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Integrated single-cell and bulk RNA sequencing reveals CREM is 
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A B S T R A C T   

Background: Ulcerative colitis (UC) is an inflammatory bowel disease characterized by persistent 
colonic inflammation. Here, we performed a systematic analysis to gain better insights into UC 
pathogenesis. 
Methods: We analyzed two UC-related datasets extracted from the gene expression omnibus 
database using several bioinformatics tools. The primary cell types and key subgroups of primary 
cells associated with UC and differentially expressed genes (DEGs) between UC and control 
samples were identified. The molecular regulation of the key genes was also predicted. The gene 
ontology and Kyoto encyclopedia of genes and genomes enrichment analyses of marker genes of 
key cell subgroups and model genes were performed. The expression of key enriched genes was 
validated in 10 clinical samples using real-time quantitative polymerase chain reaction (RT- 
qPCR). 
Results: Monocytes were identified as the major cell type. Ten differentially expressed marker 
genes were obtained by intersecting the 3121 DEGs, 38 marker genes in major cell types, and 104 
marker genes in key cell subgroups. Four essential genes, associated with immune response, were 
obtained using support vector machine recursive feature elimination and least absolute shrinkage 
and selection operator analyses. The four essential genes were highly expressed in Cluster 
0 during differentiation. Validation of the four key genes in colonic mucosal biopsy specimens 
from 10 normal and 10 UC patients revealed that CREM was highly expressed in both the lesion- 
free sites and lesion sites colonic mucosa of UC patients compared with normal adults. 
Conclusions: We identified CREM involved in UC pathogenesis, which is expected to provide a new 
therapeutic target for UC.   
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1. Introduction 

Ulcerative colitis (UC) is a chronic, recurrent, nonspecific inflammatory intestine disease involving the colon and rectum. The 
etiology of UC remains unclear and may be related to immune dysregulation, genetic susceptibility, environmental influences, dietary 
stimuli, and dysbiosis of the gut microbes [1]. UC was previously considered a Western disease but is now becoming increasingly 
prevalent in Asia, Africa, and the Middle East and poses a serious risk to human health, generating a huge disease burden [2,3]. There is 
presently no cure for UC and medication only relieves the condition. The primary drugs used to treat UC include 5-aminosalicylic acid, 
steroid hormones, immunosuppressants, and biological agents [4,5]. Despite advances in treatment, only ~40% of patients achieve 
clinical remission by the end of one year, warranting the need to explore new treatment modalities [4]. Identifying key cells and genes 
involved in the pathogenesis of UC using bioinformatics tools (single-cell and bulk RNA sequencing) may provide new targets for 
treating UC. 

Although thousands of disease-associated variants have been identified using whole-genome sequencing, the molecular mecha-
nisms by which these variants drive specific diseases remain unknown. One of the main reasons for this is the limited knowledge of 
specific cellular and functional programs in which these genes are involved. Single-cell RNA sequencing (scRNA-seq) data provide a 
unique opportunity to address this problem [6]. scRNA-seq can provide RNA expression profiles of each cell independently and can 
help in identifying rare cells in heterogeneous cell populations. scRNA-seq has been used to study Crohn’s disease and colorectal cancer 
[7], Alzheimer’s disease [8], multiple sclerosis, asthma, idiopathic pulmonary fibrosis, coronavirus disease (COVID-19), and UC [6]. 
As of date, scRNA-seq has been used to identify the amplification of M-like cells, inflammatory monocytes, fibroblasts, and 
CD8+IL-17+ T cells in UC [9]. The scRNA-seq technology reveals subpopulations of cells that contribute to the pathogenesis of UC and 
provides new insights for linking genomes to pathology [10–13]. However, data integrating single cell and bulk RNA sequencing to 
explore UC pathology are still limited. 

Inspired by existing studies on immune-related biomarkers for UC, we conducted the first joint analysis of immune-related single- 
cell data and transcriptomic data to discover novel biomarkers for UC. In this study, we identified the major cell types and marker 
genes associated with UC pathogenesis and investigated the patterns of intercellular communication in UC. Furthermore, we validated 
the expression of the key genes in specimens from patients with UC and normal subjects. Based on our analysis of the functions of key 
genes, their expression during cell differentiation, and the manner in which differentially expressed transcription factors bind, we 
provide a theoretical basis that should help in obtaining further insights into the mechanisms driving UC. 

2. Materials and methods 

2.1. Data extraction 

UC-related datasets (GSE134649, GSE87466, GSE9686, and GSE10616) were extracted from the gene expression omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/). Datasets included in this study have to meet the following criteria: (1) The organism 
of samples is Homo sapiens. (2) The sample type is colon tissue. (3) dataset including UC and normal (negative control) samples (4) The 
dataset contains at least 3 samples per group. The GSE134649 dataset includes single-cell data for CD8+ cells from three UC and three 
normal samples, and the GSE87466 dataset includes data for 87 UC and 21 normal colon tissue samples. The GSE9686 dataset 
including 8 normal and 5 UC samples and the GSE10616 dataset including 11 normal and 10 UC samples were utilized to validate the 
expression and diagnostic value of key genes. 

