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Abstract: Biochemical juice attributes and color-related traits of muscadine grape genotypes have
been investigated. For this study, 90 muscadine genotypes, including 21 standard cultivars, 60 breed-
ing lines, and 9 Vitis x Muscadinia hybrids (VM), were evaluated. The biochemical properties of total
soluble solids (TSS), titratable acidity, and TSS/Acid (T/A) ratio showed modest diversity among
genotypes with a range of 10.3 ◦Brix, 2.1 mg tartaric acid/L, and 4.6, respectively. Nonetheless, the
pH trait exhibited a tight range of 0.74 among the population with a minimum and maximum pH of
3.11 ± 0.12 and 3.85 ± 0.12. Color-related traits showed more deviation between individuals. Total
anthocyanin content (TAC), luminosity index (L*), hue angle (h◦), and chroma index (C*) displayed
a range of 398 µg/g DW, 33.2, 352.1, and 24, respectively. The hierarchical clustering map classi-
fied the population into two large groups of colored and non-colored grapes based on L* and h◦,
suggesting the predominance of these two characters among the population. The colored berries
genotypes clade was further divided into several sub-clades depending on C*, TAC, and TSS levels.
The principal component analysis (PCA) separated the four-color characteristics into two groups
with a negative correlation between them, L* and C* versus TAC and h◦. Further, PCA suggested
the positive influence of acidity in enhancing the different nutraceutical components. Despite the
nature of anthocyanins as a member of phenolic compounds, a lack of significant correlation between
TAC and nutraceutical-related traits was detected. The dissimilatory matrix analysis highlighted the
muscadine individuals C11-2-2, E16-9-1, O21-13-1, and Noble as particular genotypes among the
population due to enhanced color characteristics.

Keywords: acidity; anthocyanin; chroma index; hue angle; total soluble solids

1. Introduction

Muscadines (Muscadinia rotundifolia Michx) are Native American grapes that have
been cultivated for over 400 years [1,2]. They are commonly grown in the southeastern
region of the United States due to their high adaptability to diverse biotic/abiotic stresses
and pleasant fruit/vinification qualities. Muscadine grapes are used for fresh consumption
and processed into juice, wine, or jam. Reportedly, there are almost 100 improved cultivars
and approximately 5000 acres of muscadine grapes in commercial production in the United
States [3]. The recent recognition that muscadine grapes are important sources of beneficial
health-promoting phytochemicals has considerably increased their demand by consumers
as a favorite healthy food [4–6]. Their unique blend of bioactive elements is effective for
preventing several chronic diseases [7–9].
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Biochemical attributes, including flavor, taste composition, and skin color are the most
dominant quality parameters of grapes for market and to attract consumers. Among the
flavor characteristics, components such as metabolites, aroma, total soluble solids, acidity,
and anthocyanins are the ordinary parameters that largely contribute to grape and wine
taste [10]. During development, fruit grows in a coordinated program of physiological,
biochemical, and structural systems to optimize changes in size, shape, color, texture,
and metabolic dynamics of grape berries. Despite the importance of grape nutraceutical
value, the factors of TSS, acid, TSS/acid ratio, and skin color are still the main quality
attributes in grapes that determine consumer demand [11]. Berry chemical composition
at harvest could be affected by several factors such as growing season, maturity stage,
genotypical variation, and other factors like storage conditions [12,13]. In ripe grapes,
acids are present in traces relative to sugars, but they considerably contribute to the overall
taste [14]. Muscadine growers typically use TSS (sweetness) of juice as a sign of maturity.
For instance, berries exhibit TSS levels between 15–18 ◦Brix are considered mature and
ready for harvest [15]. Sugar content in grape berries is the crucial aspect determining their
quality [16]. In muscadines, glucose, fructose, and sucrose constituted approximately 90%
of the total sugars in berries with trace quantities of galactose and maltose [10,17].

