator, tightening the straps where applicable.

Test Protocol
A test protocol involving two 90-minute sessions was performed at the Biomechanics Testing Laboratory at the Clinical 
Academic Facility of the Southampton General Hospital, where ambient temperature was maintained at 20°C±2°C and 
relative humidity ranged between 42% and 57%. In all testing sessions, participants were required to attend with clean 
washed skin and have, where appropriate, shaved at least 48 hours before the session. Demographic data including age, 
height, weight, gender and ethnic background were collected at the beginning of the first visit. In addition, a facial scan 
was taken for each participant (pre-respirator application).

The two testing sessions were conducted at least 48 hours apart with a random allocation of two respirator models at 
each testing session. During the corresponding testing sessions, each participant was asked to wear two respirator models, 
as instructed per manufacturer’s guidelines, for a period of 20 minutes in accordance with the test protocol depicted in 
Figure 1. The test protocol was modified during the respirator application phase for half of the cohort, to compare static 
postures (protocol 1) and activities during respirator donning (protocol 2).

A series of baseline measurements of TEWL and skin hydration were performed at two investigation sites, namely the 
nasal bridge and the right cheek bone, both of which are contacted by RPE devices and have been associated with 
respirator-related skin damage.20 In addition, the right pre-orbital area was measured to represent an unloaded control 
site, selected to be a minimum of 30 mm distal to the site of respirator loading. Participants then donned one of the 
respirator models and were asked to adopt a supine posture while breathing normally. After 10 minutes, three interface 
pressures averaged over a 2-minute period were recorded at each investigation site, with a pressure sensing cell placed at 
the face–respirator interface. A combined microclimate sensor was then placed at the respirator–skin interface, where 
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Figure 1 Schematic depicting the two testing protocols and describing the test procedures involved.
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temperature and humidity were recorded over a 1-minute period. Following the 20-minute period of application, each 
participant was asked to rate their level of comfort on a 10-point visual analogue scale, with 0 representing no discomfort 
and 10 extreme discomfort.21 This was subsequently followed by a 20-minute refractory period with no respirator, after 
which post-recovery values of TEWL and hydration were recorded.

TEWL was recorded for a period of approximately 1 minute, sufficient to attain equilibrium, with the mean of the last 
10 values used as the output parameter. By contrast, assessment of hydration involved the mean of 5 consecutive 
measures. All measurements were then repeated for the second randomly allocated respirator model.

During test protocol 2, the participants were asked to perform seven different tasks whilst wearing the respirator, 
which are used during the fit2fit quantitative fit test.22 These included normal breathing, deep breathing, head side to 
side, head up and down, bending over, talk out loud, and normal breathing, each for a 1-minute period. These exercises 
emulate a full range of facial movements. During each movement, the combined microclimate sensor recorded 
interface temperature and humidity. It was not possible to measure interface pressures reliably during these dynamic 
movements.

Data Processing and Analysis
3D facial scans of each participant were retrieved through the proprietary software (VXelements, Createform), subjected 
to a cleansing process to eliminate unnecessary elements, eg, background, and converted to binary.stl files. These were 
then imported into a modified version of the python module AmpScan23 to estimate five facial anthropometrics, namely, 
facial length, 1/3 facial length, alar and bio-ocular width, and dorsal nasal length. For each measurement, two appropriate 
points were selected by the same investigator, and their distance was calculated on the facial scan.

Statistical analysis was performed using IBM SPSS statistics V22 (IBM Corp, Armonk, NY, USA). Data from each of 
the test parameters were examined for normality using Shapiro–Wilk tests. Parametric descriptors (mean ± SD) were 
found to be appropriate for the analysis of TEWL and hydration, interface pressure, microclimate and facial anthropo
metrics. Non-parametric descriptors were used for subjective comfort. Pearson correlation was used to evaluate associa
tions between pressure values and facial dimensions. Since interface pressures were collected only during static postures 
while respirators were applied, data are presented only for protocol 1.

A paired t-test was performed to assess the difference between test protocols and the effects of respirator types on the 
outcome measures. This included the differences in macroclimate at respirator interface compared to ambient conditions, 
for all respirators. It was also performed to assess variations in TEWL and hydration, pre- and post-respirators 
application, and following the refractory period.