2.2. Analysis of cell types and heterogeneity 

Quality control of the single-cell dataset (GSE134649) was performed using the “Seurat” R package (version 4.10). The exclusion 
criteria were shown as follows: (1) genes that could only be detected in 3 and fewer low-quality cells; (2) percent.mt ≥ 10%; (3) nCount 
<200. After screening for core cells based on the above conditions, ANOVA was used to analyze the top 2000 highly variable genes for 
subsequent identification of cell types. In order to observe whether there were obvious outlier samples, we performed dimensionality 
reduction on the samples. After normalizing the gene expression of core cells using a linear regression model, the available dimensions 
were filtered by the JackStraw function and the ScoreJackStraw function. The principal component analysis (PCA) analysis was 
implemented and the ElbowPlot method was used to further confirm the correctness of the selection of components. After that, the 
principal component was clustered using “tSNE” and cell clusters were annotated using the “SingleR” R package (version 1.6.1). The 
marker genes were screened using “FindAllmarkers” (min. pct = 0.2, only. pos = TRUE). 

The major cell types in the UC and control groups were compared using the “t-test,” and the cell subgrouping was re-performed 
based on gene expression of the major cell types using “UMAP.” The key cell subgroups were identified using correlation analysis, 
and the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses of marker genes of key cell 
subgroups were performed using the “clusterprofiler” R package (version 4.0.2) (p < 0.05, count >1) [14]. 

2.3. Analysis of the intercellular communication 

Cell communication was analyzed using the CellPhoneDB, which is a database of receptors, ligands, and their interactions. The 
ligand–receptor and polysomes were screened with the thresholds set as p ≤ 0.05, log2 mean (Molecule 1, Molecule 2) ≥0.1. 
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2.4. Screening of differentially expressed marker genes 

The differentially expressed genes (DEGs) between UC and control samples in the GSE87466 dataset were identified using the 
“limma” R package (version 3.48.3), with the threshold set as p < 0.05 and |log2fold change| >0.5 [15]. The DEGs were shown in the 
volcano map and heat map which were plotted by the “ggplot2” R package (version 3.3.5) and the “heat map” R package (version 
1.0.12), respectively [16]. 

The single sample gene set enrichment analysis (ssGSEA) score of marker genes in major cell types and key cell subgroups in UC and 
normal samples (GSE87466) were calculated using “gsva” (version 1.40.1) and compared using the “rank-sum” test [17]. Differentially 
expressed marker genes were identified by intersecting the DEGs and marker genes in major cell types and key cell subgroups. 

2.5. Functional enrichment analysis of differential expression marker-related genes (model genes) 

Weighted gene co-expression network analysis (WGCNA) is commonly used to analyze associations between modules and phe-
notypes. In this study, the ssGSEA scores of the differentially expressed marker genes in each sample of the GSE87466 dataset were 
calculated. These scores were used to construct the coexpression network with the “WGCNAR” R package (version 1.70–3) [18]. First, 
the samples were clustered to ensure that there were no outliers and the soft threshold of the data was determined. Then, the gene 
module was set and a module clustering tree was drawn to calculate the correlation between the module and grouping traits according 
to the hybrid dynamic tree-cutting algorithm. A gene module with a significant correlation was identified as a key gene module with 
model genes. Besides, GO and KEGG pathways analyses of these model genes were performed using the “clusterprofiler” R package. 

2.6. Screening of the key genes involved in UC 

Target genes were obtained by intersecting the differentially expressed marker and model genes. The least absolute shrinkage and 
selection operator (LASSO) analysis (Version 4.1–3) was performed to screen the candidate genes using the “glmnet” R package [19]. 
The support vector machine recursive feature elimination (SVM-RFE) method was used to obtain the importance ranking of each gene 
and the error rate and accuracy of each iterative combination. The best combination with the lowest error rate was selected, and the 
corresponding genes were selected as characteristic genes. Finally, key genes were obtained by crossing two sets of genes. 

2.7. Expression of the key genes 

The expression of the key genes in UC and normal samples, cell types, and key cell subgroups in the GSE87466 dataset was studied. 
In addition, the pROC package (Version 1.18.0) was used to plot receiver operating characteristic (ROC) curves to assess the ability of 
key genes to distinguish between normal and UC samples [20]. The single-cell trajectory plots were generated using the “monocle” R 
package (Version 2.24.1). 

2.8. Gene set enrichment analysis (GSEA) of key genes 

The GSEA files were obtained from http://www.gsea-msigdb.org/gsea/msigdb. The median of the single key gene expression value 
was used to categorize the samples into high and low expression groups, and GSEA was performed on all genes in the high and low 
expression groups, with the threshold set at |NES| >1, NOMP <0.05, and q < 0.25 [15]. 