The attractive color is a primary sensory characteristic of fruit products [18]. Mus-
cadine berries typically display a dark-purple/black color or bronze color. Marketplaces
typically sell both colors, and many consumers prefer one to the other. Despite the predom-
inance of the bronze and black colors, other colors are available, varying from lavender to
purple and pink through red shades. Breeding cultivars with new skin colors may open
up new markets for muscadines and prioritize breeding programs [19]. Berry color is a
quality factor of a primary effect, since sight is the first of the senses to be used, and visual
appreciation is pivotal in the choice [11]. In addition, berry color is the visual manifestation
of organic compounds known as anthocyanins, mainly accumulated within the skin and
occasionally in the flesh. Anthocyanins are colored water-soluble pigments belonging to
the phenolic group. The pigments are in glycosylated forms. Various red and black grapes
contain anthocyanins, whereas white grape varieties do not accumulate pigment [20].
Among the different anthocyanin pigments, cyanidin-3-glucoside is the major anthocyanin
detected in most plants. The colored anthocyanin pigments have been traditionally used
as a natural food colorant. The color and stability of these pigments are influenced by
pH, light, temperature, and structure [21]. Anthocyanins occur in both the skin and the
seed, but skin has a much higher content than the seed [5]. In grapes, O-glycosylation
occurs for anthocyanins, and the sugar moiety is typically glucose. The color of the grape
skin in red, purple, and black is attributed to different types of anthocyanins, including
delphinidin, cyanidin, petunidin, peonidin, and malvidin [4]. The tonality and intensity of
the color in the juice can provide information about the quality of the raw material used
in its preparation. Muscadines’ juice color quality and stability are affected by the total
amount of anthocyanins in the berry, the relative proportion of the individual anthocyanins,
and the lack of intramolecular co-pigmentation [21–26]. Ballinger et al. [27] examined the
anthocyanin profile of 39 M. rotundifolia clones and noticed that delphinidin was the pre-
dominant anthocyanin in over 90% of the samples. According to Hoffman et al. [28], fresh
market muscadines differ considerably from those grown for processing. Fresh market
muscadine berries need to be large (over 6 g per berry or <50 berries per quart), have a dry
stem scar or a wet scar that will dry quickly, and have a storage life greater than 14 days.
Size, color uniformity, and lack of cosmetic defects and blemishes are essential in fresh
market cultivar selection.

A comparative study on juice attributes and skin color of muscadine grapes can
provide valuable information for market demand and muscadine breeding program. There-
fore, the objective of this study was to determine and compare biochemical juice attributes
and color-related traits of 90 muscadine genotypes grown in Florida. This research will
make substantial fundamental knowledge that will express muscadine grape character-
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istics and create a classification about quality attributes to exploit flavor and taste for the
viticulture industry.

2. Materials and Methods
2.1. Plant Material

The muscadine population used in this study was generated as part of the grape
breeding program at the Florida Agricultural and Mechanical University (FAMU), Center
for Viticulture and Small Fruit Research (CVSFR). For this study, 90 muscadine genotypes,
including 21 standard cultivars, 60 breeding lines, and 9 Vitis x Muscadinia hybrids (VM
hybrids), were selected based on vines age with at least 5-year-old vines to ensure sta-
ble productivity. A complete list of used genotypes and parental pedigree is presented
(Table S1). The muscadine grape berries from each genotype were collected at the time
of optimum harvest maturity, as determined by berry softness and color. All evaluated
parameters were measured for three consecutive years (2017–2019). For chemical prop-
erties of fruit such as TSS, titratable acidity, T/A ratio, and pH were evaluated, using
50 berries/replicate (three independent biological replicates/genotype).

2.2. Biochemical-Related Traits

The biochemical-related traits were measured using berry juice and expressed using a
set of sub-traits, including measurable and calculated traits. The measurable traits comprise
total soluble solids—TSS (◦Brix), acidity—Acid (mg tartaric acid/L), and pH. The calculated
trait covers the TSS/Acid ratio-T/A ratio. A representative of 50 berries/genotype were
randomly selected from the harvested lot at commercial maturity. The berries were then
introduced to an Omega Fruit and Vegetable Juicer J4000 High-Speed Pulp Ejection Juicer
(Omega Products International, Corona, CA, USA), allowing the separation of pomace and
juice. The juice was used for the following biochemical measurements.

TSS was measured using HI96801 portable digital refractometer (Hanna Instruments,
Woonsocket, RI, USA). The refractometer unit was zeroed before using by adding 1–2 drops
of distilled deionized water to the optical location. Then, 1–2 drops of berry sample juice
were added to measure the TSS value. The optical location was cleaned and zeroed with
distilled deionized water between measurements. All TSS measurements were generated
from three biological replicates, and each was run in three technical replicates.

