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Peripheral image quality influences several aspects of human vision. Apart from off-axis
visual functions, the manipulation of peripheral optical errors is widely used in myopia con-
trol interventions. This, together with recent technological advancements enabling the mea-
surement of peripheral errors, has inspired many studies concerning off-axis optical
aberrations. However, direct comparison between these studies is often not straightfor-
ward. To enable between-study comparisons and to summarise the current state of knowl-
edge, this review presents population data analysed using a consistent approach from
16 studies on peripheral ocular optical quality (in total over 2,400 eyes). The presented data
include refractive errors and higher order monochromatic aberrations expressed as Zernike
co-efficients (reported in a subset of the studies) over the horizontal visual field. Addition-
ally, modulation transfer functions, describing the monochromatic image quality, are calcu-
lated using individual wavefront data from three studies. The analysed data show that
optical errors increase with increasing eccentricity as expected from theoretical modelling.
Compared to emmetropes, myopes tend to have more hypermetropic relative peripheral
refraction over the horizontal field and worse image quality in the near-periphery of the
nasal visual field. The modulation transfer functions depend considerably on pupil shape
(for angles larger than 30�) and to some extent, the number of Zernike terms included.
Moreover, modulation transfer functions calculated from the average Zernike co-efficients
of a cohort are artificially inflated compared to the average of individual modulation trans-
fer functions from the same cohort. The data collated in this review are important for the
design of ocular corrections and the development and assessment of optical eye models.
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This review summarises the results of ear-
lier studies on the peripheral optical errors
of the human eye. Knowledge of the periph-
eral optical quality is of importance to
several fields within optometry and ophthal-
mology:1 development of technical aids with
intact or improved perception and mobility;
correction of peripheral optical errors to
improve vision for various ocular diseases;
and manipulation of peripheral image qual-
ity to halt progressing myopia.
Many activities in everyday life require

sufficient image quality on the peripheral
retina. Unlike central vision, designed pri-
marily for resolution tasks, peripheral vision
is responsible for various forms of detec-
tion. Even though peripheral high-contrast
resolution is limited by the sampling density
of the retina, both detection and low-
contrast resolution depend on the quality of
the peripheral image.2–8 It has been demon-
strated that peripheral vision is essential
for driving,9–11 and several studies have

reported that mobility, including the risk of
falling, is also highly dependent on vision
beyond the fovea.12,13 Further, limiting off-
axis vision can affect the performance of
search tasks, where well-controlled saccadic
eye movements are required.14

Knowledge of the peripheral retinal image
quality can be useful for the development of
optical aids for patients with reduced retinal
functionality (for example, due to age-related
macular degeneration), retinitis pigmentosa,
and glaucoma. For instance, patients with
central visual field loss have shown improved
visual performance with optical corrections
that enhance the image contrast on the
peripheral retina.15–17 Treating pseudophakic
patients can also be challenging since intra-
ocular lenses, currently available on the mar-
ket, can decrease peripheral retinal image
quality.18 Thus, explicit knowledge of the
peripheral ocular aberrations and image
quality may be highly beneficial from a clini-
cal and research perspective.

It has also been suggested that manipu-
lating peripheral image quality might pre-
vent myopia onset or slow down its
progression.19–23 In recent years the preva-
lence of myopia has continued to increase
and currently affects approximately 30 per
cent of the population worldwide.19,21,24

This is of serious concern, because high
myopia is a risk factor for severe ocular
pathologies (such as myopic macular degen-
eration25) and therefore, many research
studies have been dedicated to myopia con-
trol. Studies in chickens,26,27 monkeys28–31

and guinea pigs32 have shown that periph-
eral image quality has the potential to drive
myopia development; but the entire mecha-
nism as yet is not completely understood.
Nevertheless, specific peripheral aberration
patterns are already implemented in myo-
pia control methods through different types
of multifocality. However, all of the available
optical treatments (including multifocal soft
contact lenses, spectacles that alter peripheral
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defocus, and orthokeratology) are only par-
tially effective and subject-dependent.33,34

This suggests that peripheral aberrations
as well as their effect on the development

and progression of myopia need to be fur-
ther investigated.
Despite the importance of peripheral aber-

rations, direct access to population data on

retinal image quality is limited and the com-
parison between different studies is often not
straightforward. Even though there are guide-
lines for reporting ocular aberrations,35–37