As opposed to pressure, microclimate, TEWL and hydration data are presented for both protocols. The analyses 
involving differences in TEWL and hydration with respect to gender and ethnicity will be presented for the entire cohort 
of sixteen participants. For all outcomes, the statistical significance level was set at 5% level (p ≤ 0.05).

Results
Participants
Sixteen healthy participants (eight males and eight females) were included in the study, equally divided between test 
protocols 1 and 2 (Table 1). The former included five males and three females, aged between 29 and 40 years (mean = 36 
years) with a mean height and weight of 1.70 ± 0.1 m and 71.0 ± 24.1 kg, respectively. The corresponding BMIs ranged 
between 17 and 35 kg/m2. By contrast, protocol 2 included three males and five females, aged between 20 and 34 years 
(mean = 22 years), with an average height, weight, and BMI approximately equivalent to participants in protocol 1 
(Table 1). Both protocols included participants with a range of ethnicities.

Interface Pressure
Results revealed that the pressure values at the bridge of the nose were higher than the corresponding values at the cheek 
for all four respirators, with significant mean differences ranging between 46 and 77 mmHg (p < 0.05). A statistically 
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significant (p < 0.05) difference between R1 and R3 was found in the pressure values at the nasal bridge. These 
respirators correspond to the unvalved 3-panel foldable design.

When the interface pressures at the nasal bridge were compared against the alar width of participants, the resulting 
associations yielded a statistically significant negative correlation (p < 0.05), for three of the respirator designs (Figure 2). 
The wider noses resulted in the lower pressure values as indicated in Figure 2.

Table 1 Summary of Demographic Data of Participants Involved in Each Protocol

Protocols Participants Gender Ethnicity Age (y) Height (m) Weight (kg) BMI (kg/m2)

Protocol 1

1 Male Black African 31 1.74 76.6 25.3
2 Male Black African 40 1.68 60.9 21.6

3 Male Asian 38 1.82 79.9 24.1
4 Male Asian 36 1.77 81.1 25.9

5 Male White Caucasian 37 1.85 119.0 34.8

6 Female White Caucasian 35 1.55 49.0 20.4
7 Female Asian 39 1.56 41.5 17.1

8 Female Asian 29 1.59 60.5 23.9

Mean values 35.6 (±3.9) 1.70 (±0.1) 71.1 (±24.1) 24.1 (±5.2)

Protocol 2

1 Female White Caucasian 21 1.62 68.0 25.9
2 Female White Caucasian 20 1.76 76.2 24.6

3 Female White Caucasian 21 1.72 68.8 23.3
4 Male Mixed 21 1.76 89.1 28.8

5 Male White Caucasian 20 1.82 78.7 23.8

6 Male White Caucasian 20 1.72 72.5 24.5
7 Female Mixed 20 1.62 72.2 27.5

8 Female Black African 34 1.66 66.8 24.2

Mean values 22.1 (±4.8) 1.71 (±0.1) 74.0 (±7.3) 25.3 (±1.9)

Figure 2 Relationship between interface pressures recorded at the nasal bridge and alar width, for all the respirators. R1 and R3 correspond to the unvalved 3-panel 
foldable design, R2 and R4 are characterised by a rigid shell geometry.
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Temperature and Humidity
Results revealed that during respirator application the skin interface had a mean temperature of between 32°C and 35°C, 
and to a relative humidity of between 68% and 77%, for both protocols (Table 2). When compared to the corresponding 
ambient conditions, the differences were statistically significant (p < 0.05). No differences were found between respirator 
designs or test protocols. It is of note that the ambient humidity in protocol 1 was higher than in protocol 2, but the 
resulting relative humidity at the respirator interface was approximately equivalent.

TEWL and Hydration
Results showed no statistically significant differences between the protocols for TEWL and hydration, corresponding to all the 
respirators. Table 3 summarises the TEWL absolute values collected at both test sites pre- and post-respirator application and 
following the refractory period. TEWL values were higher at the nasal bridge compared with the baseline, which were 
statistically significant (p < 0.05) for two of the respirator models during protocol 1 and three models in protocol 2. Differences 
in the magnitude were relatively small, particularly in protocol 1. By contrast, in protocol 2, R2 and R4, which are both 
characterised by a rigid shell, yielded the highest increase, of 9.3 and 4.7 g/h/m2, respectively. Following the refractory period, 
TEWL at the nasal bridge reduced to values similar to baseline, indicating a partial or full recovery of the skin barrier function. 
There was also an increase in TEWL values at the cheek following respirator application, with differences varying between 
respirator designs and test protocols (Table 3). Altough following the refractory period the TEWL reduced to values close to 
baseline for protocol 2, they remained significantly higher (p < 0.05) for R1 and R4, in protocol 1. TEWL values recorded at 