Acidity concentration was assessed according to the method described by Chito et al. [29],
using Tartaric Acid Assay Kit (Megazyme, Chicago, IL, USA) with minor modification to
accommodate the reaction in 96-well microplates (Genesee Scientific, San Diego, CA, USA).
Acidity assay was performed using 10-µL of grape juice sample in 250-µL final reaction
volume. The reaction composition and steps were as follows: 175-µL of distilled water,
40-µL of Reagent 1 (Indicator solution), and 10-µL of juice sample were added to each
well. The reactions were mixed by slow shaking and incubated in the dark for 1 min at
room temperature. Then, 25-µL of Reagent 2 (0.1 N of NaOH) was added to each reaction,
followed by incubation in the dark for 4 min at room temperature. The same procedure
was followed for the blank and standard reactions; however, the 10-µL of juice sample was
replaced by distilled water and standard solution. All acidity assays were generated from
three biological replicates, and each was run in three technical replicates. The measure
of the absorbance was performed at λ = 505 nm using ACCURIS SMART Plate Reader
spectrophotometer (Thomas Scientific, Swedesboro, NJ, USA).

The T/A ratio was calculated by dividing the values of TSS and acidity. The juice
pH was measured using Thermo Scientific Orion Star A111 Benchtop pH Meter (Thermo
Fisher Scientific, Waltham, MA, USA). A volume of 20 mL juice was placed in a beaker
with a magnetic stir bar for stirring and getting a homogenized juice. Then, the pH probe
was immersed in the juice. The pH value was recorded when the ready indicator alert was
stable. The pH probe was rinsed between measurements with triple distilled deionized
water, dried, and used for the following sample. The pH meter was calibrated using 4, 7,
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and 10 pH standards for each time before using to avoid errors. All pH measurements were
generated from three biological replicates, and each was run in three technical replicates.

2.3. Color-Related Traits
2.3.1. Color Parameter Values

The skin color was measured at four different positions around the equator of the
berries. Color coordinates (L*, a*, and b*) were determined by a Konica Minolta, CR-10
Plus fruit colorimeter (Konica Minolta, Inc. Chiyoda City, Tokyo, Japan) used for a deeper
unbiased color index. The instrument was calibrated with a white blank calibration tile
before each measurement. Luminance coordinate L* means the lightness from 0 (black) to
100 (white). The chromaticity value a* means red when positive and green when negative.
The chromaticity coordinate b* means yellow when positive and blue when negative [30].
The chroma (C*) and hue (h◦) values were calculated from a* and b* values, with C*
calculated as (a2 + b2)1/2. For the h◦ angle, the calculation depended on the obtained
charge of a* and b* values. If the a* and b* values were positive, the h◦ = Arc Tan (b/a).
If the a* value was positive and the b* value was negative, the h◦ = 360 + Arc Tan (b/a).
However, if the a* value was negative and the b* was positive, or both values were negative,
the h◦ = 180 +Arc Tan (b/a). All color parameters were generated from five independent
berries. For each berry, the skin color was measured at four different positions around the
equator of the berries.

2.3.2. Estimation of Total Anthocyanins Content (TAC)

Total anthocyanin content (TAC) was assessed according to the method described by
Giusti and Wrolstad [31], using Anthocyanins Assay Kit (Cosmo Bio, Carlsbad, CA, USA)
with minor modification to accommodate the reaction in 96-well microplates (Genesee
Scientific, San Diego, CA, USA). Muscadine methanolic berry extracts were prepared as
described previously [32]. Dried extracts (10 mg) dissolved in 1 mL DMSO (Dimethyl
sulfoxide) were used to quantify the TAC assay. Anthocyanin assay was performed using
20-µL of 10 mg/mL extract solution in a 220-µL final volume. The reaction composition
and steps were as follows: in two side-by-side wells, a volume of 200-µL of Reagent A
(KCl—25 mM) and 200-µL of Reagent B (Na Acetate—0.4 M, pH 4.5) were added. Then, a
20-µL of extract solution was added to each well. The reactions were mixed by slow shak-
ing for 1 min and incubated in the dark for 10 min at room temperature. The absorbance
measurements were performed at λ = 510 nm (maximum anthocyanin absorption) and
λ = 700 nm (for turbidity correction) using ACCURIS SMART Plate Reader spectropho-
tometer (Thomas Scientific, Swedesboro, NJ, USA). TAC estimation was generated from
three biological replicates, and each sample was run in three technical replicates and
expressed as a microgram of delphinidin equivalents per gram dry weight (µg/g DW).