Study Measurements
technique

Subjects Horizontal VF Used data Comments

Lotmar and
Lotmar38

Retinoscopy 363, all emmetropes 20�, 40�, 60� in
nasal and
temporal VF

J0 J0 calculated from
interval Sturm

Millodot39 Topcon refractor 62 subjects (13
emmetropes, 30
myopes, 19
hypermetropes)

(−60; +60)� in 10�
steps

RPR, J0 J0 calculated from
interval Sturm

Mutti et al.40 Canon R-1
autorefractor

822 children aged 5 to
14 years

Foveal and 30�
nasal VF of the
right eye

RPR, J0 J0 calculated from
cylinder power

Gustafsson
et al.41

Double-pass
technique

20 emmetropes, either
left or right eye
measured per subject

(−60; +60)� in 10�
steps

RPR, J0

Seidemann
et al.42

PowerRefractor and
double-pass
technique

31 young adult subjects:
8 emmetropic, 18
myopic, 5 hypermetorpic

0�, 15�, (20�), 30�,
(40�), 45� nasal VF

RPR, J0 J0 calculated from
interval Sturm

Atchison
et al.43

Shin-Nippon
SRW-5000

116 subjects,
emmetropes and
myopes

(−35; +35)� in 5�
steps

RPR, J0 Polynomial fit to
the graphs

Shen et al.44 COAS 34 adult subjects: 8
emmetropes, 26 myopes

(−30; +30)�
horizontal VF

M, J0 Polynomial fit to
the graphs

*Lundström
et al.45

Laboratory
Hartmann-Schack
wavefront sensor

43 subjects 0�, 20� and 30�
nasal VF

Zernike co-efficients
up to 9th order

J0 calculated from
C22

*Mathur
et al.46

COAS-HD 19 subjects: 10
emmetropes, 10 myopes
(raw data available for
20 subjects)

(−21; +21)�
(colour map)

Zernike co-efficients
up to 6th order

Polynomial fit to
colour maps

Baskaran
et al.47

COAS-HD VR 30 younger and 30 older
emmetropes

(−40; +40)� in 10�
steps

RPR, J0, C(4,0), C(1,3) J0 calculated from
C22

*Jaeken and
Artal48

Scanning wavefront
sensor

202 eyes of 101 subjects:
64 non-myopes and 37
myopes

(−40; +40)� at 1�
intervals

Zernike co-efficients
up to 3rd order

J0 calculated from
C22

Bakaraju
et al.53

BHVI-EyeMapper 26 participants,
emmetropes and
myopes

(−50; 50)�
horizontal VF

M, J0, C(1,3), C(3),
C(4,0)

M and J0 as
polynomial fit to
the graphs

Osuagwu
et al.49

COAS-HD 29 subjects, 19
isomyopic
(anisometropia < 1 D)

(−20; +20)�
(colour maps)

2nd and 3rd order
Zernike co-efficients,
C(4,0)

1. Polynomial fit
to colour maps
2. Only right eyes
data used

Osuagwu
et al.50

COAS-HD 49 young adults: 9
hypermetropes, 20
emmetropes, 20 myopes

(−21; +21)�
(colour maps)

RPR, J0, C(3,−3), C(3,
−1), C(1,3), C(4,0)

1. Polynomial fit
to colour maps
2. Emmetropes:
SE (−0.5; +0.75) D

Philip
et al.51

COAS 678 adolescents: 176
emmetropic, 96 myopic
and 375 hypermetropic

Foveal and 30�
nasal and
temporal VF

M, J0, 3
rd and 4th

orders of Zernike
co-efficients

Osuagwu
et al.52

COAS-HD 37 eyes: 18 Caucasians,
19 East Asians

(−21; +21)�
(colour maps)

RPR, J0, C(3,−1), C
(1,3), C(3), C(4,0)

Polynomial fit to
colour maps

The first group contains studies with only J0 and relative peripheral refraction available, the second group shows those containing
Zernike co-efficients, and the asterisk (*) marks studies for which raw wavefront data were available. The table contains only the
details relevant to the analysis over the horizontal visual field (VF) of this review. See Table S1 for full details of the studies.

M: mean sphere, RPR: relative peripheral refraction.

