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Abstract
Background: Blastocladiella emersonii is an aquatic fungus of the Chytridiomycete class, which is at
the base of the fungal phylogenetic tree. In this sense, some ancestral characteristics of fungi and
animals or fungi and plants could have been retained in this aquatic fungus and lost in members of
late-diverging fungal species. To identify in B. emersonii sequences associated with these ancestral
characteristics two approaches were followed: (1) a large-scale comparative analysis between
putative unigene sequences (uniseqs) from B. emersonii and three databases constructed ad hoc with
fungal proteins, animal proteins and plant unigenes deposited in Genbank, and (2) a pairwise
comparison between B. emersonii full-length cDNA sequences and their putative orthologues in the
ascomycete Neurospora crassa and the basidiomycete Ustilago maydis.

Results: Comparative analyses of B. emersonii uniseqs with fungi, animal and plant databases
through the two approaches mentioned above produced 166 B. emersonii sequences, which were
identified as putatively absent from other fungi or not previously described. Through these
approaches we found: (1) possible orthologues of genes previously identified as specific to animals
and/or plants, and (2) genes conserved in fungi, but with a large difference in divergence rate in B.
emersonii. Among these sequences, we observed cDNAs encoding enzymes from coenzyme B12-
dependent propionyl-CoA pathway, a metabolic route not previously described in fungi, and
validated their expression in Northern blots.

Conclusion: Using two different approaches involving comparative sequence analyses, we could
identify sequences from the early-diverging fungus B. emersonii previously considered specific to
animals or plants, and highly divergent sequences from the same fungus relative to other fungi.

Background
Since the sequencing of the first complete fungal genome,
the budding yeast Saccharomyces cerevisiae [1], fungal
genomics and the specific area of comparative genome
analysis in fungi have experienced a recent but impressive
advance. Following sequencing of the genomes of two
other ascomycetes, Schyzosaccharomyces pombe and Neu-

rospora crassa [2,3], efforts have focused on species
throughout the fungal kingdom that represent diverse sci-
entific interests. In this sense, genomes from plant and
human pathogenic basidiomycetes have been sequenced
[4,5] and there are drafts or genome projects in progress
of other fungi. Likewise, the sequencing of one zygomyc-
ete genome has been completed and there are two chytrid
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genome projects underway (see [6] for an overview of fun-
gal genome sequencing projects).

Expressed sequence tag (EST) data from fungi, even
though less numerous than genome sequences, are also
showing to be useful to specific and diverse aims, such as
mapping previously characterized genes [7], investigation
of patterns of fungal genome evolution [8], prediction of
novel genes [9], prediction of pathogenicity determinants
[10], identification of disease-related sequences [11],
improvement of functional assignments [12], and identi-
fication of alternatively spliced mRNA species [13].

Recently, we reported a sequencing program of nearly
17,000 ESTs corresponding to different developmental
stages of Blastocladiella emersonii life cycle, an early diverg-
ing fungus that belongs to the Chytridiomycete class
[14,15]. Approximately 52% of the uniseqs presented sim-
ilarity to sequences deposited in public data banks. Inter-
estingly, several of these ESTs revealed similarity with
known genes not previously reported in fungi, and which
had been recognized as animal or plant specific proteins.
Despite the fact that a consensus phylogenetic tree seems
to resolve fungi and animals as sister groups [16], we won-
dered if some ancestral characteristics of fungi and ani-
mals or of fungi and plants could have been retained in
this basal fungus and have been lost or become highly
divergent in members of the late-branching group of
fungi.

Our previous study provided the functional identification
of putative unique transcripts based on sequence compar-
ison, and contributed to linking in silico expression profile
data with previous information about biological proc-
esses occurring throughout the fungal life cycle [14]. In
this sense, the survey increased the knowledge about this
interesting biological model. However, our approach did
not provide a direct link between expressed sequences in
B. emersonii and gene expression in major groups, like ani-
mals and plants.

In the present work, we carried out a large-scale compara-
tive analysis of B. emersonii ESTs against protein and tran-
script sequences of fungi, animals and plants, using
databases constructed ad hoc. Our goals were to identify
putative orthologues in B. emersonii of genes previously
classified as specific to animals and/or plants, as well as to
find B. emersonii sequences common to fungi but which
have evolved at a lower rate in this chytrid than in late-
diverging fungi. Based on our results, we discuss possible
relationships between expressed sequences and structures
and/or biological processes occurring in animals and/or
plants and B. emersonii, including a metabolic pathway
previously reported only in animals and bacteria.

Results
B. emersonii-animal shared sequences
To uncover sequences shared by B. emersonii and animals,
we carried out a comparison between B. emersonii ESTs
and an animal database constructed ad hoc, and assigned
a putative identification to these sequences (see Methods
section below). We then classified B. emersonii sequences
that matched with animal data (named B. emersonii-ani-
mal shared sequences) as follows: hits only found in ani-
mals; hits found in animals and protists (including
flagellated and ciliated organisms and green algae not fil-
tered as plants on purpose, some hits also included bacte-
ria); hits only found in animals (when using an Evalue ≤
10-5 as cut-off) but with protein family members also
described in plants and/or fungi; hits found in animals
and bacteria (Table 1).

As the most important result, matches only with animal
proteins revealed two consensus sequences encoding
enzymes involved in coenzyme B12-dependent propionyl-
CoA metabolism: DL-methylmalonyl-CoA racemase (EC
5.1.99.1) and methylmalonyl-CoA mutase (EC 5.4.99.2).
We also found ESTs encoding the alpha and beta chains of
propionyl-CoA carboxylase (EC 6.4.1.3), the enzyme that
catalyzes the first step of this metabolic route (Table 1 and
Figure 1). These enzymes give the capacity to metabolise
propionate through propionyl-CoA and methylmalonyl-
CoA in the TCA cycle and they seem to be present in most
animal species and prokaryotes [17,18] but there are no
sequences or activities described in fungi. Furthermore,
methylmalonyl-CoA mutase needs adenosylcobalamin
(coenzyme B12) as a cofactor and we wondered whether
sequences encoding enzymes involved in biosynthesis of
coenzyme B12 would be expressed in B. emersonii. Interest-
ingly, we found another assembled sequence, among the
matches with animal and bacteria proteins, encoding an
ATP:Cob(I)alamin adenosyltransferase (EC 2.5.1.17), the
enzyme that catalyses the last step of coenzyme B12 bio-
synthesis. Afterwards, we proceeded to do an experimen-
tal validation of the expression of these sequences in the
fungus. As shown in Northern blot assays (Figure 2A–H),
these genes are expressed during B. emersonii sporulation.
In addition, as cobalt is necessary for the pathway to func-
tion, we also evaluated expression of these genes in cells
exposed to cobalt and all four genes appeared to be
induced by this cation (Figure 2E,H).