2.4. Statistical Analysis

Data of several evaluated traits were collected and analyzed to test the genotype effect
using repeated measures of analysis of variance (ANOVA) in SAS (SAS version 9.4, SAS
Institute Inc., Raleigh, NC, USA) using PROC GLIMMIX. Data analysis were conducted
based on the average of the three years’ results. Means for the analyses was determined
using the LSMEANS statement and means separation performed using the Tukey–Kramer
adjusted multiple means comparison test. All data presented as the mean ± SD of three
growing seasons (2017–2019). A web-based program called Heatmapper (www.heatmapper.
ca/pairwise/, accessed on 17 April 2021) was used to produce the graphic representation
of the dissimilarity matrix. Principal component analysis (PCA) and hierarchical clustering
were carried out using XLSTAT software to examine the grouping of genotypes. PCA was
run on the log2-transformed area using the individual variables. Hierarchical clustering
was run using the complete linkage method with correlation.

www.heatmapper.ca/pairwise/
www.heatmapper.ca/pairwise/
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3. Results
3.1. Biochemical-Related Traits
3.1.1. Total Soluble Solids (TSS) Trait

The TSS trait showed moderate differences among genotypes with a range of 10.3 ◦Brix
by which muscadine O43-1-1 (18.1 ± 1.2 ◦Brix), Scarlett (18.1 ± 0.9 ◦Brix), and the VM
O15-16-1 (17.9 ± 1.1 ◦Brix) genotypes exhibited the highest TSS content with insignificant
differences between them. While the muscadine genotype A18-8-2 displayed the lowest
TSS content (~7.9 ± 0.5 ◦Brix). The average TSS among the population was estimated at
14.4 ± 0.2 ◦Brix. Based on the median TSS (~14.4 ◦Brix), the population was separated into
two main groups that produced high (47 genotypes, 52% of the population) and low TSS
content (43 genotypes, 48% of the population). The reference standard commercial cultivar
Majesty was listed among muscadine genotypes exhibiting high TSS levels. However, Fry,
Noble, and Carlos belonged to the group displaying low TSS content (Figure 1).
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maximal (O43-1-1) and minimal (A18-8-2) TSS content.

3.1.2. Acidity Trait

The acidity trait demonstrated a moderate difference among the population with a
range of 2.1 mg tartaric acid/L. The highest acid content was recorded in muscadine geno-
types E16-10-1 (4.8 ± 0.3 mg tartaric acid/L), O41-3-1 (4.8 ± 0.4 mg tartaric acid/L), and Flo-
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riana (4.7 ± 0.3 mg tartaric acid/L) with no apparent differences among them, whereas mus-
cadine cultivar Sugargate displayed the lowest acid content (2.6 ± 0.2 mg tartaric acid/L)).
The average acidity among the population was estimated at 3.4 ± 0.1 mg tartaric acid/L.
Based on the median acidity (~3.4 mg tartaric acid/L), the population was divided into two
groups of high (46 genotypes, 51.1% of the population) and low (44 genotypes, 48.9% of the
population) acid content. Interestingly, the standard commercial wine cultivars, Noble and
Carlos, were categorized as members of the muscadine group exhibiting high acid levels.
However, the table muscadines Fry and Majesty displayed low acid content (Figure 2).
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Figure 2. (A) Characterization of acidity (Acid) trait among muscadine population (n = 90). The bars represent the mean
(±SD) acidity levels resulted from three biological and three technical replicates among three years (n = 27). The y-axis refers
to the acidity (mg tartaric acid/L). Means within columns for the same letter followed by different letters differ significantly
by Tukey’s test (p < 0.05). Based on the median acidity (~3.4 mg tartaric acid/L), the population was divided into two
groups of high (46 genotypes, 51.1%) and low (44 genotypes, 48.9%) acid content. Other details are as in Figure 1. (B) A
represented image for the muscadine genotypes showed maximal (E16-10-1) and minimal Acid (Sugargate).

