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Abstract

Wildlife is a global source of endemic and emerging infectious diseases. The control of tuberculosis (TB) in cattle in Britain
and Ireland is hindered by persistent infection in wild badgers (Meles meles). Vaccination with Bacillus Calmette-Guérin
(BCG) has been shown to reduce the severity and progression of experimentally induced TB in captive badgers. Analysis of
data from a four-year clinical field study, conducted at the social group level, suggested a similar, direct protective effect of
BCG in a wild badger population. Here we present new evidence from the same study identifying both a direct beneficial
effect of vaccination in individual badgers and an indirect protective effect in unvaccinated cubs. We show that
intramuscular injection of BCG reduced by 76% (Odds ratio = 0.24, 95% confidence interval (CI) 0.11–0.52) the risk of free-
living vaccinated individuals testing positive to a diagnostic test combination to detect progressive infection. A more
sensitive panel of tests for the detection of infection per se identified a reduction of 54% (Odds ratio = 0.46, 95% CI 0.26–
0.88) in the risk of a positive result following vaccination. In addition, we show the risk of unvaccinated badger cubs, but not
adults, testing positive to an even more sensitive panel of diagnostic tests decreased significantly as the proportion of
vaccinated individuals in their social group increased (Odds ratio = 0.08, 95% CI 0.01–0.76; P = 0.03). When more than a third
of their social group had been vaccinated, the risk to unvaccinated cubs was reduced by 79% (Odds ratio = 0.21, 95% CI
0.05–0.81; P = 0.02).
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Introduction

There is growing recognition of the importance of wildlife hosts

in the emergence, spread and maintenance of infectious diseases

that severely compromise human and animal health, inflict major

economic costs and threaten biodiversity [1,2]. Bovine tuberculosis

(TB), caused by infection with Mycobacterium bovis, is a globally

important animal disease and the most serious health threat to the

cattle industry in Britain and Ireland. Over 10% of herds in

England alone were under disease control restrictions at some

point between 2010 and 2011 as a result of incidents of TB,

resulting in the compulsory slaughter of nearly 25,000 cattle [3].

The associated annual costs including testing, research and

compensation exceeded £90M [3].

The control of TB in cattle in Britain and Ireland has been

seriously constrained by the presence of a persistent reservoir of

infection in Eurasian badgers (Meles meles) [4]. There is also

growing evidence implicating badgers in the persistence of M. bovis

infection in parts of mainland Europe, although other wildlife

species currently appear to be more important maintenance hosts

outside of the British Isles [5]. Badger culling has been employed

in Britain and Ireland in an attempt to reduce TB in cattle.

Localised culling trials in the Republic of Ireland (RoI) have

reported some considerable success in reducing incidence of TB in

cattle in these areas [6,7,8], and badgers are now generally culled

in response to local cattle herd breakdowns (CHBs) in the ROI [9].

However, in Britain where the density of badgers is generally

higher and the wider effects of culling have been investigated,

badger culling has resulted in both increases and decreases in

cattle TB [10,11,12,13,14,15]. Also, badgers are a protected and

iconic species in Britain and culling badgers remains highly

controversial [16,17,18].

Vaccination has been used successfully to manage wildlife

reservoirs of infection, but has largely been limited to the control of

acute viral diseases, such as rabies in Europe and North America

[19,20] and Classical Swine Fever, where the vaccination of wild

boar has achieved some success [21,22]. So far, vaccination has

not been used extensively to control chronic bacterial infections,

such as TB in wildlife [23].

Previous work with captive badgers has demonstrated that the

intramuscular administration of Bacillus Calmette-Guérin (BCG)

confers a degree of direct protection in vaccinated individuals. In
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experimental challenge studies, BCG vaccination significantly

reduced disease progression and severity, and excretion of M. bovis

infection in individual badgers [24,25]. Initial results from a

parallel field study showed that vaccination significantly reduced

the incidence of positive responses to a serological test for TB

(Stat-Pak, Chembio Diagnostic Systems Inc., New York, USA)

suggesting a beneficial effect of BCG in reducing disease

progression in wild badgers [24]. That study was undertaken as

part of a blinded-trial where the social group was the designated

treatment unit and the initial analysis did not consider the effects

of vaccination at the level of the individual badger, consequently

factors such as the time individuals entered and exited the study

(e.g. through recruitment, dispersal and mortality) were not

accounted for.