Table 2 Summary (Mean (±SD)) of Microclimate for Both Ambient and Respirator in situ Conditions, for 
All Respirators and Testing Protocols

Temperature [°C] Humidity [%]

Respirators Ambient Respirator in Situ Ambient Respirator in Situ

Protocol 1

R1 22.4 (±1.9) 33.3 (±1.5)* 56.9 (±6.4) 73.4 (±7.1)*
R2 22.6 (±1.9) 33.8 (±1.1)* 57.1 (±7.7) 72.8 (±4.5)*

R3 22.4 (±1.9) 34.2 (±1.2)* 54.4 (±5.3) 68.2 (±3.3)*
R4 22.9 (±1.7) 33.0 (±1.8)* 54.5 (±6.3) 72.2 (4.5)*

Protocol 2

R1 24.0 (±2.0) 32.7 (±1.0)* 42.2 (±7.2) 76.6 (±7.1)*
R2 24.9 (±1.8) 33.9 (±0.8)* 46.5 (±5.0) 75.6 (±4.4)*

R3 24.1 (±1.5) 32.3 (±1.2)* 45.4 (±5.1) 72.8 (±3.5)*

R4 23.9 (±2.9) 34.6 (±0.6)* 48.6 (±7.1) 72.7 (±6.5)*

Note: *Indicates a statistically significant differences compared with ambient measures (p<0.05).

Table 3 Summary (Mean ±(SD)) of TEWL Values, in g/h/m2, Collected at the Nasal Bridge and Right Cheek, Pre- and Post-Respirator 
Application, and Post Refractory Period

TEWL [g/h/m2]

Nasal Bridge Right Cheek

Respirators Baseline 
(B)

Post Respirator 
(PR)

Post Refractory Period 
(PRP)

Baseline 
(B)

Post Respirator 
(PR)

Post Refractory Period 
(PRP)

Protocol 1

R1 19.2 (±3.2) 18.7 (±3.1) 19.3 (±4.6) 19.0 (±7.2) 21.0 (±7.2) 22.1 (±7.8)*

R2 19.8 (±2.7) 23.7 (±4.2)* 19.6 (±4.6) 19.2 (±6.8) 20.1 (±7.3) 22.8 (±9.2)

R3 19.6 (±5.1) 21.4 (±4.3) 18.3 (±5.5) 20.6 (±8.2) 23.7 (±7.6)* 22.1 (±8.3)

R4 19.7 (±4.8) 21.9 (±4.8)* 19.0 (±4.4) 20.7 (±7.8) 23.9 (±8.3)* 23.9 (±8.4)*

Protocol 2

R1 19.0 (±3.5) 22.0 (±3.9)* 18.5 (±3.3) 22.1 (±3.6) 22.3 (±2.6) 23.6 (±3.6)

R2 24.6 (±7.8) 33.9 (±9.8)* 22.3 (±6.0) 21.9 (±3.1) 24.5 (±2.2)* 21.3 (±9.0)

R3 20.4 (±6.8) 21.1 (±3.7) 20.2 (±4.4) 22.4 (±2.8) 23.4 (±2.5) 22.2 (±3.1)

R4 20.8 (±5.2) 25.5 (±5.2)* 20.3 (±8.7) 23.8 (±4.1) 23.1 (±2.7) 23.4 (±3.3)

Note: *Indicates a statistically significant differences compared with baseline (p<0.05).
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the control site following respirator application and refractory period did not show significant differences with respect to the 
baseline values (data not shown).

Results also showed a significant increase in skin hydration at both nasal bridge and cheek sites, following the 
application of R2 and R4 in protocol 1 (data not shown). A statistically significant increase at the cheek was also 
recorded for R3. By contrast, in protocol 2 only R2 demonstrated a significant higher value at the nasal bridge when 
compared to the baseline (p < 0.05). Analysis of post-refractory period showed statistically significant higher values at 
the cheek for all respirators used in protocol 1 (data not shown). Hydration values at the control site showed a statistically 
significant increase, in three of the respirators during protocol 1 (p < 0.05). By contrast, protocol 2 did not show any 
significant changes in control site (p > 0.05).