3.1.3. TSS/Acid (T/A) Ratio Trait

The TSS/Acid ratio (T/A ratio) trait displayed a moderate difference among the pop-
ulation with a range of 4.6. The maximum T/A ratio was recorded in Sugargate (6.7 ± 0.6),
while the muscadine genotype A18-8-2 displayed the lowest T/A ratio (2.2 ± 0.5). The
average T/A ratio among the population was estimated at 4.3 ± 0.1. The median T/A
ratio (~3.52) divided the population into two equal groups of high and low T/A ratio.
Interestingly, the standard commercial table cultivars were classified as members of the
muscadine group, manifesting a high T/A ratio (Figure 3).
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3.1.4. pH Trait

The pH trait did not confer excessive differences among the population, with a narrow
range of 0.74. The highest pH was recorded in the VM genotype O15-11-1 (3.85 ± 0.12),
whereas the muscadine genotype E15-10-1 displayed the lowest pH (3.11 ± 0.12). The
average pH among the population was estimated at 3.51 ± 0.02. Based on the median
pH (~3.52), the population was split into two groups of high (47 genotypes, 52.2% of the
population) and low (43 genotypes, 47.8% of the population) pH. According to the previous
analysis, the table grape cultivar, Majesty, was placed among the high pH group; however,
muscadine cultivars Fry, Noble, and Carlos were located in the low pH class (Figure 4).
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Figure 4. (A) Characterization of pH trait among muscadine population (n = 90). The bars represent the mean (±SD) pH
resulted from three biological and three technical replicates among three years (n = 27). The y-axis refers to the pH value.
Means within columns for the same letter followed by different letters differ significantly by Tukey’s test (p < 0.05). Based
on the median pH (~3.52), the population was divided into two groups of high manifested (47 genotypes, 52.2%) and low
(43 genotypes, 47.8%) pH. Other details are as in Figure 1. (B) A represented image for the muscadine genotypes showed
maximal (O15-11-1) and minimal pH (E15-10-1).

3.1.5. Frequency Distribution of Berry Biochemical Traits

Frequency distribution analysis of berry biochemical traits suggested a distinguishable
distribution pattern among biochemical parameters (Figure 5). Interestingly, all of the eval-
uated traits have normal frequency distribution patterns. TSS and pH traits’ distribution
behavior was skewed moderately to the left, departing from normality (Figure 5A,D). By
contrast, the acidity and T/A characters’ distribution pattern was strongly skewed to the
right, departing from normality (Figure 5B,C).

TSS and pH traits typically have a unimodal distribution pattern (Figure 5A,D). This
pattern of distribution suggests that both traits were likely regulated in a quantitative
manner in the population. The distribution pattern of the T/A ratio trait exhibited a
bimodal distribution (Figure 5C). A bimodal distribution usually indicates that two main
phenotypes exist in the population, designated as low/moderate T/A ratio (2.2–5.9) that
covers almost all the population individuals (89 genotypes or ~98.9% of the population) and
high T/A ratio (6.4–6.8) represented by only one genotype (~1.1% of the population). The
TSS levels accumulated in muscadine berries are generally lower than in bunch grapes [33].
Accordingly, it is common to find that the T/A ratio among muscadine grapes usually
varies between low to moderate. The acidity trait typically has a trimodal distribution in
the population. A trimodal distribution typically indicates that three main phenotypes
exist in the population (Figure 5B). The three categories were designated as low acid levels
(2.6–3.5 g tartaric acid/L; 51 genotypes or ~56.7% of the population), moderate acid levels
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(3.5–4.2 g tartaric acid/L; 33 genotypes or ~36.7% of the population), and high acid levels
(4.2–4.9 g tartaric acid/L; 6 genotypes or ~6.7% of the population).
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3.2. Color-Related Traits

The individuals of the muscadine population were carefully selected to represent
the diversity in color berries of muscadine grapes. Based on visual assessment of berry
colors, the population was classified into genotypes producing black berries (28 genotypes,
31.1% of the population), dark-red berries (14 genotypes, 15.6% of the population), red
berries (6 genotypes, 6.7% of the population), and bronze berries (42 genotypes, 46.7% of
the population) (Figure 6).