A specific challenge associated with prophylactic vaccination

arises if a high proportion of individuals cannot be vaccinated

before they become infected [26]. This is a particular concern for

the vaccination of badgers against TB because they live in close

contact with one another and their young do not generally emerge

from their underground den (sett) for the first two months of their

life [27]. The argument that many badger cubs will become

infected during this period (i.e. before they can be caught and

vaccinated), has been identified as a key potential constraint on the

effectiveness of badger vaccination as a management tool [28].

Under such circumstances, indirect effects of vaccination may be

important. The concept of non-immunised individuals within a

group or population being ‘protected’ from disease transmission by

the presence and proximity of immune individuals is long

established [29]. The term ‘‘herd immunity’’ was subsequently

coined to describe this phenomenon [30] and has since become an

integral component of the science underpinning human vaccina-

tion programmes [31]. Herd immunity underlies the global

eradication of smallpox, though evidence for it in human TB

vaccination campaigns is limited [32].

In this paper we report further analyses of results from the four-

year clinical field study of the effects of parenteral administration

of BCG in wild badgers. We extend the previous study of the

effects of BCG on wild badgers by investigating the direct effect of

vaccination on individual badgers and the indirect effects on

unvaccinated badgers. Neither approach was possible previously

due to blinding of the data. Data were initially blinded as they

constituted safety and supporting efficacy evidence for a marketing

authorisation for parenterally administered BCG in badgers,

which was subsequently granted in March 2010.

Methods

Ethics statement
All animal procedures were covered by licences issued by the

Home Office and the Veterinary Medicines Directorate, following

approval by ethics panels at The Food and Environment Research

Agency and Animal Health and Veterinary Laboratories Agency.

The study was conducted according to the principles of Good

Clinical Practice [33].

Study area and population
Field work was carried out in an area of mixed woodland and

agricultural land covering approximately 55 km2 in Gloucester-

shire, southwest England, between November 2005 and October

2009. The area was chosen as it is within a region where very high

badger density has been recorded (25.3 badgers/km2 [34]), where

TB is known to be endemic in the badger population [35] and

where there had not been recent badger culling. Badger social

group territories were identified by bait marking [36], with

individuals being assigned to social groups according to the

location of their capture. Social groups were allocated to

‘‘vaccinate’’ or ‘‘control’’ treatment following a baseline trapping

session in summer 2006 [Table S1, Figs. 1 and S1]. Treatments

were allocated at a ratio of 60:40 (vaccinate:control) as this ratio

was determined, through modelling known parameters, to have

the most statistical power to detect a difference between treatments

if one existed (unpublished data). TB may be spatially aggregated

in badger populations [35] and badger social groups may vary

considerably in size [27]. A stratified randomisation process that

accounted for variation in group sizes and prevalence of infection

was accordingly used to allocate treatments between social groups

(see [24] for full details). Once a social group had been allocated as

a vaccinate group, all animals first captured in that group were

vaccinated. Animals originating from vaccinate groups but caught

in subsequent years in a control group were repeat vaccinated

according to their original treatment allocation. To account for

any differences in the force of infection between social groups that

merged and fragmented during the study and those that were

apparently more stable, we derived a ‘super-group’ variable. This

label was assigned to clusters of two to three groups that merged

with or subsequently split from one another during the study

period.