2.9. Immune infiltration analysis 

Based on a set of 24 immune cells, the percentage abundance of infiltrating immune cells in each sample was calculated using the 
ssGSEA algorithm. The proportions of immune infiltrating cells were compared and visualized by Wilcoxon test and ggplot2 package 
[21] (Version 3.3.5), respectively. Spearman correlation analysis was used to explore the relevance of key genes to immune cells. 

2.10. Analysis of the mechanisms of the molecular regulation of the key genes 

Transcription factors (TF) bind to specific DNA sequences and regulate gene expression, thus affecting the normal life activities of 
the organism. Therefore, we initially explored the regulatory mechanisms by predicting TFs targeting key genes. TFs of key genes were 
predicted using the CistromeDB database (cistrome.org/db). TFs within 1 KB of the promoters of key genes were selected as target TFs 
using RP_score >0.7 as the threshold. 

2.11. Experimental validation 

Colon mucosal biopsies were obtained from ten cases of normal adult volunteers and adult UC patients by an experienced endo-
scopist. During endoscopic procedures, 3 mucosal biopsies were obtained from different parts of the colon in normal adult volunteers 
and placed in Liquid Nitrogen. As quickly as possible, the biopsies were then stored at − 80 ◦C until RNA extraction was performed. In 
UC patients, biopsies need to be taken at 3 sites each in the normal colonic mucosa and the inflammation colonic mucosa. This study 
was conducted with the approval of the Institutional Review Board at Suzhou TCM Hospital (Approval Number: 2022 Ethics Research 
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Approval 043). Informed consent was obtained from patients and volunteers for all human colonic mucosal biopsy specimen col-
lections. Basic information on UC patients and normal adult volunteers is shown in Supplementary Materials (Table S1). 

The RNA of UC and normal samples was extracted from tissues with TRIzol (Servicebio Technology CO., LTD, Wuhan, China). Then, 
the RNA concentration was detected with a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Total 
RNA was subjected to reverse transcription using SweScript All-in-One First-Strand cDNA Synthesis SuperMix for qPCR kit (Servicebio 
Technology CO., LTD, Wuhan, China). The real-time quantitative polymerase chain reaction (RT-qPCR) reaction system was made up 
of SYBR Green qPCR Master Mix (Servicebio technology CO., LTD, Wuhan, China). The amplification reactions were performed using 
CFX Connect (Bio Rad, Hercules, CA, USA) programmed as follows: initial denaturation at 95 ◦C for 30 s, followed by 40 cycles of 
denaturation at 95 ◦C for 15 s, annealing at 60 ◦C for 30 s. The relative expression of genes was calculated by the 2-ΔΔCT method using 
GADPH as the internal reference gene. The gene sequences are shown in Table 1 below. 

2.12. Statistical analyses 

Experimental results are expressed as mean ± standard deviation. Statistical analysis of RT-qPCR was performed using unpaired, 2- 
tailed Student’s t-test and one-way ANOVA to compare all groups (GraphPad Prism software, version 9.0). P < 0.05 was considered 
statistically significant. 

3. Results 

3.1. Expression of marker genes in different cell types 

After quality control of single-cell samples was completed, 8738 core cells were identified (Supplementary Fig. 1A). A total of 2000 
genes with highly variable expression in 8738 core cells were identified for subsequent identification of cell types involved in UC in the 
GSE134649 dataset (Supplementary Fig. 1B). Based on the results of PCA, all core cells and the top 20 PCs (p < 0.05) could be 
incorporated into subsequent analyses (Supplementary Figs. 1C–E). Supplementary Fig. 2 also showed that the overall decline tended 
to be relatively gentle after the top 20 PCs, so it was reasonable to select the first 20 PCs. The core cells were classified into 14 clusters 
and identified as CD8+ T cells, CD4+ T cells, and monocytes by annotating different clusters in the Cellmarker database (Fig. 1A&B, 
Table S2). Fig. 1C revealed that the number of CD8+ T cells was largest compared to the other two types of cells. The expression of 
marker genes in the different cell types was shown in Fig. 1D. CREM, CD8A, CLEC2B, HLA-A, and CTSW were identified as the marker 
genes for CD8+ T cells. AIF1, S1PR1, RPS3A, LYPD3, and ACTN1 were identified as the marker genes for CD4+ T cells, and 38 genes, 
including PSAP, TUBB, GSTP1, HLA-DRB1, and TXN, were identified as the marker genes for monocytes. 