3.2.1. Total Anthocyanin Content (TAC) Trait

Total anthocyanin content (TAC) was measured and calculated as delphinidin-3-
diglucoside equivalents, as it has been reported as the most prevalent anthocyanin in
muscadine grape berries [27]. As expected, the characterization of the TAC trait re-
vealed broad differences between the individuals within the population with a range
of ~398 µg/g DW (Figure 7). The muscadine genotype C11-2-2 had the highest TAC
levels (398.1 ± 6.8 µg/g DW). However, several bronze muscadine genotypes displayed
the lowest TAC levels with no significant differences among them. This comprises the
muscadine genotypes Watergate (0.2 ± 0.1 µg/g DW), O25-1-1 (0.3 ± 0.1 µg/g DW), Welder
(0.3 ± 0.1 µg/g DW), Sweet Jenny (0.3 ± 0.1 µg/g DW), and O44-14-1 (0.3 ± 0.1 µg/g DW).
The average TAC value among the population was estimated at 39.1 ± 7.5 µg/g DW. The
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median TAC observed was ~7.6 µg/g DW. It is important to highlight that the assessment
of the TAC trait was not efficiently able to distinguish between colored and non-colored
muscadine berries since there are several dark red berry genotypes (i.e., C11-7-1 and
O19-14-1) demonstrated TAC levels lower than those detected in bronze genotypes (i.e.,
A18-15-2 and O18-17-1). Despite that, the two-colored cultivars, Noble and Majesty, and
the two non-colored ones, Carlos and Fry, were grouped in a color-dependent manner.
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Figure 7. (A) Characterization of total anthocyanin content (TAC) trait among muscadine population (n = 90). The bars
represent the mean (±SD) TAC resulted from three biological and three technical replicates among three years (n = 27). The
y-axis refers to the total anthocyanin content (µg/g DW). Means within columns for the same letter followed by different
letters differ significantly by Tukey’s test (p < 0.05). Other details are as in Figure 1. (B) A represented image for the
muscadine genotypes exhibited maximal (C11-2-2) and minimal (Watergate) TAC levels.
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3.2.2. Color Luminosity Index (L*) Trait

Analysis of color lightness index (L*) trait among the population stated that the lower
L* values were associated with colored berries, while the higher L* values were concomitant
with non-colored berries. The L* values visibly varied among the population and displayed
a wide range of ~33.2. Bronze muscadine berry genotype O43-16-1 had the highest L*
value of 51.1 ± 1.5, while the black berry genotype O41-2-1 displayed the lowest L* value,
17.9 ± 0.5. The population had an average of 31.1 ± 1.0. Based on the estimated median
luminosity (~27.0), the population was classified into two main groups of non-colored/high
L* index (42 genotypes, 46.7% of the population) and colored/low L* index (48 genotypes,
53.3% of the population), which perfectly match with the visual assessment of berry color
(Figure 8). Accordingly, the two muscadine cultivars, Noble and Majesty, were placed
among the colored group; however, the muscadine cultivars, Fry and Carlos, were located
in the non-colored class.
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Figure 8. (A) Characterization of luminosity index (L*) trait among muscadine population (n = 90). The bars represent the
mean (±SD) L* value resulted from three biological and three technical replicates among three years (n = 27). The y-axis
refers to the color lightness. Means within columns for the same letter followed by different letters differ significantly by
Tukey’s test (p < 0.05). Based on the estimated median luminosity (~27.0), the population was divided into two groups of
non-colored/high L* index (42 genotypes, 46.7%) and colored/low L* index (48 genotypes, 53.3%). Other details are as
in Figure 1. (B) A represented image for the muscadine genotypes displayed maximal (O43-16-1) and minimal (O41-2-1)
L* values.

3.2.3. Hue Angle (h◦) Trait

Contrary to L*, analysis of color hue angle (h◦) trait among the population identified
that the lower h◦ values were associated with non-colored berries. In comparison, the
higher h◦ values were correlated with colored berries. The population demonstrated a
wide h◦ value range of ~352.1, with a mean of 202.6 ± 16.9 (Figure 9). The bronze Scupper-
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nong muscadine cultivar presented the minimum h◦ recorded with a value estimated at
17.0 ± 1.7. On the other side, the black muscadine genotype O22-8-2-2 displayed the maxi-
mum h◦ value estimated at 369.1 ± 3.3. Based on the median h◦ (~334.3), the population was
classified into two groups of low h◦ values, and this includes all the non-colored, bronze
genotypes (42 genotypes, 46.7% of the population), and high h◦ values that comprises
all the colored, black/dark red/red genotypes (48 genotypes, 53.3% of the population),
which ideally corresponded with the visual evaluation of berry color. Accordingly, the four
muscadine cultivars were allocated in their relevant groups.
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Figure 9. (A) Characterization of hue angle (h◦) trait among muscadine population (n = 90). The bars represent the mean
(±SD) h◦ value resulted from three biological and three technical replicates among three years (n = 27). The y-axis refers to
the hue angle. Means within columns for the same letter followed by different letters differ significantly by Tukey’s test
(p < 0.05). Based on h◦ characterization, the population was divided into two groups of low (non-colored, 42 genotypes,
46.7%) and high (colored, 48 genotypes, 53.3%) h◦ values. Other details are as in Figure 1. (B) A represented image for the
muscadine genotypes demonstrated minimal (Scuppernong) and maximal (O22-8-2-2) h◦ values.