Badger trapping, sampling and vaccination
Badgers were captured in steel mesh traps baited with peanuts

and set for two consecutive nights following a three to ten-day pre-

Figure 1. Configuration of badger social group territories in
the first year of the study. Territories have been derived from bait
marking data and show allocation of vaccine treatment (shaded areas)
and control (open areas). Circles indicate additional main setts located
after the 2006 bait marking for which the territorial boundaries could
not be delineated until the following year, but which were determined
to represent discrete social groups in 2006 and allocated a treatment
accordingly. Additional badger groups may have been present in non-
surveyed areas adjacent to the mapped territories, particularly around
the edge of the study area.
doi:10.1371/journal.pone.0049833.g001

BCG Reduces TB Risk in Unvaccinated Badger Cubs
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baiting period. Saturation trapping was carried out, whereby more

traps were deployed in the immediate vicinity of the sett than the

anticipated number of resident badgers. All active setts in the study

area were trapped at least twice a year, other than in 2007 when a

foot and mouth disease outbreak prevented the second trapping

operation from taking place (Table S1). Each badger was

anaesthetised by intra-muscular injection of a combination of

ketamine hydrochloride (100 mg ml21, Vetalar TM V, Pharmacia

& Upjohn, Crawley, UK), medetomidine hydrochloride (1 mg

ml21, Domitor H, Pfizer, Sandwich, UK) and butorphanol tartrate

(10 mg ml21, Torbugesic H, Fort Dodge Animal Health Ltd,

Southampton, UK) at a ratio of 2:1:2 by volume respectively [37].

This was supplemented with inhalant isoflurane when necessary.

Upon first capture each animal was marked with an identifier

microchip (inserted subcutaneously between the shoulders) and a

tattoo on the abdomen with the corresponding unique three-digit

identification number. For each capture event, the trap location,

sex and age class (,1 year = cub, $1 year = adult) were recorded.

Tooth wear (five categories from none (0%) to worn flat (100%))

was recorded as a proxy for age [38]. Clinical samples were taken

from all badgers at each capture event, where possible. These

consisted of tracheal mucus (by catheter); urine (by manual

expression or catheter); faeces (by Microlax enema); and swabs of

any wounds, discharges or abscesses. Blood samples were taken

into heparin and SST BD Vacutainer Blood Collection Tubes

(BD, Plymouth, UK) and processed on the same day. BCG Danish

strain 1331 vaccine (Statens Serum Institut (SSI), Copenhagen,

Denmark) was supplied at 2–86106 colony-forming units (CFU)

per vial. The vaccine was prepared by adding 1 ml of Sauton

diluent to each vial. The vaccine was injected in the left or right

lumbar muscle, following shaving and cleaning of the overlying

skin. All animals allocated to vaccinate groups received 1 ml of

vaccine that had been reconstituted for less than 4 h. BCG vaccine

was administered on recapture at a rate of one dose per calendar

year, resulting in some individuals receiving multiple vaccinations

over the course of the study. After sampling and treatment,

captured badgers were returned to their point of capture and

released.

Diagnostics
We used bacterial culture for M. bovis to identify active excretion

[39] and the Brock (TB) Stat-Pak test [40] as evidence of more

progressed infection for analyses of both a direct and indirect effect

of BCG vaccination. We also used the more sensitive IFNc release

assay (IGRA PPDB – PPDA) for our analyses of an indirect effect

of vaccination in unvaccinated badgers. For our investigation of

the direct effects of vaccination, we substituted the IGRA (PPDB –

PPDA) results with those from an alternative, less sensitive, test

format based on the use of specific M. bovis antigens ESAT-6 and

CFP-10, because the performance of the former test may be

compromised by BCG vaccination leading to reduced specificity

[24,25]. To be as robust as possible, we adopted a ‘‘quadruple

test’’ of infection by combining the outcomes of all four diagnostic

tests (PPDB – PPDA, ESAT-6 & CFP-10, Stat-Pak and culture) to

identify animals likely to be infected at their time of first capture.

The quadruple test was used only as a filtering tool and not as a

response variable in any of the following analyses.