3.2. Functional analysis of marker genes in the key subgroups 

To recognize key cell subgroups from three cell types, we implemented statistical analysis and comparison for cell types of different 
samples. The proportion and distribution of three cells in UC and normal groups were shown in Fig. 2A–B. Meanwhile, Table 2 
demonstrated that the proportion of monocytes was significantly different (p < 0.05) between UC and normal samples, and monocyte 
was defined as the major cell type in the two groups. After that, six cell subgroups were identified in monocytes based on the UMAP 
clustering analysis (Fig. 2C). The expression of marker genes in the different subgroups is shown in Supplementary Fig. 3A&B. Clusters 
0 and 1 showed the highest correlation and were defined as key subgroups (Fig. 2D). 

A total of 104 marker genes in the key subgroups were enriched in mononuclear cell differentiation, ribosomes, and structural 
constituents of ribosomes (Fig. 2E). Among the identified KEGG terms, these genes were associated with coronavirus disease (COVID- 
19), ribosome, and differentiation of Th1, Th2, and Th17 cells (Fig. 2F). 

3.3. Analysis of intercellular communication 

Eighteen ligand–receptors were screened. The communication between CD8+ and CD8+ T cells was the closest, and all 18 

Table 1 
Nucleotide sequence of human primers used for RT-qPCR.  

Gene Nucleotide Sequence (5′-3′) Primer Gene Bank 

GAPDH GGAAGCTTGTCATCAATGGAAATC Forward NM 002046 
GAPDH TGATGACCCTTTTGGCTCCC Reverse 
PTPRC TAAGACAACAGTGGAGAAAGGACG Forward NM 001267798.2 
PTPRC CAAATGCCAAGAGTTTAAGCCAC Reverse 
RGS1 TATTGAGTTCTGGCTGGCTTGT Forward NM 002922.4 
RGS1 CTGATTTGAGGAACCTGGGATA Reverse 
CREM ATGCCAACTTACCAGATCCGA Forward NM 001267562.2 
CREM TCGTTTGCGTGTTGCTTCTTC Reverse 
GNLY ACACTTCTGGAAGGGAGAGTGGA Forward NM 001302758.2 
GNLY ATCACGCAGGTGGGCTCTT Reverse  
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ligand–receptors were found to play important roles in communication between CD8+ and CD8+ T cells. In addition, there were 
negative correlations between the CD8 receptor LCK and CD4+ T cells|CD4+ T cells, NCR3_BAG6, and CD8+ T cells|CD4+ T cells 
(Fig. 3A). The mutual communication networks between the different cell types are shown in Fig. 3B. Additionally, we performed cell 
communication analysis in normal and UC groups to show the receptor-ligand profiles between the cells of different groups. In total, 32 
receptor-ligands in the normal group played a role in cell communication, while 52 receptor-ligands in UC group. Interestingly, we 
found that UC group contained all the receptor-ligands of the normal group and had 20 unique receptor-ligands (Fig. 3C–D). Therefore, 
we suggested that the communication between cells in the UC group was more complex. 

3.4. Identification of differentially expressed marker genes in UC 

We identified 3121 DEGs (1798 upregulated and 1323 downregulated mRNAs) between 21 normal control and 87 UC samples in 
the GSE87466 dataset (Fig. 4A&B). As shown in Fig. 4C, the ssGSEA scores of marker genes in major cell types and key cell subgroups 
were significantly different between UC and normal samples. Finally, 10 differentially expressed marker genes, viz., CST7, PTPRC, 
RGS1, CLEC2B, CREM, CD3D, SRGN, GNLY, CD8A, and MYADM, were screened by crossing 38 marker genes in the major cell types, 
104 marker genes in the key cell subgroups, and 3121 DEGs (Fig. 4D–F). 

3.5. Functional enrichment analysis of the model genes 

The analysis of clustering results showed that there were no outlier samples in the GSE87466 dataset (Fig. 5A), and the mean 
connectivity gradually approached 0 with a gentle trend indicating that the network approximated a scale-free distribution (Fig. 5B). A 
module-clustering tree was constructed with eight modules based on the optimal soft threshold and the hybrid dynamic tree-cutting 
algorithm (Fig. 5C). We analyzed the correlation between modules and grouping traits and found that the light cyan module (R2 =

0.85, p = 4e-31) had the highest significant positive correlation with differentially expressed marker genes (Fig. 5D). Therefore, the 
light-cyan module was identified as the key module. 

Fig. 1. Identification of cell types in the data of single-cell RNA sequencing (scRNA-seq). (A) T-distributed stochastic Neighbor Embedding (t- 
SNE) plot for the 14 clusters across 8738 core cells. (B) Presentation of clustering results for three cell types annotated. (C) Boxplot for the numbers 
of marker genes in the different cell types. (D) Bubble diagram of marker genes expressed in different cell types. 
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Furthermore, these module genes were enriched in 1394 “biological process,” 50 “cellular component,” and 92 “molecular 
function” sub-ontologies of GO. These genes are significantly associated with lymphocyte and mononuclear cell differentiation, 
positive regulation of cytokine production, and cell adhesion, among other functions. In KEGG analysis, these genes were enriched in 
cytokine–cytokine receptor interaction, chemokine signaling pathway, and PI3K-Akt signaling pathway, among other KEGG terms 
(Fig. 5E&F). 