Moreover, approximately 10% of the hits obtained
through this approach were related to flagella and signifi-
cant alignments appeared with animals and
Chlamydomonas reinhardti, suggesting that these sequences
are conserved among different organisms. Finally, 13% of
the matches included animals and euglenozoos, as
Trypanosoma cruzi, and 10% included the ciliated Tetrahy-
mena thermophila. A small proportion of two hits revealed
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CONTIG PROCESSa SUBPROCESS DESCRIPTION

BeAS318 cell growthb transport mannose-6-phosphate/insulin-like growth factor II rece
BeE120N38E06 cell growth microtubule-based process Kinesin-associated protein 3
BeZSPN12E10 cell growth transport proton-coupled dipeptide cotransporter
BeE120N31C02 cell growth transport sperm-associated cation channel 2 isoform 1
BeAS13321 metabolism L-methylmalonyl-CoA metabolism EC 5.1.99.1 Methylmalonyl-CoA-racemase
BeAS1259 metabolism EC 5.4.99.2 Methylmalonyl-CoA-mutase
BeZSPN11A04 signal transduction inositol polyphosphate-4-phosphatase
BeE120N37B06 signal transduction guanylyl cyclase
BeAS12731 signal transduction Arf-like 2 binding protein BART1
BeE90N05E012 development sexual reproduction sperm associated antigen 1 (predicted)
BeE90N05C03 metabolism protein amino acid phosphorylation similar to CG32019-PA, isoform A
BeE90N10F02 signal transduction G-protein coupled receptor protein signaling 

pathway
Hypothetical protein CBG04044

BeE120N07G08 unknown LOC495042 protein
BeE3018G09 unknown similar to CG7382-PA
BeE90N01G07 unknown similar to ATP-binding cassette protein C12
BeE90N07C01 unknown ENSANGP00000002549 AG
BeE90N08H06 unknown unnamed protein product
BeE90N12F11 unknown similar to Myosin heavy chain
BeE90N19F101 unknown similar to CG3313-PA
BeE90N20B07 unknown nonmuscle myosin heavy chain b
BeE90N20E12 unknown C20orf26
BeE90N25E10 unknown Origin recognition complex subunit 5
BeG90N01F09 unknown similar to KIAA0467 protein
BeG90N13H11 unknown ENSANGP00000021997
BeE90N02H12 unknown similar to Neurogenic locus notch homolog protein 1
BeE90N19F09 unknown similar to MEGF11 protein
BeE120N02G09 unknown unknown (WD repeat domain 34)*
BeAS1968 unknown unknown (leucine-rich)
BeE60N20B11 unknown Cc2-27, MGC83786*
BeAS392 unknown similar to RIKEN cDNA 5530601I19
BeG30N12H05 unknown C9orf119 protein
BeAS991 unknown Blu protein
BeE60N03A11 unknown unnamed protein product
BeAS334 unknown intraflagellar transport protein
BeAS76 unknown shippo
BeE60N01H07 unknown radial spokehead-like 1
BeAS1855 unknown unnamed protein product
BeAS590 unknown unnamed protein product*
BeAS239 unknown unnamed protein product
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BeAS1806 unknown unnamed protein product
BeAS1622 unknown PHD finger protein 10*
BeAS973 unknown hypothetical protein*
BeE120N38F02 unknown predicted protein
BeE60N12D05 unknown ENSANGP00000021947
BeAS1425 unknown hypothetical protein
BeE60N08G06 unknown hypothetical protein*
BeE60N16C07 unknown hypothetical protein*
BeE120N03F08 unknown hypothetical protein
BeAS898 unknown ring finger protein 121 (RNF121)
BeAS153 unknown cortactin
BeG30N15C05 unknown K-Cl cotransporter
BeE60N16H08 unknown clusterin associated protein 1
BeAS1786 unknown SH3 and multiple ankyrin repeat*
BeE120N34D07 unknown axonemal dynein light chain p33

BeAS1072 metabolism proteolysis and peptidolysis intraflagellar transport particle protein 140

BeAS1821 metabolism de novo pyrimidine base biosynthesis involved in spermatogenesis
BeE120N38D06 metabolism regulation of transcription RIKEN cDNA 4930506L13
BeE90N20A031,

3
metabolism GTP biosynthesis similar to Ndpkz4 protein

BeE90N03H032,

3
cell differentiation spermatid development sperm associated antigen 6 (SPAG6)

BeE90N11E043,

4
development morphogenesis unnamed protein product

BeE90N14D083,

4
response to stimulus sensory perception Unc-119 homolog

BeE60N09G102 cell growth microtubule-based process FLJ00203 protein
BeAS1587 cell growth microtubule nucleation centromere protein J*
BeAS2791 signal transduction AKAP-associated sperm protein
BeE120N06E012 signal transduction small GTPase mediated signal transduction dynein 2 light intermediate chain*
BeAS2842 signal transduction similar to capillary morphogenesis protein-1
BeAS16332 unknown spoke protein
BeAS962 unknown protofilament ribbon protein
BeE60N15D072 unknown IFT81*
BeAS16992 unknown radial spokehead-like 1
BeE90N01D061,

3,4
unknown hypothetical protein, conserved

BeG90N18C043 unknown Sfrs1 protein
BeE90N05B013,

4
unknown similar to CG17669-PA

BeG60N12A124 unknown ENSANGP00000011450
BeE90N13A07 unknown hypothetical protein DDB0168470

Table 1: Putative identification of 105 B. emersonii-animal shared sequences. (Continued)
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BeE90N15B103 unknown PREDICTED: hypothetical protein XP_787841
BeE90N11E093 unknown similar to WD-repeat protein 56, partial
BeE90N13H053,

4
unknown similar to hypothetical protein

BeE90N14C083,

4
unknown similar to Nasopharyngeal epithelium specific protein 1

BeE90N18E063,

4
unknown unnamed protein product

BeE90N22D063,

4
unknown Hypothetical protein LOC555400

BeE90N01F043,4 unknown chromosome 21 ORF frame 59 variant
BeAS78 unknown PACRG (Parkin co-regulated gene)
BeAS847 unknown unc-93 homolog A
BeAS380 unknown C21orf59-like
BeAS1625 unknown zinc finger, MYND domain containing 12
BeAS1475 unknown unnamed protein product*
BeE60N17F02 unknown expressed protein
BeAS1840 unknown hypothetical protein*
BeE60N15C02 unknown RIKEN cDNA 9430097H08
BeAS451 unknown RIKEN cDNA 1700027N10
BeAS240 unknown CG1553-PB
BeZSPN14C121 unknown Protein C21orf2
BeAS1791 unknown Putative adenylate kinase 7
BeE60N04C06 unknown signal recognition particle
BeAS1698 unknown hypothetical protein

BeAS956 unknown ubiquitin-like 3

BeE60N06C03 unknown probable katanin-like protein

BeE30N11H041 metabolism histidine catabolism Hypothetical protein Amdhd1 protein

BeAS168Cd5 metabolism L-methylmalonyl-CoA metabolism EC 6.4.1.3 Propionyl-CoA carboxilase
BeE30N13F082 cell growth cation transport similar to sperm-associated cation channel 2 isoform 1
BeE90N16A05 metabolism, signal 

transduction
regulation of transcription, two-component signal 
transduction system (phosphorelay)

putative two-component response regulator

BeAS15121 unknown EC 2.5.1.17 Adenosyltransferase
BeAS1143 unknown CG4662-PB, LD23951p, unnamed
BeAS509 unknown Similar to RIKEN cDNA 2010311D03

1Full-length sequences. 2Sequences associated with flagella. 3Matches with euglenozoos. 4Matches with ciliates. 5ESTs assembled in this contig were obta
cadmium (accession number DQ533709). aBiological process, according to GO, assigned to the best hit in the specific database. bcell growth means cell
obtained by searching against nr and dbEST-others (assigned as ESTs) databases from Genbank. *Genes presenting an Evalue between 10-3 and 10-5 agains
the text are in bold

Table 1: Putative identification of 105 B. emersonii-animal shared sequences. (Continued)
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Scheme of the pathway of cobalamin-dependent propionyl-CoA metabolismFigure 1
Scheme of the pathway of cobalamin-dependent propionyl-CoA metabolism. Enzymes mentioned in the text and in 
Table 1 are underlined.
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sequences that retrieved significant matches only with
animal proteins, but which belong to protein families
with members among plants and fungi. However, both of
them are not well characterized.

B. emersonii-plant shared sequences
After removal of contaminants, as carried out for B. emer-
sonii-animal shared sequences, we classified the hits found
against the plant database (B. emersonii-plant shared
sequences) as follows: hits only found in plants; hits
found in plants and protists; hits only found in plants but
with protein family members also described in animals
and/or fungi; hits found in plants and bacteria (Table 2).

The first important difference observed in B. emersonii-ani-
mal and B. emersonii-plant sequence comparison was the
number of uniseqs with matches in each group: the
number of matches with plants was one fifth of the
number obtained with animal proteins (20 vs. 105).