Each of the four diagnostic tests had a different sensitivity and

specificity for detecting M. bovis infection in badgers and we

calculated the range in sensitivity of the combined tests using the

union of the individual probabilities from published data (Table

S2). The sensitivity of the combined triple testV (positive for one or

more of IGRA ESAT-6 & CFP10, Stat-Pak or culture) used in the

investigation of a direct effect of vaccination was calculated to lie

between 61% and 86% (all badgers). The sensitivity of the triple

testUV (positive for one or more of IGRA PPDB-PPDA, Stat-Pak

or culture) used in the investigation of an indirect effect lay

between 85% and 94% for adults and between 57% and 84% for

cubs (Table S2). Each represented the most sensitive means to

detect M. bovis infection in vaccinated and unvaccinated animals,

respectively, in the absence of post-mortem examination. Test

specificity could not be similarly enhanced by taking this approach

but specificity of all tests was relatively high (range 0.93–1.0; Table

S2).

Statistical analyses
(i) Investigating the direct effect of vaccination on

individual badgers. We investigated the impact of vaccination

on the transition from test-negative to test-positive status in

individual badgers using event history analysis. For consistency

with previous analysis we ran separate analyses for test results in

isolation and in combination with each other. The ‘event’ was

therefore one of the following: a positive outcome to each

diagnostic test in isolation (i.e. IGRA ESAT-6 & CFP-10, Stat-Pak

and culture); a positive outcome to Stat-Pak and/or culture when

both were considered (‘‘dual test’’); or a positive result to at least

one of all three tests when considered together (‘‘triple testV’’), at

each capture point after the start of vaccination. We developed

models that assumed a baseline hazard common to all social

groups and used relevant covariates (Table S3) in Cox-propor-

tional hazards models [41]. The risk of an individual being

culture-positive has been shown to be related to the presence of

other culture-positive (i.e. infectious, actively excreting) animals in

its social group [35,42], therefore a covariate describing group

infection status (presence of culture positive badgers) was included

(Table S3). It was not possible to model the multiplicative effects of

two factors using the above approach. We therefore attempted to

model the interaction between group infection status and

treatment as four factors (vaccinated/culture positives present,

unvaccinated/culture positives present, vaccinated/culture posi-

tives absent, unvaccinated/culture positives absent), but there were

insufficient cases of unvaccinated badgers captured in groups with

culture positive badgers present to model this class.

As individuals were captured and tested at intervals and not all

individuals were captured at each trapping session, the data were

interval censored; that is, a disease incidence event would have

occurred at a point prior to testing and therefore should not be

ascribed simply to the sampling point at which it was detected.

Interval censoring leads to bias which impacts on both the

direction and magnitude of the effects of covariates in the Cox

model, the magnitude of which cannot be predicted a priori. We

therefore used the iterative convex minorant algorithm (ICM) as

implemented in the intcox library [43] in the R statistical package

(R Development Core Team 2010) to estimate the regression

coefficients of the Cox model. Since this procedure cannot

estimate standard errors for the regression coefficients, we used a

bootstrapping procedure to create 95% confidence intervals for

the exponent of each coefficient based on 999 re-samples of the

original data. A covariate was considered to be non- significant if

the confidence intervals around the bootstrap estimates included 1.

The final model was obtained through stepwise removal of non-

significant covariates from the full model.

(ii) Investigating the indirect effect of vaccination on

unvaccinated badgers. Although all animals first captured in

vaccinate groups were vaccinated from Autumn 2006 onwards,

only a proportion of the group would have been captured at the

first, or even subsequent, capture event(s). In addition, there was

annual recruitment of cubs into most vaccinate groups, some

BCG Reduces TB Risk in Unvaccinated Badger Cubs
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evidence of previously discrete vaccinate and control groups

merging to form a larger vaccinate super-group and, we suspect,

immigration of previously uncaptured animals from control groups

or groups outside of the study. Consequently, at any given capture

event following the start of vaccination the proportion of animals

captured that had been previously vaccinated is likely to have been

less than one and this proportion varied among groups (Table S4).