3.6. Identification of the key genes in UC 

Six genes (CST7, PTPRC, RGS1, CREM, GNLY, and CD8A) were identified by intersecting 10 differentially expressed marker genes 
and 2973 model genes. After that, LASSO and SVM-RFE models were constructed to select characteristic genes based on the samples in 
the GSE87466 dataset. The results of the LASSO analysis showed that four candidate genes, namely PTPRC, RGS1, CREM, and GNLY, 
were associated with UC (Supplementary Fig. 4A &B). The best combination with the lowest error rate and the corresponding genes 
were obtained using the SVM-RFE method. As shown in Supplementary Fig. 4C&D, the error rate for predicting the best point of disease 
and control samples was 0.11, and the accuracy rate was 0.89, when the number of genes changed from one to six. Six key charac-
teristic genes, namely CST7, PTPRC, RGS1, CREM, GNLY, and CD8A, were screened by 5-fold cross-validation. Finally, we took the 
intersection of genes obtained using these two algorithms and identified four key genes—PTPRC, RGS1, CREM, and GNLY—in UC 
(Fig. 5G). 

3.7. Expression of the key genes 

A comparison of the expression of the key genes in GSE87466 between UC and normal samples showed that all four key genes were 
significantly upregulated in patients with UC (Fig. 6A). Meanwhile, the expression trends of key genes in the validation sets (GSE9686 
and GSE10616) were consistent with those in the training set (Fig. 6B–C). Subsequently, the ROC curves of key genes were plotted in 
the training and validation sets. Fig. 6D–F showed the AUC values of key genes were greater than 0.7 in three datasets, indicating the 
decent abilities to distinguish between normal and UC samples. The expression of these genes in the three key cell types is shown in 
Fig. 7A&B; all the key genes were highly expressed in CD8+ T cells and monocytes, and PTPRC and CREM were simultaneously highly 
expressed in all three cell types. Expression analysis of the key genes in the key cell subgroups showed that four key genes were highly 
expressed in cluster 0, indicating that this cluster might be the main cell type involved in the pathogenesis of UC (Fig. 7C&D). 
Furthermore, the single-cell trajectory plots and the differential expression of four key genes showed that three key cell types coexisted 
in the process of cell differentiation, and the four key genes were highly expressed in cluster 0 during differentiation (Fig. 7E–G). 

3.8. Four key genes are associated with the immune response 

The results of the GSEA analysis of the four key genes are shown in Fig. 8A–H. Each key gene was highly enriched in adaptive 
immune response, cellular response to molecules of bacterial origin, B cell-mediated immunity, humoral immune response, and 
lymphocyte-mediated immunity. More than half of the key genes were involved in humoral immune response, lymphocyte-mediated 
immunity, and positive regulation of leukocyte cell adhesion. Moreover, all the key genes were involved in metabolic pathways, such 
as the chemokine signaling pathway and receptor interaction, hematopoietic cell lineage, STAT signaling pathway, Leishmania 
infection, and systemic lupus erythematosus. In addition, some genes were highly enriched in the intestinal immune network for IgA 
production. 

3.9. Changes in the immune microenvironment in patients with UC 

Based on the GSEA enrichment analysis, four key genes were associated with immune-related pathways. The immune infiltration 

Fig. 2. Identification and analysis of the major cell type and functional enrichment analysis. (A) Boxplot for the distributions of three cell 
types in single-cell samples in GSE134649. (B) The t-SNE plot for the ulcerative colitis (UC) and control (HC) groups. (C) Uniform manifold 
approximation and projection (UMAP) plot of six subtypes generated based on the expression of monocytes in three UC samples within GSE134649. 
(D) Correlation heatmap of different monocyte-related subtypes. (E) The most enriched Gene Ontology (GO) terms of 104 marker genes in the two 
key subgroups (subgroups 0 and subgroups 1). (F) The mostly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of 104 
marker genes. 

Table 2 
The results of t-test for three cell types between UC and normal groups.   

Group (mean ± SD) t p  

HC (n = 3) UC (n = 3) 