Table 1. List of studies from which the data were extracted
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they do allow some freedom for data repre-
sentation. One of the possible discrepancies
between studies is the difference in pupil size
and shape (spherical or elliptical) over which
peripheral Zernike co-efficients are calculated.
Confusion can also arise from different data
types (for instance, J0/Cylinder/C(2,2) for astig-
matism), visualisation styles (table/chart/col-
our map) and the sign convention used to
encode the angles of the visual field.
This paper is therefore intended to pro-

vide a comprehensive overview of results
from previously published studies of periph-
eral ocular aberrations. An analysis of ocular
modulation transfer functions (MTF) is also
presented, which is essential to estimate the
effect of the optical aberrations on central
and peripheral vision. The data presented in
this review have potential use in both
research and clinical applications, including
the design of optical eye models and the
development of optical corrections.

Peripheral ocular
aberrations data

Peripheral ocular aberrations and their
effect on retinal image quality were
assessed using data from 16 articles, listed
in Table 1.38–53 For three studies, marked
with an asterisk, wavefront data for each
individual subject were generously shared
by the authors.45,46,48 The full list of articles
considered for this review is provided in
Table S1. The final decision to include an
article was governed by the following
criteria: (1) available data in multiple eccen-
tricities over the horizontal visual field (VF);
(2) wavefront data represented as a set of
Zernike co-efficients; and (3) the number of
participants in the study (at least 20).
All processing and analyses presented were

conducted using the following guidelines.
• If the angular steps in data representations

were denser than in the original publication,
available data was linearly interpolated.

• No additional recalculations for the wave-
length were made. Defocus data were
unchanged from the original publications,
assuming these measurements already
compensated for any differences between
the measurement wavelength and the vis-
ible spectrum wavelengths.

• The ocular wavefront measurements are
represented as standard Zernike co-
efficients for a 4 mm circular pupil so that
comparison between different studies can
be made.1,35–37,45

• If the relative peripheral refraction over
the horizontal VF was not readily available
in the article, it was calculated from
Zernike co-efficients using the following
formulas:

M= −
4

ffiffiffi
3

p

r2pupil
c02 +

12
ffiffiffi
5

p

r2pupil
c04, [1]

Relative Peripheral Refraction=M θð Þ−M θ =0ð Þ,
where θ is the angle in horizontal VF (nega-
tive for temporal VF).
• If astigmatism was not readily available as

the horizontal Jackson cross cylinder ( J0),
it was calculated using one of the follow-
ing methods (also see ‘Comments’ column
in Table 1):
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Figure 1. Relative peripheral refraction in dioptres for emmetropes (top, left; 1,098
subjects), myopes (top, right; 427 subjects; weighted average spherical equiva-
lent = −3.17 � 0.98 D) and hypermetropes (bottom; 482 subjects; weighted average
spherical equivalent = +1.25 � 0.49 D). Negative visual angles correspond to the tem-
poral visual field (nasal retina).
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• from Zernike co-efficients:

J0 = −
2

ffiffiffi
6

p

r2pupil
c22 +

6
ffiffiffiffiffiffi
10

p

r2pupil
c24; [2]

• using Sturm interval (taking half of the
dioptric difference between the two line
foci assuming J45 = 0);

• J0 from cylinder power assuming J45 = 0:

J0 =
Cylinder

2
: [3]

• Relative peripheral refraction data were
divided into three refractive groups:
myopes, emmetropes and hyper-
metropes. If not specified in the original
article, the classification was made using
these refractive error intervals: foveal
refractive error ≤ −0.50 D for myopes;
−0.50 D < foveal refractive error < +0.50 D
for emmetropes; and foveal refractive
error ≥ +0.50 D for hypermetropes.

• The population average optical errors,
both in tables and figures, were calculated
taking the number of subjects into consid-
eration (that is, weighted average).
The combined effect of ocular aberra-

tions on retinal image quality was assessed
by calculating the monochromatic MTFs
using all available Zernike co-efficients for
each individual subject from three studies,
marked with an asterisk in Table 1.45,46,48

The average MTF curves presented in this
review refer to the average of individual
MTFs (not MTFs derived from Zernike co-
efficients averaged across a cohort of indi-
viduals). For the off-axis horizontal VF MTF
calculations, the elliptical shape of the pupil
was taken into account by scaling the hori-
zontal radius of the pupil by cos(θ), where θ
is the angle in the horizontal VF.54 The
MTFs were represented and analysed as
2-D functions obtained as an average of
the original MTF curves over all pupil
meridians.