We used mixed effect models to assess the relationship between M.

bovis infection status at first capture of unvaccinated individuals

from vaccinate social groups and the proportion of all other group

members captured at that time that had been vaccinated

previously. We used the combined outcomes of IGRA PPDB –

PPDA, Stat-Pak and culture (triple testUV) to infer infection, as this

was the most sensitive means to detect M. bovis infection in an

unvaccinated live animal. Analysis of mixed effect models for non-

normal data is problematic because the results of analyses may not

be stable and some methods of estimation lead to bias in the

estimates of model parameters [44]. We therefore used Laplace

approximation [45,46], following the approach used by Rushton

et al. [47], which has the advantage of approximating true GLMM

likelihood and is consequently more robust than using penalised

quasi-likelihood which can lead to biased parameter estimates if

the standard deviation in the random effect is large [44]. We ran

analyses for cubs and adults separately due to the potential for

pseudo-vertical disease transmission to impede vaccination, and

because previous work showed the proportion of infected cubs in a

social group was positively related to the presence of infectious

adult females [35]. We hypothesised that the force of infection

within their group would diminish as an increasing proportion of

the residents were vaccinated. There were insufficient data to

restrict analysis to proportions/numbers of particular age or sex

groups that had been previously vaccinated e.g. breeding females.

We expected any observable effect on adults to be weaker than in

cubs, due to the propensity for adults to travel further from their

resident social group, thus increasing their likelihood of encoun-

tering infection. Also, animals captured for the first time as adults

may have already been infected with M. bovis, prior to other group

members being vaccinated.

We included the proportion of contemporary group residents

that had been previously vaccinated as a continuous variable in a

model including the time point and season when badgers were first

captured (i.e. the point at which they entered the study), along with

the sex of the individual and the presence of culture-positive

animals within their social group as covariates (Table S3). Badger

cubs are generally born at the same time of the year [27] so date of

first capture represents a crude proxy for age at first capture. We

also ran analyses using several categorical classifications (including

the same covariates) whereby the proportion of animals previously

vaccinated was assigned into classes e.g. 0–0.33 etc. for illustrative

purposes to aid the interpretation of the more rigorous continuous

model results. In view of the arbitrary nature of categorisation we

investigated a range of cut-offs, although finer scale categorisation

was limited by sample sizes. Only individuals caught for the first

time during or after the second year of the study were considered

for analysis as this was the first opportunity for animals to have

indirectly benefited from the initial vaccination of other group

members. Social group was included as a random factor to allow

for unmeasured variation associated with repeated sampling of the

same groups. All analyses were undertaken in the R statistical

package (R Development Core Team 2010) using the glmmML

libraries [45].

Results

A total of 793 individual badgers were captured on or after the

second trap event when BCG was first administered. Of these, 400

were captured more than once, making them potentially eligible

for the investigation of the direct effect of vaccination. The

remaining 393 were only eligible for the analysis of an indirect

(herd immunity) effect of vaccination. The number of social groups

varied from year to year due to the recruitment of new groups over

time and, to a lesser extent, the dynamic nature of a handful of

groups, resulting in an increase from 62 to 85 discrete social

groups over the course of the study (Figs. 1 and S1). This included

the formation of eight super-groups and six social groups that were

deemed to have split into two discrete groups in at least one year of

the study. Simple prevalence estimates indicated a reduction in the

population-level prevalence of infection (using the combined

results from IGRA ESAT-6 & CFP-10, Stat-Pak and culture)

over the lifetime of the study (Table S5). Prevalence for the

population as a whole based on the combined outcomes of the

above three tests reduced from 53% in 2006 to 35% in 2009.

Reductions in prevalence were observed in both vaccinate and

control groups (Table S5).

Direct effect of BCG vaccination on individual disease risk
A total of 252 individuals qualified for the event history analysis,

following the removal of those individuals caught only once and

those that were likely to have been infected prior to vaccination.

Vaccination reduced the likelihood of developing a positive test

result (after initially testing negative to all tests) by 76% (Odds

ratio = 0.24, 95% confidence interval (CI) 0.11–0.52; Table 1) and

54% (Odds ratio = 0.46, 95% CI 0.26–0.88; Table 1), respectively,

using the dual and triple diagnostic tests for M. bovis. There was no

detectable effect of vaccination on the risk of a positive test result

for culture alone (data not shown). Badgers were significantly more

likely to test positive if there was at least one other culture-positive

badger captured in its social group (all tests; Table 1). Male

badgers were three times (Odds ratio = 3.01, 95% CI 1.44–5.55)

more likely to become positive for one or more of the diagnostic

tests than females (triple testV; Table 1). There was no detectable

effect on risk of an individual developing a positive result to any

test associated with age, social group membership or the number

of individuals captured in its social group (data not shown).