Closer examination of the data collated from both protocols revealed gender-specific changes in TEWL and hydration 
(Figure 3A and B). Results showed that the percentage changes in TEWL were statistically higher for the females for R2 
and R3, with differences in excess of 20%. By contrast, there was a minimal difference between genders following the 
application of R4 (p > 0.05). The reverse trend was revealed with skin hydration at the cheek, with higher changes 
associated to male participants with differences ranging from 1% to 36% (Figure 3B). Statistical analyses revealed 
significant differences corresponding to R1 and R2 (p < 0.05).

Perceived Comfort
R2 and R4, which are both rigid shell models, produced the lowest comfort score across the participants with median 
values of 6.0 and 5.0, respectively. Most of the individuals expressed a score equal to or greater than 5 for both 
respirators. By contrast, only a few individuals reported these values for R1 and R3, which showed a comfort score equal 
to 4.0. There was no statistically significant difference in subjective comfort score between the two protocols, for three 
respirators (p > 0.05). Closer examination of the data revealed a statistically significant lower comfort in the female 
group for R2 (p < 0.05).

Figure 3 (A) TEWL percentage increments at the nasal bridge for each of respirators in both protocols with respect to gender. (B) Skin hydration percentage increments at 
the cheek for all respirators with respect to gender. R1 and R3 correspond to the unvalved 3-panel foldable design, R2 and R4 are characterised by a rigid shell geometry. 
*Indicates a statistically significant difference (p<0.05).
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Discussion
The present study used an established array of parameters to investigate the biomechanical and thermal load (pressure 
and microclimate) associated with respirator application. The corresponding changes in the skin physiology were 
monitored pre- and post-respirator application to evaluate changes in skin barrier function (TEWL) and hydration. 
Four respirators reflecting a range of different design principles were tested using two test protocols (Figure 1). The 
results revealed that specific facial features affected the distribution of interface pressures and depending on the respirator 
design and material, changes in skin barrier function were evident, which were gender dependent. These changes were 
largely recovered following a period of respirator removal.

Results revealed that the nasal bridge is the site exposed to the highest mean interface pressures (>70 mmHg), for all 
respirators. This corresponds to the typical location of RPE-related facial injuries reported in the literature.16,24 Indeed, 
this location has minimal soft tissue coverage, creating a point of limited soft tissue conformity at the device interface. It 
also represents a site of limited tolerance to mechanical loads, where skin is deformed against bone and cartilage sub- 
dermal structures. Direct comparison with previous studies is limited by the nature of the pressure sensing device. In 
a recent study, Peko et al15 investigated the contact force at both the nasal bridge and cheeks. However, as opposed to our 
findings, they reported that cheeks were subjected to a higher force.

Our results also show a high degree of variability in the pressure values, particularly evident at the nasal bridge, for 
all respirators. This could be explained by the inability of the respirators to accommodate the considerable inter- 
individual differences in face and nose shapes. Indeed, a recent review reported an association between gender- and 
ethnicity-based facial anthropometric differences and RPE performance,6 with specific facial parameters able to predict 
fitting outcomes in sub-populations.8,9

To the authors’ knowledge, there are no previous studies that explored the relationship between facial measures and 
interface pressure, resulting from respirator application. Indeed, our results showed an association between pressures at 
the nasal bridge and alar width (p < 0.05), with the wider noses resulting in lower interface pressures, as depicted in 
Figure 2. These geometric findings correspond to the contact mechanics between the deformable mask and the bony 
prominence of the nose, where a narrow alar shape creates a focal point for load over the nasal bridge. By contrast, 
a wider, flatter nose will create contact on the sides of the nose and cheeks, offloading the nasal bridge where masks 
cannot conform to the geometry of the face. The different design of respirators can also contribute to the response to 
pressure. Indeed, a proportion of respirator models include a flexible aluminium or steel nose clip, which can affect the 
pressure distribution over the nasal bridge. This is reflected in our results, which showed a statistically significant (p < 
0.05) difference in the pressure values at this site, between R1 and R3, which correspond to the unvalved 3-panel foldable 
design with steel nose clip but are of different sizes. Closer examination of the data showed that the wider noses were 
associated with non-Caucasian male participants. Despite increased awareness of ethnicity- and gender-based correla
tions between facial geometries and RPE fit, literature reveals a limited number of studies depicting a correlation between 
nose width and RPE performance.