CD4 T-cells 57.00 ± 40.15 86.67 ± 63.88 − 0.681 0.533 
CD8 T-cells 1176.33 ± 345.65 1497.67 ± 359.32 − 1.116 0.327 
Monocytes 28.33 ± 9.07 66.67 ± 11.55 − 4.521 0.011*  
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Fig. 3. Analysis of intercellular communication. (A) Interaction bubble diagram of the ligand-receptor and polysome inside different cell types. 
The horizontal axis is the cell type that interacts, and the vertical axis is the interacting ligand receptors and polymers. (B) Schematic diagram of 
cell-cell communication between CD8+ T cells and CD4+ T cells. Different colors indicate different cell types, and the width of the lines indicates the 
interaction score. (C, D) The receptor-ligand interactions between cells in normal and UC groups. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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analysis was completed to further mine the relevance of the immune microenvironment to UC. Among the 24 kinds of immune cells, 
except for eosinophils, iDC, NK cells, Tgd, and TReg, there were significant differences in the proportion of the other 19 kinds of 
immune cells between UC and normal samples, and the proportion of most immune cells in UC was significantly higher than normal 
samples (Supplementary Fig. 5A). Supplementary Fig. 5B indicated that key genes were significantly negatively correlated with Th17 
cells and positively correlated with all other differential immune cells. Thus, we hypothesized that the immune microenvironment 
might play an important role in the developmental process of UC. Meanwhile, the expression levels of key genes might also influence 
the reactivity and infiltration of immune cells, which in turn might influence the immune microenvironment’s impact on disease. 

3.10. Analysis of the mechanisms for molecular regulation of the key genes 

To initially investigate the reasons for the altered expression of key genes in UC samples, we conducted a transcription regulation 
analysis. In total, 54 TFs targeting CREM, 1 TFs targeting GNLY, and 3 TFs targeting PTPRC were predicted by the CistromeDB 
database (RP_score >0.7). The gene-TF regulatory network revealed that ESR1 could regulate the expression of GNLY and CREM 
(Supplementary Fig. 6). 

Fig. 4. Identification of differentially expressed marker genes in GSE87466. (A–B) Volcano plot and heatmap of the 3121 differentially 
expressed genes (DEGs) between UC and HC groups with p < 0.05 and |log2fold change| >0.5. (C) Boxplot for the single sample gene set enrichment 
analysis (ssGSEA) score of individuals between UC and HC groups based on the marker genes expression of major cell types (monocytes) (n = 38) 
and key cell subgroups (subgroups 0 and subgroups 1) (n = 104), respectively. (D) Venn diagram of 10 common differentially expressed marker 
genes. (E–F) Heatmap of 38 marker genes in major cell types and 104 marker genes in key cell subgroups. 
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3.11. Validation of key differentially expressed genes 

The expression of genes RGS1, GNLY, PTPRC, and CREM, was analyzed by RT-qPCR assay in normal volunteers, lesion-free sites of 
UC patients, and lesion sites of UC patients. Among all four genes analyzed, the expression of RGS1, GNLY, and PTPRC genes was not 
significantly altered between UC patients and normal controls (p > 0.05) (Fig. 9A–C). The expression of CREM was significantly higher 
in lesion-free sites and lesion sites in UC patients than in normal controls (p < 0.001), and there was no significant difference in CREM 
expression between lesion-free sites and lesion sites in UC patients (p > 0.05) (Fig. 9D). 

4. Discussion 

Ulcerative colitis is an IBD characterized by persistent colonic inflammation. The main features of UC are manifested continuously 
from the rectum to the proximal colon and involve the colonic mucosa and submucosa. The disease is characterized by ulceration and 
bleeding and can lead to bursting colitis and colorectal cancer. Current therapeutic options for UC are inadequate for its clinical 

Fig. 5. Weighted gene co-expression network analysis (WGCNA) to screen the key model genes in GSE87466. (A) Sample clustering 
dendrogram and trait heatmap. (B) Analysis of the scale-free fit index (left) and the mean connectivity (right) for various soft-thresholding powers. 
(C) Cluster dendrogram of all DEGs clustered based on a dissimilarity measure. (D) Heatmap of the correlation between module eigengenes and 
clinical traits (ssGSEA score calculated based on the expression of 10 common differentially expressed marker genes). Each cell contains the cor-
relation coefficient and p-value. (E) GO and (F) KEGG functional enrichment analysis of 2973 key model genes in the light cyan module. (G) The 
Venn diagram of four key genes is identified by two algorithms. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 6. Analysis of the expression discrepancies and diagnostic value of key genes. (A–C) The boxplots of expression levels of four key genes in 
the normal and UC groups in the GSE87466 (A), GSE9686 (B), and GSE10616 (C) datasets. *p < 0.05; **p < 0.01; ****p < 0.0001. (D–F) The 
receiver operating characteristic (ROC) curves of key genes in the GSE87466 (D), GSE9686 (E), and GSE10616 (F) datasets. AUC, area under 
the curve. 
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management. There is, therefore, an urgent need to comprehensively analyze the pathogenesis of UC and develop effective therapeutic 
strategies. 