Indirect effect of BCG vaccination on disease risk in
unvaccinated individuals

In total, 121 adults and 185 cubs (all unvaccinated at the time of

capture) were included in the analysis of an indirect effect of

vaccination. Of these, 42 (34.7%) adults and 39 cubs (21.1%)

tested positive to one of the three diagnostic tests at first capture.

This compared to a prevalence of 51.6% (adults) and 32.8% (cubs)

in control groups over the same time period. The probability of an

unvaccinated cub from a vaccinate group testing positive to M.

bovis was significantly inversely related to the proportion of badgers

trapped in the same social group at the same capture event that

had previously been vaccinated (Odds ratio = 0.08, 95% CI 0.01–

0.76; P = 0.03; Table 2). However, the probability of an

unvaccinated adult testing positive to M. bovis was not significantly

related to the proportion of group members captured concurrently

that had been previously vaccinated (Odds ratio = 0.59, 95% CI

0.06–5.59; P = 0.64).

When we assigned the proportion of previously vaccinated

animals to discrete categories, there was a consistent trend for the

highest levels of vaccination to show the greatest reduction in risk

to unvaccinated cubs (Table S6) The reduced risk of an

BCG Reduces TB Risk in Unvaccinated Badger Cubs
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unvaccinated cub yielding a positive test result ranged between

79% and 86% for the highest levels of vaccination in the three

categorical models, although this only approached statistical

significance in one of the models (Table S6). For example, the

probability of an unvaccinated cub testing positive to M. bovis was

reduced by 79% when more than one third of the contemporary

group residents had been vaccinated previously (Odds ratio = 0.21,

95% CI 0.05–0.81; P = 0.02; Fig. 2).

There was a strong positive association between unvaccinated

cubs and adults that tested positive for M. bovis, and the presence at

capture of culture-positive, i.e. M. bovis-excreting, animals in the

same social group (Table 2). Adult male badgers were almost four

times more likely to yield a positive result than adult females (Odds

ratio = 3.7, 95% CI 1.30–10.53; P = 0.01; Table 2). Interactions

between significant main effects in the model were investigated but

none were found to be significant (data not shown).

Discussion

Vaccination was associated with a significantly lower risk of an

individual badger testing positive to both a triple diagnostic test for

TB infection and a dual diagnostic test as a proxy for more

advanced infection. In the absence of associated post-mortem data,

tests based on measurement of an immune response are not proof

Table 1. Effects of BCG vaccination on the risk of individual badgers testing positive to a suite of diagnostic tests for M. bovis.

Diagnostic test factor odds ratioa SDb lower 95% CI upper 95% CI

IGRA (ESAT-6/CFP-10) Presence of culture-positive badgers 6.43 2.24 3.25 12.53

Vaccinated previously 0.42 0.14 0.23 0.84

Sex (male) 2.44 0.89 1.19 4.30

Stat-Pak Presence of culture-positive badgers 4.85 2.68 1.87 10.88

Vaccinated previously 0.15 0.22 0.06 0.42

Culture Presence of culture-positive badgers 3.99 1.54 1.77 7.65

Stat-Pak or culture (dual test) Presence of culture-positive badgers 7.92 3.37 3.42 16.37

Vaccinated previously 0.24 0.43 0.11 0.52

Triple testV
c Presence of culture-positive badgers 6.20 2.33 3.14 11.48

Vaccinated previously 0.46 0.12 0.26 0.88

Sex (male) 3.01 1.44 1.44 5.55

Outcome of the final event analysis model showing the individual risk of testing positive for each of the diagnostic tests and test combinations, SD and 95% confidence
intervals associated with different explanatory factors. Only significant factors are listed.
aOdds ratios are equivalent to the mean exponent of the coefficient (exp(ß)) and represent change in odds associated with an individual badger testing positive for M.
bovis in relation to the relevant covariate being assessed. Odds ratio ,1 = decreased odds (negative ß coef.); .1 = increased odds (positive ß coef.).
bStandard deviation of the coefficient.
cTriple testV is positive for one or more of IGRA (ESAT-6/CFP-10), Stat-Pak, or culture.
doi:10.1371/journal.pone.0049833.t001