However, some noteworthy information could be
obtained. Three putative protein receptors: a phytosulfok-
ine receptor, an ethylene receptor CS_ETR2 and a protein
kinase receptor (the first two mentioned in [14]), which
are plant receptors not previously found among fungi,
were found in B. emersonii.

On the other hand, two B. emersonii assembled sequences
presented significant matches only with plants but encode
proteins that belong to families with members in animals
and fungi. One of them encodes a putative Isp4 protein,
which represents a family of transporters of small oli-
gopeptides (OPT family), initially characterized only in
three different species of yeast [19-21]. A set of related
proteins from Arabidopsis thaliana, characterized as oli-
gopeptide transporters, was later described as an outgroup
to the yeast set by neighbor joining analysis [22]. The B.
emersonii assembled sequence aligns with a significant
score only to sequences of the plant OPT family and not

Northern blot analysis of B. emersonii genes encoding enzymes involved in propionyl-CoA metabolismFigure 2
Northern blot analysis of B. emersonii genes encoding enzymes involved in propionyl-CoA metabolism. A, E. 
Propionyl-CoA carboxylase; B, F. DL-methylmalonyl-CoA-racemase; C, G. Methylmalonyl-CoA mutase; D, H. ATP:Cob(I)ala-
min adenosyltransferase. The RNA blots were also hybridized with a probe of the hsp70-3 gene, which is not induced by CoCl, 
as a control (A1-D1). Data from densitometry scanning of the hybridization bands is shown in panels E-H. The values were nor-
malized using the hsp70-3 bands as a control. S = total RNA isolated from cells after 60 min of sporulation; S + Co = total RNA 
isolated from cells after 60 min of sporulation in the presence of 100 μM CoCl.
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to the fungal sequences. Nevertheless, although the
assembled sequence presents the conserved regions char-
acteristic of the protein family of both animals and fungi,
the region of alignment comprises less than 60% of the
total length of the best matching sequence. Thus, the
assignment of a putative function for the protein should
be taken with caution.

The other assembled sequence matched with a member of
the syntaxin family of soluble N-ethylmaleimide-sensitive
factor adaptor protein receptors (SNAREs) superfamily,
which is known to play an important role in the fusion of
transport vesicles with specific organelles [23]. In a gen-
eral sense, animals and plants have syntaxins that are
orthologues to one of the yeast syntaxins. However,
whereas some classes of yeast and mammalian syntaxin
genes appear to be absent in Arabidopsis, its genome
presents syntaxin gene families not found in other eukary-
otes [24]. The SYP7 family (with three members) does not
appear to have an ortholog among yeast or animal syntax-
ins, and this group may be unique to plants. The B. emer-
sonii assembled sequence mentioned above matched with
a putative syntaxin 71, a member of SYP7 family. We also
looked for B. emersonii ESTs encoding other syntaxin fam-

ily members and found representatives for all except one
(SYP8) of the families categorized according to Sander-
foot et al. [24](Table 3).

B. emersonii-animal-plant shared sequences
Following the same procedure carried out for the two pre-
vious analyses, we classified the hits found against the ani-
mal and plant databases (B. emersonii-animal-plant
shared sequences) as follows: hits found in animals and
plants; hits found in animals, plants and protists (some
hits also included bacteria); hits found in animals and
plants but with protein family members also described in
fungi; hits found in animals, plants and bacteria (some
hits also included protists) (Table 4).

A noteworthy identification was a putative urocanate
hydratase, urocanase or imidazolone-propionate hydro-
lase (EC 4.2.1.49), the second enzyme involved in the
catabolism of histidine by conversion of this amino acid
to glutamate [25]. We also found an EST encoding an imi-
dazolonepropionase (EC 3.5.2.7), among the matches
with animal and bacteria proteins, the third enzyme in the
same pathway. The first enzyme of the pathway is the
histidase or histidine-ammonia lyase, which converts his-

Table 2: Putative identification of 20 B. emersonii-plant shared sequences. See legend of Table 1 for details of the notes.

CONTIG PROCESSa SUBPROCESS DESCRIPTION Sc ORGANISM

BeAS808 metabolism protein amino acid phosphorylation receptor protein kinase 62 Plants
BeE90N21F06 metabolism protein amino acid phosphorylation phytosulfokine receptor precursor 82
BeE90N13B04 signal transduction two-component signal transduction 

system (phosphorelay)
ethylene receptor CS-ETR2 76

BeAS1061 cell growthb RNA-dependent DNA replication unknown, putative reverse transcriptase* 70
BeE90N13A06 unknown ESTs 40
BeE30N05D12 unknown putative elicitor-responsive gene 51
BeAS1555 unknown putative elicitor-responsive gene 52
BeZSPN17F09 unknown ESTs* 60
BeG90N16H10 unknown ESTs 61
BeAS1324 unknown unknown 73
BeAS1941 unknown ESTs 56

BeAS412 unknown LMBR1 integral membrane family protein-
like

169 Plants and 
protists

BeE120N27G09 unknown LMBR1 integral membrane family protein 88
BeE90N07H12 unknown ESTs* 49

BeAS412 cell growth transport putative syntaxin 71* 81 Plants (but 
also described 

in animals 
and/or fungi)

BeAS1606 unknown putative isp4 protein* 55
BeG60N07F02 unknown ESTs* 49
BeE90N18D12 unknown putative DNA damage repair protein* 52

BeZSPN13D02 metabolism proteolysis and peptidolysis ATP/GTP-binding site motif A (P-loop) 145 Plants and 
bacteria

BeE30N11G05 unknown Putative transcription activator 74
Page 8 of 21
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tidine into urocanate, the substrate of the urocanase. Uro-
canase has been found in bacteria, in the liver of
mammals, in the land plant white clover, and also in
Chlamydomonas reinhardtii (see [26] and ref. therein; [27]).
This activity is probably present in protists and other
plants as Medicago sativa, according to sequences depos-
ited in Genbank protein database. In bacteria, the degra-
dation of histidine to glutamate provides the organism
with a source of carbon and nitrogen (see [28] and ref.
therein). Fungi apparently lack urocanase activity, as
revealed by the absence of genes encoding the enzyme in
fungal sequence resources. The enzyme activity has been
specifically searched in Aspergillus nidulans [28]. This fun-
gus synthesizes an active histidase enzyme but cannot use
histidine as the sole carbon source, which has been attrib-
utable to the lack of an active urocanase; histidine is quan-
titatively converted to urocanate, which accumulates in
the extracellular medium.

Among the sequences recovered, we also observed a type
C fructose-bisphosphate aldolase (FBA). This type of
enzyme belongs to the Class I aldolase family, whose
members have been observed mainly in higher eukaryo-
tes. Fungi FBAs belong to the Class II aldolase family, pre-
senting little similarity with proteins from Class I (Rutter,
1964 in [29]). In addition, we did not find another FBA in
B. emersonii transcript database.

Three different putative proteins from B. emersonii, origi-
nated from full length cDNA sequences, do not have
orthologues in other fungi but are found in animals and
plants, and present similarity with the MtN3 family of
proteins according to Pfam database. Although the molec-
ular function of the proteins that compose this family is
unknown, they are almost certainly transmembrane pro-
teins. One of the B. emersonii putative proteins contains
six transmembrane regions and one MtN3 domain
[BeDB: BeAS884], another presents seven transmembrane
regions and two MtN3 domains [BeDB: BeAS315], and

the third one contains five transmembrane regions and
one MtN3 domain [BeDB: BeZSPN18F02], according to
the Interpro program package.

We also identified a novel sequence not previously identi-
fied in fungi: a singlet encoding a gamma-SNAP protein
(soluble N-ethylmaleimide-sensitive factor-attachment
protein). Whereas alpha-SNAP homologues have been
identified in yeast, plant, mollusk and insect cells,
gamma-SNAP homologues have been found only in
mammals, plants and more recently Dictyostelium discoi-
deum [30]. In addition, a cDNA encoding an alpha-SNAP
homologue was also observed in B. emersonii database,
showing that this fungus has the two different types of
SNAP proteins.