3.2.4. Chroma Index (C*) Trait

Analysis of berry C* index trait revealed a wide chroma range of 24 among the
population (Figure 10). The two bronze muscadine genotypes, A26-6-1 and C12-10-1,
recorded the highest C* index estimated at 24.8 ± 1.8 and 24.7 ± 1.6, respectively, without
significant difference between them. The lowest C* value was detected in the black berry
muscadine cultivar Onyx with a C* index estimated by 0.8 ± 0.1. The mean C* value among
the population was estimated at 9.8 ± 0.7; however, the median chroma was calculated at
~11.3. As in the TAC trait, the assessment of C* could not distinguish between colored and
non-colored berries since some red berry genotypes (i.e., O15-16-1) exhibited similar C*
values to the bronze genotypes (i.e., O22-19-2).
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mean (±SD) C* value resulted from three biological and three technical replicates among three years (n = 27). The y-axis
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different letters differ significantly by Tukey’s test (p < 0.05). Other details are as in Figure 1. (B) A represented image for
the muscadine genotypes showed maximal (A26-6-1) and minimal (Onyx) C* values.

3.2.5. Frequency Distribution of Color-Related Traits

Frequency distribution analysis of berry color-related traits suggested a distinct dis-
tribution pattern among traits (Figure 11). The evaluated traits did not follow a normal
frequency distribution pattern, excluding the TAC parameter. The distribution behavior for
TAC and h◦ traits were skewed slightly to the left, departing from normality (Figure 11A,D).
By contrast, the distribution pattern for L* and C* means were skewed to the right, depart-
ing from normality (Figure 11B,C).

The TAC, L*, and C* traits typically have a trimodal distribution in the population.
A trimodal distribution pattern suggested three main phenotypes exist in the population
(Figure 11A–C). In the case of TAC, the three categories were designated as low TAC
levels (0.2–0.4 µg/g DW; 5 genotypes, or ~5.6% of the population), moderate TAC lev-
els (1.8–19.9 µg/g DW; 51 genotypes, or ~56.7% of the population), and high TAC levels
(19.9–501.2 µg/g DW; 34 genotypes, or ~37.8% of the population). The L* trait was divided
into three groups based on luminosity level, designated as low lightness (18–32; 48 geno-
types, or ~53.3% of the population), moderate lightness (32–42 g; 25 genotypes, or ~27.8%
of the population), and high lightness (42–52 g; 17 genotypes, or ~18.9% of the population).
It is important to highlight that the first group covers all colored genotypes (black/dark
red/red). The second group includes all bronze genotypes. The third group comprises
all green/yellowish genotypes. Finally, for the C* trait, the three categories were mani-
fested as low C* levels (0.8–10.8; 45 genotypes or ~50% of the population), moderate C*
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levels (10.8–23.3; 43 genotypes or ~47.8% of the population), and high C* levels (23.3–25.8;
2genotypes or ~2.2% of the population).
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Figure 11. Frequency distribution of the berry color traits, including total anthocyanin content (A),
luminosity index (B), chroma index (C), and hue angle (D) in the muscadine population (n = 90). The
skewness degree and p-Value of the Kolmogorov–Smirnov normal distribution test are indicated.

The distribution pattern of the h◦ trait exhibited a bimodal distribution (Figure 11D).
A bimodal distribution usually indicates that two main phenotypes exist in the population,
designated as low h◦ values that cover all non-colored genotypes (17–52; 42 genotypes or
~46.7% of the population) and high h◦ values that include all colored genotypes (299–370;
48 genotypes or ~53.3% of the population). The pattern was evident, suggesting that the
trait in muscadine is controlled by one to two genes.