Table 2. Factors affecting the likelihood of unvaccinated badgers in vaccinate groups testing positive to any of the following
diagnostic tests: IGRA (PPDB – PPDA); Stat-Pak; culture.

odds ratioa SEb lower 95% CI upper 95% CI z-valuec p

Cubs

Interceptd 0.26 0.50 0.10 0.68 22.73 0.006

Presence of culture-positive badgers 3.86 0.53 1.37 10.90 2.55 0.01

Proportion of group previously
vaccinatede

0.08 1.17 0.01 0.76 22.19 0.03

Adults

Intercept 0.13 0.53 0.05 0.37 23.84 ,0.001

Presence of culture-positive badgers 6.50 0.60 1.99 21.24 3.11 0.002

Sex (male) 3.70 0.53 1.30 10.53 2.46 0.01

The proportion of badgers previously vaccinated is modelled as a continuous variable. Badger social group was fitted as a random factor and only significant factors are
listed.
aOdds ratios are equal to the mean exponent of the coefficient (exp(ß)) and represent change in the odds associated with an individual badger testing positive for M.
bovis in relation to the relevant covariate being assessed. Odds ratio ,1 = decreased odds (negative z-value); .1 = increased odds (positive z-value).
bStandard error of the coefficient.
cCoefficient divided by the SE of the coefficient.
dThe intercept represents the odds of testing positive for M. bovis for an individual badger in a social group without culture-positive individuals and where no other
group members have been vaccinated.
eThe number of other previously vaccinated badgers divided by the total number of other badgers caught in a social group at the time that an unvaccinated badger
was first caught and tested.
doi:10.1371/journal.pone.0049833.t002
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positive of TB infection. Similarly, the absence of a positive test

result does not mean the individual is certainly free of infection.

However, the triple testV used here is the most sensitive and

specific measure of M. bovis infection in a live vaccinated badger

and so provides confidence that these results are biologically

meaningful.

The effect of vaccination on the triple testV outcome was to

reduce the risk of a positive result by 54% in vaccinated

individuals. Without post-mortem data it was not possible to

ascertain what proportion of the triple testV-negative, vaccinated

badgers were protected from infection and what proportion still

acquired infection, but were not detected using the triple testV. It is

unsafe to assume that triple testV negativity equates to the absence

of infection. A greater estimate of vaccine effect (76%) was

observed with the dual test. The IGRA (ESAT-6/CFP-10) was

absent from the dual test. As the IGRA is more sensitive than

either the Stat-Pak or culture at detecting M. bovis infection in live

badgers, this result was not entirely unexpected. Given that

badgers are less likely to be dual test-positive if they are at an

earlier stage of the disease process [48], this result is consistent with

an additional impact of vaccination on the prevention of disease

progression in those vaccinated animals that still succumbed to

infection.

In addition to demonstrating a significant direct benefit of BCG

vaccination in individual badgers, we show a significant indirect

effect of vaccination on unvaccinated cubs born into vaccinated

groups. We conclude from these findings that unvaccinated,

susceptible badger cubs were indirectly protected from disease

transmission through a ‘‘herd immunity’’ effect, at least up to the

point at which they were above ground and could be trapped and

vaccinated. Whilst we cannot categorically rule out other potential

mechanisms for this result, it is unlikely that unvaccinated cubs

were afforded direct protection from maternal transfer of

antibodies arising from BCG vaccination of the mother (passive

immunity) as there is no evidence of a significant protective effect

in cubs from maternal antibody transfer in naturally infected

badger populations [49], where the antigen load would be

expected to be higher than following vaccination. The probability

of BCG being transferred from mother to cub via suckling or

across the placenta (vertical transmission) is extremely low as there

is no evidence of excretion and minimal evidence of dissemination

of BCG in vaccinated individuals [50]. However, even in the

unlikely event that some unvaccinated cubs were afforded

protection directly from their mothers through either of the above

mechanisms, the practical implications of these results remain

unchanged. The failure to detect a significant herd effect in adults

may be partly explained by differences in their ranging behaviour.