Microclimate conditions at the interface between the skin and respirator revealed that temperature and humidity values 
were 8°C and 15% higher than the ambient conditions, resulting in values in excess of 32°C and 68%, respectively. These 
findings reflect the results from a recent study,15 where significant changes in microclimate were found after 2-hour period of 
application of a single-use respirator. Our findings also shows that, even during a static posture, all respirator models yielded 
an increase in temperature and humidity to values that have a detrimental effect on the skin.25 Indeed, it is acknowledged that 
high temperature and excessive moisture lower the skin tolerance to mechanical load, increasing the risk of tissue damage,26 

specifically at anatomical sites such as the bridge of the nose. In addition, local relative motion between the respirator and 
skin as a result of specific activates, such as speaking, causes rubbing of the RPE against the skin, which coupled with an 
accumulation of moisture will create an increase in frictional forces at the skin interface.27 Excessive accumulation of 
moisture might also impact on the fitting of respirators, compromising their efficacy.28 By implication, interface materials 
influence the skin conditions, contributing to lowering its tolerance.

Literature reveals a limited number of studies investigating changes in the skin barrier function following 
prolonged application of RPE devices.13,14,29 Previous results reported an increase in both TEWL and skin hydration 
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after RPE application, of a similar magnitude to the present study (Table 3), albeit at varying periods of application 
ranging from 20 minutes to 8 hours. However, these studies did not investigate the skin at the nasal bridge, which has 
been shown to represent a vulnerable site during respirator application.16 In addition, limited analysis exists in 
evaluating the effects of gender and ethnicity. Our study revealed greater changes in the skin barrier function at the 
nasal bridge for females, for R2 and R3 (Figure 3A). The former model (R2), which corresponded to a rigid shell 
design, particularly affected the changes in TEWL, where values were significantly higher than the other three 
respirators across the female cohort. By contrast, for R1 and R2, males had higher hydration values with no 
significant differences between respirator models (Figure 3B). Based on the findings of this study, there is a need 
to evaluate the performance of RPE devices with consideration of gender and ethnic background of users. Indeed, our 
findings demonstrated that both characteristics can influence the biomechanical and physiological responses of the 
skin at the respirator interface. The design principles also influenced these responses, with rigid shell designs yielding 
the highest TEWL increase. In addition, facial measurements, as for example the alarwidth, appear to have an 
association with the distribution of load, indicative of the quality of the fit. Indeed, a recent review by the authors 
demonstrated a variance in anthropometric measurements, with female and specific ethnic groups showing smaller 
facial dimensions and a corresponding lower success rate in fit testing.6 In addition, the current fit panels are not able 
to accommodate those individuals with extremes of BMI.30 Indeed, inthose with low BMI bony prominences can 
create a less conforming surface and gapping, which limits the creation of an airtight seal.

Therefore, we strongly suggest that a collaboration with manufacturers is required to identify new designs and create 
standards which accommodate face shapes of different genders and ethnicities typically encountered in healthcare 
settings.

Limitations
The present study included some methodological limitations related to a relatively short respirator application time of 20 
minutes, compared to the prolonged period (>12 hours) healthcare workers are required to wear RPE devices during 
a working shift. Participants were relatively young healthy volunteers, particularly for protocol 2 (Table 1), which limits 
the generalisation of the findings. In addition, neither of the protocols adopted activities which truly reflected the physical 
tasks healthcare workers are exposed to during a working shift. Further limitation of the study involved the inability to 
reliably measure the interface pressure during the dynamic movements. Further research is needed to investigate the 
biomechanical, thermal and physiological responses from the application of a wider range of respirator models on an 
extended larger cohort, reflective of the healthcare worker population.

Conclusion
The present study has investigated biomechanical, thermal and physiological responses to the application of RPE devices 
of different designs and materials in a cohort of healthy participants. The study revealed that specific facial features, such 
as the alar width, affected the distribution of interface pressures, particularly at the nasal bridge. In addition, gender- 
based changes in skin barrier function were evident. The development of respirator designs that accommodate a diverse 
range of face shapes is required to support the long-term use of these devices among healthcare workers, who are 
required to wear the respirators for prolonged time.
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