Results

The subject group in this review is the combi-
nation of those for the studies listed in
Table 1. Overall, it can be described as follows:
• 2,492 phakic subjects, both male and

female
• no reported ocular conditions or

surgeries
• 60 per cent emmetropes, 20 per centmyopes

(weighted average spherical equivalent

−2.90 � 1.10 D), and 20 per cent hyper-
metropes (weighted average spherical
equivalent +1.35 � 0.69 D)

• age range five to 58 years
• except one study (Bakaraju et al.53) no

pupil dilation, cycloplegia or fogging
• ethnicity not reported, but the studies

have been conducted in Europe, Northern
America and Australia.
The number of subjects and the amount of

available data vary among the included stud-
ies (refer to the figures captions). Therefore,
the sample size for each individual type of
analysis may differ from the total number of

subjects. For more specific information, refer
to the ‘Subjects’ and ‘Used data’ columns of
Table 1.
Figures 1–3 show the population average

defocus (relative peripheral refraction), hori-
zontal astigmatism ( J0), primary spherical
aberration, and horizontal coma across the
horizontal VF. The weighted average curves,
represented by the thick lines, were calcu-
lated for the areas where data from more
than one study were available. The shaded
areas show � one standard deviation for
regions with data from at least three stud-
ies. In Figure 1, relative peripheral refraction
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Figure 2. J0 in dioptres for all subjects. Sample size: 2,493 subjects. Negative visual
angles correspond to the temporal visual field (nasal retina).
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Figure 3. Horizontal coma C(3,1) and primary spherical aberration C(4,0) in μm for all
subjects (for a 4 mm pupil diameter). Sample size: 1,045 subjects. Negative visual
angles correspond to the temporal visual field (nasal retina).
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is represented separately for emmetropes
(top, left), myopes (top, right) and hyper-
metropes (bottom). Horizontal astigmatism
(Figure 2) was not divided into subgroups
because there was no correlation between
off-axis astigmatism and central refractive
error. Figure 3 represents Zernike co-
efficients for primary horizontal coma (top)
and primary spherical aberration (bottom).
Population weighted average Zernike co-

efficients for the horizontal VF are listed in
Table 2. The values were obtained using all
studies from Table 1 with available
wavefront data.45–53 Calculations for each
angular position were made for a 4 mm
pupil diameter using the full extent of avail-
able wavefront data, that is all Zernike co-
efficients and all angles reported. However,
it is important to mention that all of these
studies contained measurements for differ-
ent angular extents.
The MTF curves for the emmetropic sub-

jects, obtained using the three studies mar-
ked in Table 1 with an asterisk,45,46,48 are
plotted in Figure 4 for four angles in the hor-
izontal VF. The calculations were carried out
for the following sample sizes: 84 subjects
for fovea, 71 subjects for 10�, 84 subjects for
20�, and 74 subjects for 30�. The table below
the figure shows the average MTF value �
standard deviation for six different spatial
frequencies. As can be seen, the MTF mono-
tonically decreases with the off-axis angle.

Discussion

This analysis pools peripheral ocular aberra-
tion data from a number of published stud-
ies to summarise the current understanding
of optics and image quality across the hori-
zontal VF in the human eye. All reviewed
studies clearly show an increase in ocular
optical errors with increasing off-axis angle,
consistent with optical theory.

Defocus
To be able to compare the peripheral spher-
ical equivalent between different refractive
error groups, relative peripheral refraction
is often used. The relative peripheral refrac-
tion not only depends on the optical aberra-
tion field curvature (due to the oblique
incidence of light), but also on the ocular
shape. Therefore, both hypermetropes and
emmetropes on average have a negative rela-
tive peripheral refraction (myopic, with the
peripheral image in front of the retina),
whereas myopes tend to have positive relative

peripheral refraction (hypermetropic, with the
peripheral image behind the retina) due to the
elongated shape of the eye (Figure 1).

Astigmatism
As predicted by Coddington’s equations,55 astig-
matism ( J0) increases with increasing horizontal
off-axis angle (Figure 2), best described by a
quadratic function. Thus, second order polyno-
mials can be fitted to the average curve in the
figure (equation [4]; θ in degrees will give J0 in
dioptres). This nature of peripheral astig-
matism also dictates that the vertical
astigmatism is rather small in the horizon-
tal VF (for 20� nasal VF: J0 =
[−0.57 � 0.13] D, J45 = [0.06 � 0.07] D).
With this in mind, Figure 2 illustrates that

for the horizontal VF the refractive error
in the horizontal (tangential) meridian is
noticeably more negative than in the verti-
cal (sagittal) meridian. Thus, for the major-
ity of the horizontal VF, the vertical line
focus is located more anterior to the
peripheral retina, whereas the horizontal
line focus is closer to the retina.