Finally, among B. emersonii-animal, B. emersonii-plant and
B. emersonii-animal-plant shared sequences, the highest
percentage of matches (approximately 65%) was achieved
for sequences encoding proteins classified in unknown
processes. In fact, the functional characterization of these
sequences remains one of the most important challenges
in post-transcriptome research.

Sequence divergence comparison between B. emersonii 
and N. crassa or U. maydis
We also carried out a comparative analysis to identify B.
emersonii putative genes with a higher degree of similarity
to animal or plant genes than to their fungal counterparts.
The S' values, obtained for pairs of putative orthologues
from N. crassa/U. maydis and B. emersonii, were plotted
with their best matches in animal or plant sequences.
Pairs of hits with highest differences in S' values in two or
more comparisons were chosen for further investigation
(Figure 3). Four apparently divergent sequences were
identified and three of these were, unexpectedly, more
divergent in B. emersonii than in N. crassa and U. maydis
(Table 5). None of the four sequences appeared related by
biological process, function or localization. In addition,

Table 3: Distribution of syntaxin family members in different main groups of organisms. The column with B. emersonii heading 
indicates the presence (yes) or absence (not found yet) of ESTs encoding the respective syntaxins in our libraries. SNARE proteins 
(including syntaxins) have been reclassified in two groups divided into five classes (see [41] and ref. there in). We have maintained the 
distribution according Sanderfoot et al. [24] to facilitate the comparison with our data.

SUBFAMILIES of SYNTAXINS and their ORTHOLOGS

PLANTS ANIMALS FUNGI (S. cerevisiae) B. emersonii

SYP1 Syn1 SSO1 and SSO2 Yes
SYP2 Syn7, Syn12 and Syn13 Pep12 and Vam3 Yes
SYP3 Syn5 Sed5p Yes
SYP4 Syn16 Tlg2p Yes

SYP5 and SYP6 Syn 8, Syn6 and Syn 10 Tlg1p Yes
SYP7 NO ORTHOLOGS NO ORTHOLOGS Yes
SYP8 Syn18 Ufe1p Not found yet
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two of them, encoding a putative Rbj-like protein and an
elongation factor 1 alpha long form, do not have clear
orthologous relationships.

Rbj-like or Rjl proteins are members of Ras-related GTP-
binding proteins. Rjl proteins have recently been identi-
fied as a new family, independent of the Rab family, to
which they were initially linked [31]. There is no evidence
for a role for these proteins in other organisms, except
chordates [31]. As no Rjl sequences were identified in
other fungi, we looked for family signatures in B. emersonii
deduced protein sequence, and we also checked N. crassa,
animal and plant data, which had been collected as ortho-
logues.

In the putative protein from B. emersonii, four of the fam-
ily characteristics identified by Nepomuceno-Silva et al.

[31] were observed: 1) the substitution of the canonical
glutamine residue in the third GTP binding domain; 2)
the alteration of the DTAGQE motif to DMAGDR (it is the
first motif with E to R substitution); 3) the percent identity
with other Rjl proteins (between 37 and 40%), with only
one exception; 4) the absence of a prenylation motif.
Using a hidden Markov Model [32,33], a signal peptide
prediction was made but with low probability (58 %),
and no signal anchor was predicted, as is expected for Rjl
proteins.

The apparent N. crassa ortholog [Genbank: EAA33910]
and its best matches among animal and plant data were
GTPases from the Rab family. Likewise, the best match of
B. emersonii Rjl in the plant database was a Rab protein
[Genbank: AK062838], in agreement with the absence of
Rjl records in land plants. In contrast, when compared

Pairwise score comparison between fungal orthologues and animal and plant sequencesFigure 3
Pairwise score comparison between fungal orthologues and animal and plant sequences. Black dots on the plots 
represent score-pairs with a difference in bit score equal or higher than 150.
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Table 4: Putative identification of 37 B. emersonii-animal-plant shared sequences. See legend of Table 1 for details of the notes.

CONTIG PROCESSa SUBPROCESS DESCRIPTION Sc ORGANISM

BeE30N11D12 metabolism regulation of transcription similar to PHD finger protein 16 61 Animals and 
plants

BeE30N11E01 metabolism protein amino acid phosphorylation receptor tyrosine kinase 54
BeE30N16H02 metabolism, response 

to stimulus
electron transport, phototransduction GA20503-PA 58

BeE90N24F09 metabolism, signal 
transduction

protein amino acid phosphorylation, 
intracellular signaling cascade

CG3216-PB, isoform B 176

BeAS682 unknown hypothetical protein DDB0204189 51
BeAS1783 unknown similar to RIKEN cDNA 

3110006P09
60

BeAS701 unknown similar to bicaudal-C 59

BeAS1800 metabolism histidine catabolism Probable urocanate hydratase 
(EC 4.2.1.49)

307 Animals, plants 
and protists

BeAS1219 metabolism proteolysis and peptidolysis aminoacylase 1 134
BeAS3841 metabolism regulation of transcription, DNA-

dependent
hypothetical protein DDB0188202 96

BeE120N26E05 metabolism nucleoside triphosphate Nucleoside diphosphate kinase, 
putative*

80

biosynthesis
BeE90N22D09 development similar to transcription factor IIB 321
BeE90N06A09 unknown Zgc:101782 76
BeE30N21F06 cell growth, 

metabolism
vesicle-mediated transport, lipid 
metabolism

similar to copine VIII 121

BeE90N13D061 response to stimulus defense response similar to Interferon-induced 
guanylate-binding protein

158

BeE90N21E02 metabolism cytoskeleton organization and 
biogenesis

LOC398504 protein 64

BeAS3151 unknown ENSANGP00000015780 105
BeAS8841 unknown MTN3 89
BeAS1905 unknown fiber protein Fb27 95
BeAS891 unknown similar to NN8-4AG* 134
BeE120N08C01 unknown similar to B9 protein 124
BeE60N19G081 unknown rudimentary enhancer 75

BeZSPN11C071 cell growth, transport N-ethylmaleimide sensitive 
fusion protein attachment 
protein gamma

70 Animals and 
plants (but also 

described in 
fungi)

BeZSPN17H061 cell growth transport YfnA 86
BeAS17701 metabolism intracellular protein transport Fructose-bisphosphate 

aldolase C
416

BeG30N01B091 metabolism nucleotide catabolism 5'-nucleotidase, cytosolic III 103
BeAS16561 metabolism protein amino acid phosphorylation RAC-gamma serine/threonine-

protein kinase*
62

BeAS1542 metabolism electron transport Acad8 protein* 92
BeAS1889 metabolism amino acid metabolism glutamate dehydrogenase 193
BeZSPN18F021 unknown putative NEC1 Mtn3 family 92
BeE60N17G06 unknown WD-repeat protein 71

BeAS111 metabolism, signal 
transduction

protein amino acid phosphorylation, 
intracellular signaling cascade

guanylyl cyclase 191 Animals, plants 
and bacteria

BeE90N18H07 metabolism porphyrin biosynthesis Putative oxygen-independent 
coproporphyrinogen III oxidase

106

BeE90N21G11 signal transduction putative membrane protein 151
BeE90N24F08 unknown Protein of unknown function 

UPF0061
124

BeAS585 unknown aminotransferase, putative 59
BeAS64 unknown hypothetical protein LOC554117* 138
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with animal data, B. emersonii Rjl aligned better with an
Rbj protein from Tetraodon nigroviridis [Genbank:
DAA01331], which is the expected Rjl ortholog in chor-
dates.