Adults are more likely to range further than cubs, leading to a

higher risk of encountering direct or indirect sources of infection

outside of their usual social environment, for example from

badgers or their latrines in unvaccinated control groups, neigh-

bouring groups of unknown infection status or from other species.

A contributing factor to the observed difference is that animals first

captured as adults in a vaccinated group may not have been

resident in that group and/or may have already been infected

prior to the start of BCG vaccination.

The crude categorisation of the proportion of vaccinated

badgers into discrete classes did not permit the identification of

a ‘‘vaccination threshold’’ beyond which a significant herd effect in

cubs is likely to occur, but these results clearly demonstrate an

increasing indirect benefit of vaccination to susceptible badger

cubs as an increasing proportion of their social group is

vaccinated.

The presence of infectious individuals within a social group

represents a high risk of infection for susceptible residents. An

individual badger was on average nearly eight times more likely to

yield a positive dual-test result (associated with increased disease

severity or progression) where at least one other badger captured

in its social group was found to be excreting M. bovis, than if no

other badgers in the group were found to be excreting at the time

of capture. This result is not surprising given the high degree of

sociality and territoriality among badgers and is consistent with

findings from a long-term field study of M. bovis infection in

badgers which showed the proportion of culture-positive animals

in a group to be the most significant factor influencing the risk of

other individuals becoming culture positive within any given year

[35,42]. From a disease management perspective, it is noteworthy

that the significant reductions in infection risk to individual

badgers as a result of vaccination were apparent, even in the

presence of individuals with evidence of advanced infection within

the social group and within a relatively short period of time since

the start of vaccination.

Vaccination of badgers with BCG appears to be beneficial in at

least two ways: by directly reducing the TB burden in vaccinated

individuals [24,25] and by indirectly reducing the risk of

unvaccinated cubs acquiring infection, most likely through a herd

immunity effect on this susceptible component of the badger

population. Indirect ‘protection’ bestowed upon juveniles before

they become accessible for vaccination themselves could be an

important contribution to the success of vaccinating wildlife.

Heterogeneity in contact and transmission rates among human

communities influences the magnitude of herd immunity and in

turn its contribution to the success of mass immunisation

programmes [31]. The stable social structure of badgers and

relatively limited contact between groups [51] has previously been

shown to impede disease spread [35,42]. The marked difference in

the indirect impact of vaccination on adults and cubs observed in

the present study indicates another way in which the social

organisation of badger populations may influence disease trans-

mission among age classes within the social group, although we

might expect to see a similarly protective effect in adults over a

longer time period as the benefits of herd immunity accrue in the

population. Contact patterns among other wild animals are likely

to be equally important in determining the impact of vaccination

in controlling disease. These results also emphasise the importance

of considering indirect as well as direct measures of vaccine

efficacy when evaluating vaccination as a strategy for wildlife

disease control.

Figure 2. Decreasing risk of an unvaccinated badger cub
testing positive to a triple diagnostic test for M. bovis infection
as the proportion of vaccinated badgers in its social group
increases. The number of cubs within each category is shown.
doi:10.1371/journal.pone.0049833.g002
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Conclusion

Vaccinating free-living wild badgers with BCG significantly

reduced the risk of an individual developing a positive result to a

range of diagnostic tests used as a proxy for M. bovis infection. In

particular, an additional protective effect was observed using a

dual test associated with more advanced/severe disease. More-

over, we have demonstrated an indirect benefit of vaccination for

susceptible, unvaccinated badger cubs before they became

available for vaccination themselves. Together, these results

provide additional insights into the nature of the protective effect

of BCG vaccination of wild badgers in their natural social setting.

Our findings should be considered in light of the relatively short

time scale over which the beneficial effects of vaccination were

observed.
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