In this study, we first performed t-distributed stochastic neighbor embedding (tSNE) clustering on the GSE134649 dataset to 
identify three main cell types related to UC, namely CD8+ T cells, CD4+ T cells, and monocytes. Monocyte counts showed significant 
differences between patients with UC and healthy controls. Therefore, we selected monocyte marker genes as a candidate gene set for 
our prediction model. Monocytes mostly express genes associated with bacterial infection and inflammation. The proinflammatory 
cytokines, IL-1β and TNF-α, are mainly secreted by classical monocytes. Proinflammatory monocytes and macrophages predominate in 
the inflammatory mucosa of patients with UC. Circulating monocytes express high levels of proinflammatory cytokines. These findings 

Fig. 7. Analysis of the four key characteristic gene expression. (A) t-SNE and (B) violin plots of four key characteristic gene expressions in three 
cell types. (C) Violin plots and (D) t-SNE plots of four key characteristic genes expression in key cell subgroups. (E) Pseudotime analysis of different 
monocyte-related subtypes. Line indicating a continuum of hypothetical differentiation from least differentiated to several branches of distinct 
differentiated cell types, where the differentiation of cluster 0 is the earliest. Cells in the same branch are in the same differentiation state, and cells 
in different branches are in different differentiation states, differentiation into different trajectories proves intracellular heterogeneity. (F) Differ-
ences in the time sequence of cell differentiation. Darker blue indicates earlier differentiation and lighter blue indicates later differentiation. (G) 
Correlation analysis between four key characteristic genes and monocyte differentiation. The expression of four key genes was highest in cluster 0. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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indicate that the majority of monocytes in patients with UC exhibit proinflammatory properties. Studies have found that the proportion 
of classical monocytes in the peripheral blood of patients with UC is reduced during inflammatory activity, suggesting that these cells 
may migrate to the intestine and promote inflammatory processes [9,10]. Monocytes are involved in the upstream inflammatory 
process of the immune response to IBD, and patients with high monocyte counts experience a recurrence of inflammation after 
discontinuation of biologics [22]. TIM4-expressing monocytes are novel indicators of the disease activity and severity of UC; CD14 
TIM4 cells were reported to be elevated in patients with UC, and the percentage of TIM4-expressing monocytes was significantly lower 
in such patients treated with mesalazine [23]. CD30L levels in classical monocytes in the peripheral circulation of patients were 
significantly elevated and correlated positively with the severity of UC. CD30L may be involved in monocyte-mediated inflammation 
in patients with UC through the activation of circulating classical monocytes [24]. High monocyte counts were significantly and 
negatively correlated with clinical remission, mucosal healing, and complete mucosal healing [25]. 

The KEGG pathway analysis showed that common DEGs were significantly enriched in the PI3K-AKT, chemokine, and JAK-STAT 
signaling pathways. PI3K-dependent AKT phosphorylation is a key event in the progression of UC through the activation of inflam-
matory signaling. AKT is highly phosphorylated in the colon biopsies of patients with IBD and in experimental in vivo models of colitis. 
Additionally, the severity of colitis was reduced by treatment with PI3K inhibitors [26]. CXCL8 is one of the most important proin-
flammatory factors that play a crucial role in many inflammatory diseases, including UC. The CXCL8-CXCR1/2 axis is involved in the 

Fig. 8. Single-gene gene set enrichment analysis (GSEA) based on four key characteristic genes. (A–B) Results of GO and KEGG enrichment of 
CREM single gene GSEA (top 10). (C–D) Results of GO and KEGG enrichment of RGS1 single gene GSEA (top 10). (E–F) Results of GO and KEGG 
enrichment of GNLY single gene GSEA (top 10). (G–H) Results of GO and KEGG enrichment of PTPRC single gene GSEA (top 10). In this plot, the 
vertical coordinates of the top part represent the running enrichment scores (ES), and the peak of the line plot is the ES of the enriched pathway, 
with positive ES indicating that a functional gene set is enriched in the front of the sequenced sequence and negative ES indicating that a functional 
gene set is enriched in the back of the sequenced sequence. The horizontal coordinates represent genes labeled with small vertical lines. The bottom 
part is the distribution map of rank values for all genes, with the Signal2Niose algorithm by default. 

Fig. 9. Quantitative Analysis of key genes by RT-qPCR in clinical samples. (A–D) RGS1, GNLY, PTPRC, and CREM mRNA expression in colonic 
mucosal biopsy specimens from normal volunteers (Normal), lesion-free sites of UC patients (UC No-lesion), and lesioned sites of UC patients (UC). 
(n = 10, ***p < 0.001). 
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pathogenesis of UC through various signaling pathways, such as the PI3k/Akt, MAPK, and NF-κB signaling pathways [27]. Janus 
kinase (JAK), a tyrosine kinase, and signaling transducer and activator of transcription (STAT), which are DNA-binding proteins, 
mediate cytokine receptor-binding, signaling, and downstream biological effects, many of which are involved in the pathology of IBD. 
Small molecule JAK inhibitors can potentially affect multiple cytokine-dependent pathways and are effective in the treatment of IBD 
[28]. Blocking JAK-mediated inflammatory pathways can alter the innate and adaptive immune responses involved in IBD, and 
thereby, reduce chronic gastrointestinal inflammation [29]. 