The elongation factor 1-α (EF1-α), a core member of the
protein biosynthesis machinery, is ubiquitous in eukaryo-
tes and in prokaryotes, where it is named EF-Tu [34]. B.
emersonii presents an EF-like or EFL protein, which is dif-
ferent from the canonical EF1-α identified in the majority
of the organisms [14]. Due to this fact, we expected to
sample the B. emersonii divergent sequence encoding the
EFL protein during this procedure. Although EFL and EF1-
α probably perform similar roles, they are clearly different
proteins, and EFL proteins form a completely separated
branch in molecular phylogenies. Moreover, taxa
genomes with EF1-α lack EFL, suggesting that EFL has
replaced eEF-1 α several times independently [34]. How-
ever to our surprise, a first data processing revealed no sig-
nificant S' difference (ΔS') between the pair B. emersonii
EFL/plant protein match, and N. crassa/U. maydis EF1-α/
plant protein matches, even though these two fungi
present the canonical form of EF1-α. The explanation for
this unexpected result is that Oryza sativa genome appar-
ently contains two different genes [Genbank: AK110624
and AK107366], one that matched with the sequence
encoding B. emersonii EFL, and another that matched with
the fungal N. crassa and U. maydis EF1-α. In addition, O.
sativa genome also presents a third gene encoding the
canonical EF1-α [Genbank: AK103738] usually found in

plants. The first two rice sequences do not seem to be con-
taminant products, as no positive results were obtained
using blastn against Genbank non-redundant or dbEST
databases. Altogether, O. sativa genome seems to contain
three genes encoding divergent EF1-α. Whether or not all
three sequences actually represent rice genes requires clar-
ification.

Another assembled sequence shown to be divergent in B.
emersonii encodes a mitochondrial ADP/ATP translocase.
This translocase, also known as a mitochondrial adenine
nucleotide translocator (ANT), catalyses the exchange of
ATP and ADP between mitochondria and cytosol, and
seems to participate in mitochondrial events that control
cell death (see [35] and ref. therein.) The divergence of B.
emersonii sequence was only observed when the compari-
son was carried out against the plant database. A molecu-
lar phylogeny based on neighbor-joining distances
following a Poisson model resolved B. emersonii sequence
in a branch separate from other fungi, which diverged
closer to plant than to animal counterparts (data not
shown). This tree is in agreement with the differences
revealed through local alignments. Curiously, B. emersonii
branch was shared with three other sequences from evolu-
tionarily distant organisms: Dictyostelium discoideum [Ref-
Seq:XM_642074], Phytophtora infestans [Genbank:
AAN31467] and Oryza sativa [Genbank: AK060330]. In
addition, we identified three more O. sativa unigenes
together with the above sequence: the canonical plant
sequence [RefSeq:XP_467495], one that branched with

Table 5: Selected divergent and conserved orthologs from B. emersonii according to pairwise bit score plots. ΔS' = difference in bit score 
value. For each comparison plus and minus signs represent conserved and divergent B. emersonii sequences, respectively. Black circles 
identify a difference between N. crassa or U. maydis and B. emersonii scores when compared to animal or plant sequences (Nc A, Nc P, 
Um A and Um P, respectively). The database accession numbers below the circles correspond to sequences from N. crassa/U. maydis 
and animal/plant putative orthologs in each comparison. Data were selected from the plot in figure 3 and re-evaluated by comparison 
with other fungal vs. animal/plant scores. Database assembled sequences or accession numbers of B. emersonii and animal/plant 
putative orthologous sequences (same order as shown in the table) are: B. emersonii, [BeDB:BeAS1253, BeAS1274, BeAS745, and 
BeAS895]; animal data, [Genbank:DAA01331, AAB00075, AK060330, and EMBL: CAF97202]; plant data, [Genbank: AK062838, 
AK110624, and AK073448]

DESCRIPTION Δ S NcA NcP UmA UmP

● ●

Rbj-like protein -198 Genbank: EAA33910 Genbank: EAA33910
-193 Genbank: AAH45014 Genbank: AB018117

● ●

elongation factor 1 -407 Genbank: EAA35632 Genbank: EAK82108
alpha long form -416 Genbank: AAB00075 PRF:2021264A

● ●

ADP/ATP translocase -186 PIR:XWNC Genbank: EAK82103
-324 DDBJ: AK073448 DDBJ: AK073448

● ●

2-amino-3-
carboxymuconate-

231 Genbank: EAA30585 Genbank: EAK85652

6-semialdehyde 
decarboxylase

264 EMBL: CAF97202 RefSeq:NM_134372
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fungi [Genbank: AK110815], and another very similar to
a U. maydis sequence [Genbank: AK108179], which
remained unresolved as its putative fungal ortholog.

Finally, we found sequences encoding a putative 2-amino-
3-carboxymuconate-6-semialdehyde decarboxylase or
ACMSD (EC 4.1.1.45), an enzyme involved in the tryp-
tophan-niacin pathway in eukaryotes. There are few
eukaryotic and even fewer prokaryotic sequences known.
Fungal sequences are poorly characterized, and they are
apparently absent from plants. Moreover, we could
observe that some bacterial sequences diverged with the
eukaryotic counterparts in a molecular phylogeny con-
structed with the same method used for the putative ANT
(data not shown). This observation suggests the possibil-
ity of lateral gene transfer, as proposed by Muraki et al.
[36]. B. emersonii deduced protein appears to have the two
conserved motifs described for ACMSD proteins by the
same authors, even though the motifs possess clear differ-
ences from those found in fungal homologues.

Discussion
We carried out a comprehensive comparative EST analysis
that identified one hundred and sixty-six expressed
sequences from the aquatic fungus B. emersonii encoding
putative proteins not previously reported in other fungi.

Among the ESTs with significant similarity to animal
sequences, we found assembled sequences encoding
enzymes involved in coenzyme B12-dependent propionyl-
CoA metabolism. Propionate, the second most abundant
fatty acid in soil, is formed by fermentative processes from
carbohydrates and several amino acids [37]. Propionate is
converted to propionyl-CoA, which is also formed by oxi-
dation of odd-chain fatty acids and several amino acids,
and then converted to succinyl-CoA that then enters the
central metabolism. This pathway is used in diverse meta-
bolic processes and homologues of intervening enzymes
were found within archaeal, bacterial and eukaryal
genomes, but not in plants or fungi. In mammals, this
route is employed in the catabolism of valine, isoleucine,
methionine, threonine, thymine, cholesterol, as well as
odd-chain fatty acids [38], and defects in some of the
enzymes involved lead to the rare but severe inherited dis-
ease methylmalonyl aciduria [17].

Propionate is generally toxic to fungi and bacteria, and
this is the reason why it is widely used as a preservative
[39]. Despite its toxicity, many bacteria and fungi are able
to use propionate as carbon and energy sources under aer-
obic conditions, using an alternative pathway to that
mentioned above, the "methyl citrate cycle" that catalyses
the oxidation of propionate to pyruvate.

Fungi such as S. cerevisiae and Aspergillus nidulans seem to
lack cobalamin-dependent functions and therefore can-
not use the methyl-malonyl-CoA pathway [18]. Leadley et
al. [18] suggested that the maintenance of this pathway in
proto-eukaryotes would have meant a high evolutionary
cost, due to the need to preserve also the enzymes capable
of producing coenzyme B12, and at the same time, the
existence of other pathways for propionate utilization
may have superceded the selective pressure for preserving
this metabolic route.

The question is why B. emersonii would express coenzyme
B12-dependent enzymes under the conditions tested. The
presence in archaea, eubacteria and animals of coenzyme
B12 and coenzyme B12-dependent enzymes seems to indi-
cate that the conservation of these functions is important
to diverse processes and this principle can also be applied
to fungi. Despite the absence of genes encoding cobala-
min-dependent proteins and enzymes of coenzyme B12
biosynthesis in the fungal genomes sequenced, pathways
involving this coenzyme could be active under conditions
not frequently tested in other fungi whose genomes have
not been sequenced yet. In fact, some of B. emersonii ESTs
encoding these enzymes were isolated from a cDNA
library constructed with mRNA isolated from cells
exposed to high concentrations of cadmium. Differently
from cadmium, several transition metals, such as cobalt,
play a role as catalysts in a variety of enzymatic reactions.
These metals, which are normally useful to the cells, can
be toxic when in excess. Thus, many molecular mecha-
nisms for cell detoxification have been developed. Some
of these mechanisms are promiscuous, being responsible
for detoxification of more than one of these heavy metals
[40]. In this sense, we cannot rule out the possibility that
some B. emersonii genes induced by exposure to cadmium
could be involved in cobalt metabolism.