Spherical aberration
Both primary and higher order spherical
aberrations are present for on-axis as well
as for the off-axis object points (Table 2).
However, for most of the VF primary
spherical aberration C(4,0) is dominant.
Figure 3 (top) shows that, on average, pri-
mary spherical aberration does not change
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Figure 4. Average modulation transfer function (MTF), calculated from available Zernike
co-efficients,45,46,48 for emmetropes in four angles of the nasal visual field (shown as solid
lines). The shaded areas represent the standard deviation at each eccentricity. Sample
sizes: 84 subjects for fovea, 71 subjects for 10�, 84 subjects for 20�, and 74 subjects for 30�

of the nasal visual field. The table at the bottom shows average � standard deviation for
each curve at spatial frequencies up to 35 cycles/degree.

J0 = − 5:23 �10−4
� �

�θ2 + 5:05 �10−3
� �

�θ,θ ≤0 fitting error RMS =0:037Dð Þ,
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� �

�θ2− 5:05 �10−3
� �
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much over the horizontal VF; however,
there is some variation throughout the
population.

Horizontal coma
Foveal coma is usually small, and horizontal
coma is dominant for purely horizontal off-
axis angles. Primary horizontal coma shows
a clear increase with increasing eccentricity
(Figure 3, bottom) while the standard devia-
tion for the average curve remains relatively
low. A linear function can be fitted to the
average curve in the figure (θ in degrees will
give the horizontal coma in μm for a 4 mm
pupil diameter):

C 3,1ð Þ θð Þ= − 7:80 �10−3
� �

�θ−1:420 �10−2:

[5]

Using a third order polynomial would only
improve the fitting root-mean-square-error
by 0.016 μm (from 0.040 to 0.0249 μm).

Calculation of the ocular MTF
The central and peripheral MTFs in Figure 4
are calculated by averaging curves for all
pupil meridians. Because of off-axis astig-
matism across the majority of the horizontal
VF, objects with horizontal lines are associ-
ated with better image quality than those
with vertical lines. Therefore, the calculated
MTFs represent the average retinal image
quality for a stimulus containing details with
all possible orientations. Apart from that,
the shape of the ocular MTF itself depends
on several parameters as well as the
method of calculation.

EFFECT OF NUMBER OF ZERNIKE TERMS
ON MTF
By definition, Zernike series have an infi-
nite number of elements; in practice the
decomposition of a wavefront is more lim-
ited. Although the residual error is gener-
ally small, in some cases it can have a
noticeable effect on the shape of the ocu-
lar MTF. In particular, accurate individual
MTFs require more Zernike terms than
population average curves. This can be
illustrated by comparing the MTFs (1) for
the full available extent of Zernike terms,
and (2) for Zernike terms up to the third
order and primary spherical aberration.
While the average difference between
these MTFs is close to zero, in individual
cases it can be rather high (standard
deviation of difference in MTFs = 0.05 @
20 cycles/degree, for studies marked with
an asterisk in Table 1, fovea).

EFFECT OF PUPIL SHAPE ON MTF
For large off-axis angles the elliptical shape of
the pupil affects the appearance of the ocular
MTF curve. The difference in MTFs calculated
using a 4 mm cosine-scaled elliptical pupil
and a circular pupil becomes considerable for
eccentricities of 30� and higher (standard
deviation of difference in MTFs = 0.05 @
two cycles/degree, for studies marked with
asterisk in Table 1, 30� horizontal VF).

EFFECT OF AVERAGING METHODS ON MTF
In Figure 5 the average MTF and the MTF
from average Zernike co-efficients are based
on different mathematical approaches. The
calculation of the average MTF consists of
obtaining individual MTF curves calculated
separately for each set of Zernike co-
efficients of each subject, and then averag-
ing these MTF curves. In contrast, the MTF
from average Zernike co-efficients implies
calculation of only one MTF curve from the
set of already-averaged Zernike co-effi-
cients. Figure 5 contains MTFs for four VF
angles calculated with both described rou-
tines using available raw data for
emmetropic subjects.45,46,48 For each angle,
the MTF from average Zernike co-efficients
shows unrealistically high values. It is also
worth noting that this difference is largest in
the central VF and gradually decreases
towards the periphery. This is because the

average peripheral optical errors are large
compared to their intrasubject variation.