We noted an enrichment of four key genes that are closely related to the pathogenesis of UC using bioinformatic methods. Protein 
tyrosine phosphatase receptor type C (PTPRC), also called cluster of differentiation 45 (CD45), was previously identified as the 
common antigen in leukocytes. PTPRC is a member of the protein tyrosine phosphatase (PTP) family, which is a signaling molecule 
that regulates various cellular processes, including cell growth, differentiation, mitosis, and oncogenic transformation [30]. This PTP is 
an important regulator of antigen receptor signaling in T and B cells [30]. Transgenic expression of tumor necrosis factor (TNF) su-
perfamily member 14, produced by Ptprc on mouse T cells, has been reported to promote inflammation in several organs, including the 
intestine [31]. In another study, most apoptotic cells in the submucosa of nuclear receptor binding factor 2 knockdown mice with 
dextran sodium sulfate-induced colitis colocalized with Ptprc/Cd45 expression, which suggests that Ptprc/Cd45 is involved in the 
activation of intestinal inflammation in mice [32]. In yet another study, epithelial cells from the mouse small intestine and organoids 
were analyzed and new subtypes and their genetic profiles were characterized; two tuft cell subtypes were distinguished from 
epithelial cells of the small intestine, one of which expressed the epithelial cytokines, Tslp and Cd45 (Ptprc), which are pan-immune 
markers previously believed to be unrelated to non-hematopoietic cells [33]. 

G protein-coupled receptors (GPCRs) play important roles in both innate and adaptive immunity. The primary function of the 
regulator of G protein signaling (RGS) family is to limit the intensity and duration of GPCR signaling. RGS1 is primarily expressed in B 
and T lymphocytes, monocytes, and macrophages. Its major immune functions include antibody response to immunization, macro-
phage localization in atherosclerotic plaques, and T cell-mediated inflammatory colitis [34]. The purported first study of RGS1 biology 
in human T cells found that RGS1 is significantly overexpressed in the intestine and in some cases of IBD. Moreover, RGS1 normally 
inhibits the efflux of T cells from the intestine and promotes immunopathology of the intestine [35]. In humans and mice, RGS1 is 
highly expressed in CD4+ and CD8+ T lymphocytes isolated from the gastrointestinal mucosa [36]. By combining whole-exome and 
scRNA-seq results, we noted that the expression of RGS1 was significantly upregulated in patients with chronic mucocutaneous 
candidiasis [37]. 

Cyclic adenosine monophosphate (cAMP)-responsive element modulator (CREM) encodes a bZIP transcription factor that binds to 
the cAMP-responsive element found in many viral and cellular promoters. CREM is significantly more highly expressed in UC patients 
than in the normal population, and in UC patients with cancer than in UC patients without cancer [38]. Several studies suggest that 
CREM is highly expressed in IBD [39–42]. New evidence on the role of CREM in IBD susceptibility suggests that CREM is a key 
regulator of intestinal inflammation and may have broad therapeutic potential as a drug target for inflammatory diseases of the gut 
[41]. 

Granulysin (GNLY) is a cytotoxic molecule associated with bacterial lysis and monocyte chemotaxis. A recent study showed an 
increase in the number of CD127+CD94+ innate lymphocytes expressing GNLY and perforin in patients with Crohn’s disease [43]. 
scRNA-seq analysis of peripheral blood mononuclear cells in acute myocardial infarction revealed that CD8+ effector T cells express 
more GNLY in patients without plaque rupture, which may contribute to the progression of plaque erosion [44]. 

The identification of susceptibility genes for IBD is key to understanding its pathogenic mechanisms. Four genes with significant 
differences in expression were enriched in our study and were validated in human specimens. The validation results revealed that 
CREM was highly expressed in both the normal colonic mucosa and the diseased site mucosa of patients with UC compared with that in 
normal adults, whereas the expression of PTPRC, RGS1, and GNLY did not differ significantly. A perusal of the literature revealed an 
association between these four DEGs and IBD. However, such studies have been scarce, and in only a few of them, a direct association 
of these four DEGs with IBD has been observed. The available literature suggests that CREM has the strongest correlation with IBD, 
which is consistent with the results of our study. 

5. Conclusion 

Our study provides a guide for understanding the pathogenesis of IBD, which should help in formulating effective therapeutic 
strategies. A shortcoming of this study is that we failed to explore the involvement of the four identified key genes in depth. 
Furthermore, to ensure the applicability of our research findings, expanding the number of clinical samples is a pressing concern for 
our next steps. While we validated gene expression levels through qRT-PCR, a substantial volume of experiments remains crucial for 
validating our study results. Simultaneously, within the PCR results, three genes showed insignificant differences, possibly attributed 
to factors such as tissue specificity, sample size, experimental conditions, and methodologies. In essence, continued focus on the 
functionality of the four key genes in UC and exploring their molecular mechanisms will be integral to our upcoming research. We 
intend to focus on CREM in our future study, which should provide further insights into the pathogenesis of UC and lead to the 
development of effective drugs. 
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