Our analysis has also shown eleven sequences associated
to flagella-related proteins expressed in B. emersonii and
animals, nine of them also present in green algae. The
absence of these sequences from fungi and plant data-
bases was expected, as a consequence of the bias in the
most investigated species, which mainly belong to late-
diverging fungi and land plants. Thus, B. emersonii could
be a good model to study processes related to flagella
structure and movement, probably contributing to the
characterization of differences between animals and other
flagellated cells.

Comparison of B. emersonii ESTs with plant sequences
revealed two assembled sequences with high similarity to
genes found only in plants, but encoding proteins that
belong to families with members also in animals and
fungi: a putative Isp4 protein (an oligopeptide trans-
porter) and a putative syntaxin 71 (a member of SYP7
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family of protein receptors). Oligopeptides can be used as
source of amino acids, nitrogen and carbon, and their
transporters have been documented in bacteria, fungi and
plants. The identification of multiple OPTs in Arabidopsis,
with tissue-specific expression patterns, supports the idea
of different functional roles for these transporters, e. g.,
regulators of hormone activity in hormone-peptide conju-
gates [22]. There is also evidence indicating that members
of other peptide transporter family, the PTR, have a role in
plant growth and development. Thus, it is possible that
the putative OPT found in B. emersonii has a specific func-
tion, different from those described in other fungi, as reg-
ulation of growth and differentiation.

In this same context, we can include the matches of B.
emersonii ESTs with two plant receptors associated with
the control of proliferation and development in plants.
Even though the alignments extend over a conserved
region in the plant sequences, domains characteristic of
the assignments do not overlap. Consequently, B. emerso-
nii proteins could be involved in completely different
processes. Further studies will be necessary to clarify this
hypothesis.

The syntaxin family of proteins is well represented in B.
emersonii transcriptome. We found representatives for all
except one (SYP8) of the defined families [24] (Table 3).
The group included syntaxin 71, a member of SYP7 fam-
ily, which seems exclusive of plants. Such broad represen-
tation suggests that syntaxin 71 could have specific
functions in B. emersonii, perhaps related to functions
developed in plants.

Members of the syntaxin family are known to play an
important role in the fusion of transport vesicles with spe-
cific organelles [23], and specifically SYP7 proteins seem
to be involved in transport between the ER and the Golgi
apparatus [41]. Interestingly, membrane transport and
vesicle rearrangement have critical importance during the
sporulation stage of B. emersonii life cycle [42], and several
ESTs related to this function were exclusively isolated
from sporulating cells (see [43] GO:0006886 intracellular
protein transport), which includes the EST encoding the
possible syntaxin 71.

B. emersonii-animal-plant common sequences included an
urocanase, an enzyme with no records in sequenced fun-
gal genomes and which could be indicative of B. emerso-
nii's ability to use histidine as a carbon source. The
presence of sequences encoding enzymes possibly
involved in the catabolism of valine, isoleucine, methio-
nine and threonine (such as the enzymes that are active in
coenzyme B12-dependent propionyl-CoA metabolism),
and enzymes possibly involved in the catabolism of histi-
dine, suggest that B. emersonii metabolism might be

directed towards amino acid catabolism, as a source of
carbon. Early studies in chytrids indicated distinct roles
for some amino acids, other than serving as nitrogen
source or protein building blocks. For instance, certain
amino acids have been shown to be effective in initiating
growth on sugars different from glucose, such as mannose
and fructose, in Allomyces macrogynus cultures, presumably
supplying both carbon and nitrogen sources [44].

An assembled sequence encoding a FBA type C, a member
of class I FBA, was also found in our analyses. FBAs are
divided into two non-related protein classes: Class I FBA,
not found in fungi but with widespread distribution in
other eukaryotes and also found in prokaryotes, and Class
II FBA, identified mainly in eubacteria and also in eukary-
otes, including fungi [29,45]. Although the scattered taxo-
nomic distribution of FBA classes does not have a
consensual evolutionary explanation yet, gene duplica-
tion events and replacement of one paralog by the other
are events that could have occurred. For instance, there is
some evidence for the existence of an ancestral class II
aldolase, from the endosymbiosis with a cyanobacterium,
which could have been replaced by a class I aldolase in red
and green algae, as well as in higher plants [29,46]. Class
II FBA genes of ascomycetes are also of eubacterial origin,
and probably consequence of endosymbiosis with mito-
chondria ancestors [47]. Thus, a gene replacement event
such as the proposed for red and green algae and land
plants could similarly be proposed for the origin of B.
emersonii FBA gene.

Even more interesting than the presence of a member of
class I FBA in B. emersonii, could be the type observed, the
C type, which is supposed to have evolved after divergence
of the B type [48]. In fact, no B type FBA sequences were
observed among B. emersonii ESTs. One possible explana-
tion would be that the C type FBA could have replaced the
B type. Another explanation, perhaps the simplest one, is
that the B type sequence was not found among B. emerso-
nii sequenced ESTs, but the gene is present in the genome.
However, why both types of FBAs would be expressed in
B. emersonii is not clear yet. In vertebrates, Class I com-
prises three types of isozymes expressed in different tis-
sues: aldolase A (muscle type, also expressed in brain), B
(liver type) and C (brain type). As described for other
enzymes of the glycolytic pathway, aldolases A and C dis-
play activities different from that observed during glucose
metabolism, as they regulate the stability of the light neu-
rofilament mRNA through their ribonuclease activity
[49]. A specialized function for the C type aldolase in B.
emersonii should not be ruled out.

In addition, two putative genes encoding the alpha and
gamma-SNAPs were observed in B. emersonii. Until now,
no gamma-SNAPs have been described in fungi, B. emer-
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sonii being the first fungus in which this gene has been
identified. However, the presence of both alpha and
gamma-SNAPs in eukaryotic cells seems to be the rule,
with fungi being the exception, considering that five phy-
logenetically distant species are known to possess both
alpha and gamma-SNAP: D. melanogaster, B. taurus, H.
sapiens, A. thaliana and D. discoideum [30]. The protein
alpha-SNAP is essential for membrane traffic because it
allows efficient NSF/SNARE interaction. Instead of this
direct function, gamma-SNAP could have a regulatory role
in membrane fusion. It was also suggested a role for
gamma-SNAP in mitochondrial dynamics, contributing
as an adaptor in the attachment of mitochondria to the
cytoskeleton [50]. Our results in B. emersonii indicate that
D. discoideum is not the only simple eukaryote containing
both alpha and gamma-SNAPs.

As a second approach to discover non-typical fungal genes
in B. emersonii, we carried out a comparative analysis with
the expressed sequences of this aquatic fungus and other
fungal sequences. We intended to be conservative at the
time of selection and very few sequences were identified.
Likewise, several difficulties arose due to the complexity
of dealing with large multigene families. Indeed, two of
the four selected sequences initially collected were not
orthologues, and the relationship between the other two
is not evident, but we decided to include these sequences
in our analysis because the information extracted was also
relevant. In fact, even though the sequences encoding the
Rjl protein were not reported in fungi or plants, we did
not detect them among the 105 B. emersonii-animal-
shared sequences selected in our first approach. The diver-
gence found for the other three cases (EF1α, ADP/ATP
translocase and aminocarboxymuconate semialdehyde
decarboxylase) is also noteworthy, because it could reflect
high evolutionary rates, gene duplication and replace-
ment (as suggested for EF1α in [34]), gene conversion, or
horizontal gene transfer from prokaryotes to eukaryotes
or among eukaryotes, which seems to be more common
that previously thought (see [31]).