Retinal image quality and
myopia
The connection between myopia development
and peripheral image quality in the human eye
is not straightforward. Hoogerheide et al.56

once suggested that relative peripheral hyper-
metropia is a risk factor for myopia develop-
ment, but this conclusion was made without
considering the change in ocular shape with
ocular growth.57 More recent studies show that
relative peripheral hypermetropia is most likely
a consequence of myopia and not its precur-
sor.58,59 That is, relative peripheral refraction
depends on the degree of myopia.43 This is
also observed in the available raw data for
62 myopic subjects45,48 (Figure 6). However,
substantial differences in relative peripheral
refraction for different degrees of myopia start
appearing only at rather high eccentricities of
the VF (20� and higher). It should further be
mentioned that, as suggested earlier, compari-
son of relative peripheral refraction in the hori-
zontal VF is most representative beyond 40� of
eccentricity.60

Nevertheless, many reasonably effective
myopia control interventions rely on manipu-
lating the peripheral retinal image quality; the
optical treatments with the highest efficacy
are orthokeratology and multifocal soft

Fovea. Average co-efficients
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Figure 5. Average modulation transfer function (MTF) and MTF from average Zernike
co-efficients for four angular positions in the nasal visual field (VF) for the
emmetropic cohort with available data.45,46,48 Average MTF is calculated by averaging
curves from individual Zernike data sets; MTF from average Zernike co-efficients is
obtained by averaging individual Zernike data sets and subsequent MTF calculation.
Sample sizes: 84 subjects for fovea, 71 subjects for 10�, 84 subjects for 20�, and 74 sub-
jects for 30� of the nasal VF.
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contact lenses.33,35 In orthokeratology, a
reverse geometry rigid contact lens worn over-
night flattens the central cornea, which
decreases the overall optical power of the eye.
However, this flattening in conjunction with
relative steepening of the mid-peripheral cor-
nea also results in increased off-axis astigma-
tism and inverted coma.61,62 Currently
available multifocal soft contact lens correc-
tions impose a large depth of focus in the
periphery.63,64

In order to further develop these optical
myopia control interventions, it is important
to compare peripheral image quality
between myopes and emmetropes. Figure 7
shows the average MTFs for emmetropes
and myopes with simulated central refrac-
tive error correction: foveal defocus and pri-
mary astigmatisms were subtracted from
every individual set of Zernike co-efficients
(central and peripheral). As can be seen, the
average MTF for myopic subjects is gener-
ally lower than that of emmetropic subjects
over the horizontal VF. However, this differ-
ence becomes less prominent with increas-
ing eccentricity and disappears at about 20 �

off-axis angle. Nonetheless, the results of
Figure 7 need to be interpreted with cau-
tion, because there were cases with myopic
subjects having better image quality than
emmetropic ones (standard deviation not
shown on the figure).

Conclusion

This paper summarises the findings of
16 recent publications on the peripheral
refractive errors and higher order aberra-
tions in the horizontal VF. The presented
data demonstrate an increase in aberrations
with off-axis angle, well predicted by the
optical aberrations theory.
Increasing amounts of the peripheral hori-

zontal astigmatism and coma lead to an
asymmetric profile of peripheral retinal
image quality. Furthermore, the horizontal
meridian (vertical line focus) is more myopic
than the vertical meridian (horizontal line
focus). Comparison between the different
refractive groups shows that relative periph-
eral refraction is positive for myopic sub-
jects while being negative for emmetropic
and hypermetropic subjects.
Additionally, with ideal foveal refractive

correction, myopes tend to have worse
MTFs than emmetropes; this effect is less
prominent for high eccentricities. The shape
of MTF curve itself depends on the number

of Zernike terms used (mostly in the fovea)
and the shape of the pupil (at angles ≥ 30�).
A considerable difference was also found
between the average MTF and the MTF

from average Zernike co-efficients with
the latter demonstrating artificially high
retinal image quality, especially in the
central VF.
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Figure 7. Average modulation transfer function (MTF) for emmetropes and myopes
(with ideal central refractive correction) from the three studies marked in Table 1
with an asterisk45,46,48 for four angular positions in the nasal visual field (0�, 10�, 20�,
and 30�). Sample sizes: 84 emmetropes and 72 myopes for fovea; 71 emmetropes and
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the nasal visual field. The curves are obtained using data from the three studies, mar-
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