This collection of selected B. emersonii assembled
sequences represents the result of approaches that use
comparative EST analyses to address differences and sim-
ilarities between chytrids and other eukaryotes (other
fungi, animals and plants). The results of such analyses
will probably suffer modifications when more fungal
sequences are available. Specifically, other chytrid and
zygomycete sequences will contribute to define retained,
lost and divergent genes. Moreover, at least part of the
borderline sequences (with an Evalue between 10-3 and
10-5 against ad hoc fungal database), which could be true
divergent homologues, could constitute a group of inter-
est to help understand phylogenetic relationships among
fungi.

Conclusion
Through two different approaches involving comparative
sequence analyses, and using computational tools and
manual revision, we identified 162 protein-coding
sequences from B. emersonii previously described in ani-
mals (such as coenzyme B12-dependent propionyl-CoA
pathway members, and proteins related to flagella struc-
ture or movement), in plants (such as protein receptors, a
putative member of small olipeptide transporter, and a
SYP7 family member of syntaxins), and in animals and
plants (such as an urocanase, a fructose-bisphosphate
aldolase (FBA) type C, members of the MtN3 family and
a gamma-SNAP representative). We also found 4
sequences from B. emersonii, which were identified in a
fungal sequence comparison as not found or highly diver-
gent from other fungal species: a Rbj-like protein (similar
to animal proteins), an EF-like protein (dispersely distrib-
uted in taxa, already described in [14]), an ADP/ATP
translocase (similar neither to plant nor to animal
sequences) and a 2-amino-3-carboxymuconate-6-semial-
dehyde decarboxylase (different from fungal sequences,
poorly characterized). When the selected ESTs were classi-
fied according to the biological processes in which they
could be involved, cell growth and maintenance, signal
transduction and metabolism resulted as the biological
processes most represented. Some sequences selected
were expected, based on the knowledge about chytrids,
like those associated to specific structures not found in
other fungi (e. g., flagellar-associated ESTs). Thus, B. emer-
sonii seems to be an interesting model to study flagella-
associated structures or functions.

Among the ESTs exclusively isolated from sporulating
cells, we collected sequences associated to membrane
transport, such as syntaxin 71. Membrane fusion and ves-
icle rearrangement are crucial events in B. emersonii sporu-
lation, when cytokinesis occurs. A set of core SNAREs is
apparently sufficient to mediate most intracellular vesicle
fusion events, although multicellular organisms would
express additional SNARE proteins for specific functions
associated with the body complexity [51]. Thus, proteins
like syntaxin 71 are good candidates to function as addi-
tional SNARE proteins in the transition of unicellular
multinucleated zoosporangia to zoospores during B.
emersonii life cycle.

Other collected ESTs were unexpected, like those involved
in specific metabolic pathways, such as sequences
involved in conversion of propionate and histidine to
glutamate. We hypothesize that alternative pathways lead-
ing to the use of amino acids and other substrates as car-
bon and nitrogen sources could have been lost in late-
diverging fungi and retained in basal fungi.
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Finally, a large number of sequences selected by the first
approach were not classified in a known process, which
suggests that other structures or biological processes not
identified yet can be shared by B. emersonii, animals and
plants.

Methods
B. emersonii EST database
All the information concerning B. emersonii ESTs, such as
construction and nucleotide sequencing of cDNA librar-
ies, removal of contaminant sequences, and the annota-
tion process were previously described [14]. The
sequences are public and can be obtained from National
Center for Biotechnology Information (NCBI) EST data-
base (dbEST) [52] [dbEST:CO961503 – CO978552] or at
the Blastocladiella emersonii database (BeDB) in the project
website [43].

Approach 1. Database source and construction, and 
pipeline for sequence comparative analysis
We constructed three databases ad hoc, representing fun-
gal, animal and plant datasources, using the NCBI for-
matdb program to format them before carrying out local
blast search. Protein sequences from eight distinct fungi
and nine different animal species were downloaded from
Genbank protein database and represent fungal and ani-
mal datasets, respectively. Considered species for fungal
database were Ustilago maydis, Saccharomyces cerevisiae,
Schizosaccharomyces pombe, Candida albicans, Aspergillus
nidulans, Neurospora crassa, Gibberella zeae and Mag-
naporthe grisea. For animal database were chosen Homo
sapiens, Mus musculus, Tetraodon nigroviridis, Anopheles
gambiae, Danio rerio, Rattus norvegicus, Xenopus leavis, Dro-
sophila melanogaster and Caenorhabditis elegans. A low pro-
portion of plant protein data is found in public
databanks, whereas EST collections have a more complete
information set, even though redundant. Consequently,
we based our plant database in unigene dataset (gene-ori-
ented clusters of transcript sequences) from five plants
(Arabidopsis thaliana, Lycopersicon esculentum, Glycine max,
Zea mays and Oryza sativa) obtained also from Genbank.
All data were collected between October 10 to 15, 2004,
and final annotations and comparative analyses were
updated up to April, 2006. Database sizes ranged from 40
to 138 million residues. When choosing species to incor-
porate into the datasets, the number of sequences depos-
ited in Genbank and the biological representation into the
group were considered. Searches throughout databases
were carried out using the NCBI stand-alone blastall pro-
gram. BLASTX and tBLASTX algorithms [53] were used for
searching against protein databases and unigene data-
bases, respectively. Linux tools and scripts were used to
deal with data sets and blast outputs, and extract specific
text/data lines of interest. The pipeline is summarized in
Figure 4. Database sizes ranged from ~40 million to 138

million of amino acids and we used an Evalue ≤ 10-5 as the
cut-off to assign significance to best hit in the alignments.
Final data to be analysed (indicated as "B. emersonii-ani-
mal shared sequences", "B. emersonii-plant shared
sequences" and "B. emersonii-animal-plant shared
sequences") were obtained after their filtration against
species not included in our databases (fungi, plants and
animals) to remove those sequences initially considered
as not found in these groups, named as contaminants in
this study. Hits found also in bacteria were specially
checked for the presence of a poly A+ tail. Taking account
that after the initial construction of the ad hoc databases
several new fungal genomes became publicly available
[6], we constructed two new fungal databases (protein
and nucleotide bases) to proceed with the filtration. Data
were downloaded from four of the several centres that
have released genome sequences [6]: the Joint Genome
Institute (JGI) [54], the Broad Institute [55] the University
of Oklahoma [56] and the NCBI [57]. The complete list of
species used to construct fungal databases is in Table 6. A
local search against the new fungal bases was made using
BLASTX or tBLASTX algorithms. We also used a client
server program (blastcl3 program) and BLASTX or
tBLASTX algorithms for remote search against non-redun-
dant (nr) and dbEST-others databases from Genbank
[58], respectively. Considering that databases at Genbank
are larger than our ad hoc databases, we adjusted the E
threshold to a less stringent value (~1 to 6E-4), maintain-
ing S' constant (~50) and following the equation E = mn2-

S' [53]. Standalone blast and client server blast packages
were downloaded from NCBI BLAST ftp site [59].

Approach 2. Database source and construction, and 
pipeline for comparative sequence analysis
Two databases were constructed using N. crassa and U.
maydis protein sequences downloaded from NCBI data-
base. N. crassa and U. maydis were chosen in this study as
representatives of ascomycetes and basidiomycetes with
completely sequenced genomes, respectively. Putative
orthologues of B. emersonii in N. crassa or U. maydis were
obtained by comparing B. emersonii full-length sequences
against the two fungal databases using BLASTX program.
The pipeline is summarized in Figure 5. We chose not to
proceed with a bidirectional best hit (BBH) comparison to
select orthologous sequences because it could produce
equivocal results, since B. emersonii transcriptome data are
incomplete. Instead, we carried out a final manual revi-
sion of the resulting divergent sequences to exclude para-
logues from our analysis. We accepted as homologues B.
emersonii sequences that presented at least 80% of overlap
with the corresponding protein sequences in N. crassa or
U. maydis, and an Evalue ≤ 10-5 as the cut-off to assign sig-
nificance to best hit in the alignments. Full-length coding
sequences were estimated as previously reported [14]. We
based our analysis on the procedure adopted by Braun et
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Table 6: Fungal expressed sequences used for constructing the two ad hoc fungal databases. Two new protein and nucleotide databases 
were used to filter out sequences not previously matched with fungal data belonging to the original fungal database. The nucleotide 
database included only unigenes, ESTs and mitochondrial sequences.

Species/Strain Data Lineage Sequencing/Source center

Ajellomyces capsulatus protein Ascomycota/Eurotiomycetes NCBI
Aspergillus flavus protein Ascomycota/Eurotiomycetes NCBI
Aspergillus fumigatus Af293 protein Ascomycota/Eurotiomycetes FC/JGI
Aspergillus nidulans FGSC A4 protein Ascomycota/Eurotiomycetes Broad Institute/JGI
Botrytis cinerea protein Ascomycota/Leotiomycetes Broad Institute
Candida glabrata CBS138 protein Ascomycota/Saccharomycetes Institut Pasteur/JGI
Candida guillermondii protein Ascomycota/Saccharomycetes Broad Institute
Candida lusitaniae protein Ascomycota/Saccharomycetes Broad Institute
Chaetomium globosum protein Ascomycota/Sordariomycetes Broad Institute
Coccidioides immitis protein Ascomycota/Eurotiomycetes Broad Institute
Coprinus cinereus protein Basidiomycota/Homobasidiomycetes Broad Institute
Cryptococcus neoformans H99 protein Basidiomycota/Heterobasidiomycetes Broad Institute
Cryptococcus neoformans JEC21 protein Basidiomycota/Heterobasidiomycetes TIGR/JGI
Debaryomyces hansenii CBS767 protein Ascomycota/Saccharomycetes CNRS, Genoscope/JGI
Encephalitozoon cuniculi GB-M protein Microsporidia Genoscope, Univ. Blaise Pascal/JGI
Eremothecium gossypii protein Ascomycota/Saccharomycetes Basel Univ., Syngenta AG/JGI
Fusarium graminearum protein Ascomycota/Sordariomycetes Broad Institute
Gibberella zeae PH-1 protein Ascomycota/Sordariomycetes International Consortium/JGI
Kluyveromyces lactis NRRL Y-MHO protein Ascomycota/Saccharomycetes Univ. Claude Bernard, Genoscope, Institut Pasteur/

JGI
Magnaporthe grisea 70–15 protein Ascomycota/Sordariomycetes Broad Institute/JGI
Nectria haematococca protein Ascomycota/Sordariomycetes Joint Genome Institute
Neurospora crassa protein Ascomycota/Sordariomycetes Broad Institute
Phanerochaete crysosporium protein Basidiomycota/Homobasidiomycetes Joint Genome Institute
Pichia stipitis protein Ascomycota/Saccharomycetes Joint Genome Institute
Rhizopus oryzae protein Zigomycota/Zygomycetes Broad Institute
Saccharomyces cerevisiae protein Ascomycota/Saccharomycetes International Consortium/JGI
Schizosaccharomyces pombe 972 h protein Ascomycota/Schizosaccharomycetes Sanger Institute, Cold Spring Harbor Laboratory/JGI
Sclerotinia sclerotiorum protein Ascomycota/Leotiomycetes Broad Institute
Stagonospora nodorum protein Ascomycota/Dothideomycetes Broad Institute
Trichoderma reseei protein Ascomycota/Sordariomycetes Joint Genome Institute
Ustilago maydis protein Basidiomycota/Ustilagomycetes Broad Institute
Yarrowia lipolytica CLIB122 protein Ascomycota/Saccharomycetes CNRS, Genoscope/JGI

Ajellomyces capsulatus ESTs Ascomycota/Eurotiomycetes Washington University/NCBI
Aspergillus flavus unigene Ascomycota/Eurotiomycetes University of Oklahoma
Botrytis cinerea mitochondrial Ascomycota/Leotiomycetes Broad Institute
Candida tropicalis mitochondrial Ascomycota/Saccharomycetes Broad Institute
Coccidioides immitis mitochondrial Ascomycota/Eurotiomycetes Broad Institute
Coprinus cinereus ESTs Basidiomycota/Homobasidiomycetes Patricia Pukkila, Univ. North Carolina Chapel/Broad 

Institute
Coprinus cinereus unigene Basidiomycota/Homobasidiomycetes University of Oklahoma
Cryptococcus neoformans 184A ESTs Basidiomycota/Heterobasidiomycetes University of Oklahoma
Cryptococcus neoformans B3501 ESTs Basidiomycota/Heterobasidiomycetes University of Oklahoma
Cryptococcus neoformans H99 ESTs Basidiomycota/Heterobasidiomycetes University of Oklahoma
Fusarium sporotrichiodes unigene Ascomycota/Sordariomycetes University of Oklahoma
Fusarium verticillioides mitochondrial Ascomycota/Sordariomycetes Broad Institute
Histoplasma capsulatum mitochondrial Ascomycota/Eurotiomycetes Broad Institute
Laccaria sp. ESTs Basidiomycota/Homobasidiomycetes Joint Genome Institute
Magnaporthe grisea mitochondrial Ascomycota/Sordariomycetes Broad Institute
Neurospora crassa mitochondrial Ascomycota/Sordariomycetes Broad Institute
Neurospora crassa unigene Ascomycota/Sordariomycetes University of Oklahoma
Rhizopus oryzae mitochondrial Zigomycota/Zygomycetes Broad Institute
Sclerotinia sclerotiorum mitochondrial Ascomycota/Leotiomycetes Broad Institute
Uncinocarpus reesii mitochondrial Ascomycota/Eurotiomycetes Broad Institute
Ustilago maydis mitochondrial Basidiomycota/Ustilagomycetes Broad Institute
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al. [8] for comparing the amount of divergence. Pairs of
putative orthologues from N. crassa/U. maydis and trans-
lated B. emersonii putative unique sequences were com-
pared using BLASTP or tBLASTP against animal or plant
databases, respectively, and the obtained bit scores (S')
were recorded. A score difference equal or higher than 150
(ΔS' ≥ 150) was chosen to consider proteins as divergent.
Divergent bit scores were re-evaluated by comparing them
to other fungal vs. animal/plant scores to exclude diver-
gences only proper to the two fungi initially considered.

Sequence annotation
To assign a putative identification to B. emersonii uniseqs,
we took into account BLASTX best-hit descriptions, or
subsequent alignments with an Evalue below the assumed
cut-off, resulting from sequence comparison against the nr

and dbEST-others databases at NCBI. We also considered
the biological process categories from Gene Ontology
Consortium (GO) [60] attributed to uniseqs after compar-
ison with sequences from curated databases (Swiss-Prot
and TrEMBL) available at ExPASy proteomics server of the
Swiss Institute of Bioinformatics (SIB) [61]. We main-
tained the GO structure we used in [14] for the classifica-
tion of B. emersonii ESTs. This classification is available at
[43]. However, GO classification is being upgraded con-
tinuously; upgrades can be checked in [60]. Other infor-
mation sources were also consulted (mainly InterPro [62]
and linked references, MIPS [63], Fantom3 [64] and Fly-
Base [65]) to refine the annotation.

Overview of the pipeline used in the EST comparative study, approach 1Figure 4
Overview of the pipeline used in the EST comparative study, approach 1. B. emersonii uniseqs were compared against 
animal and plant databases. aSequences from NCBI dbEST database [dbEST:CO961503 – CO978552]; bsequences from nine 
fungal species; csequences from eight animal species; dsequences from five plants species; esequences from species not included 
in our databases. See Methods section for details.
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