3.2.6. Classification of Muscadine Genotypes Based on the Evaluated Traits

In order to classify the muscadine population based on the evaluated biochemical and
color-related traits, a hierarchical cluster map was constructed (Figure 12). Despite the
variation among individuals for the different evaluated traits, the hierarchical clustering
divided the population into two main groups of colored and non-colored grapes based on
luminosity index and hue angle, suggesting the dominance of these two characters among
the studied population. The clade of non-colored muscadines was slightly branched after
that, suggesting uniform levels of the remaining traits. On the other hand, the colored
clade was extensively separated into several sub-clades, mainly due to differences in C*,
TAC, and TSS levels.
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Figure 12. Hierarchical clustering of the different evaluated traits of muscadine population (n = 90).
Data related to TSS, Acid, T/A ratio, pH, TAC, L*, h◦, and C* are presented as an average of three
biological and three technical replicates, among three years (n = 27). The log2-transformed values
of each character are represented by colors. Green and red boxes indicate higher and lower values,
respectively. The color change is proportional to the two extremes (see the color scale at the top of
the figure).
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3.2.7. Dissimilarity Matrix Analysis among the Population

The 90 genotypes analyzed in this study showed a high level of diversity with little
population structure. The dissimilatory matrix revealed an overall low level of related-
ness with very few pairs of closely related genotypes within the population (Figure 13).
Despite the distinct background of muscadines and VMs, the VM genotypes were not dis-
tinguishable from muscadines. Interestingly, some muscadine genotypes were noticeably
divergent from the population, including C11-2-2, E16-9-1, O21-13-1, and Noble. Data
analysis revealed the enhanced color characteristics of the highlighted genotypes.
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3.2.8. Principal Component Analysis of Different Evaluated Traits

Principle components analysis (PCA) was performed using the data from the as-
sessment of 90 muscadine genotypes to identify different groups of berry-related traits
coordinating biochemical and color characteristics (Figure 14). However, to get a better
perception of muscadine berry properties, we have included previously assessed nutraceu-
tical data related to total phenolic content (TPC), total flavonoid content (TFC), and DPPH
antioxidant activity by which the same muscadine individuals in the current study were
used [32].
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ing total soluble solids (TSS), acidity (Acid), TSS/Acid ratio (T/A), pH, total anthocyanin content
(TAC), luminosity index (L*), hue angle (h◦), and chroma index (C*). Other previously characterized
traits for the same muscadine population, including total phenolic content (TPC), total flavonoid
content (TFC), and DPPH antioxidant activity, were added to the analysis. The scatter was generated
using the average of three biological and three technical replicates, among three years (n = 27).
According to the PCA model, 31.08% and 21.19% of the variance were explained by the PC1 and the
PC2 principal components, respectively.

Previous results suggested that the TPC trait varied widely among the population
with a range of ~137.8 mg GAE/g DW. The muscadine genotypes O43-1-1, O43-16-1, and
O41-3-1 had the highest TPC levels (144–152.5 mg GAE/g DW); however, the O24-19-
2 displayed the lowest detectable TPC (14.7 ± 1.3 mg GAE/g DW). Three genotypes,
including the bronze muscadine O44-16-3 (97.8 ± 8.1 mg QE/g DW), the dark red VM
O15-17-1 (91.1 ± 8.4 mg QE/g DW), and the red VM O15-16-1 (85.6 ± 7.0 mg QE/g DW),
displayed the highest TFC levels with no significant differences among them. Whereas the
muscadine C11-7-1 showed the lowest TFC levels (14.9 ± 1.1 mg QE/g DW). The black
VM genotype O16-9-2 had the highest DPPH activity (56.9% ± 5.2); however, the O24-19-2
displayed the lowest DPPH levels (7.1% ± 0.5) [32].

For the PCA, the variances explained by the first two components were 31.08 and
21.19%, respectively, with 52.27% cumulative eigenvalues of data variance. Eigenvalues of
the third and fourth PCs were negligible (48.38% and 39.99%), and thereby they are not
discussed further. The PC1 showed a strong positive correlation with chroma index (C*)
and luminosity index (L*), as well as a definite negative correlation with total anthocyanin
content (TAC) and hue angle (h◦). The PC2 displayed a strong positive correlation with
the variables of acidity, TPC, TFC, and DPPH antioxidant activity. However, it exhibited a
clear negative correlation with the TSS, TSS/Acid (T/A) ratio, and pH.

4. Discussion

Information about juice attributes and color of muscadine grapes can afford valuable
insights for product marketability, consumer preference, and the food processing industry.
Furthermore, the characterization of biochemical properties of muscadine grapes should
facilitate their classification in terms of flavor and taste for the viticulture industry and
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grape breeders. In the current study, the biochemical-related traits, including TSS, acidity,
T/A ratio, and juice pH, were determined. The flavor composition has been defined
as a complex attribute of quality in which the assortment of sugars and acids plays a
primary role [34]. Volatile esters, sugar, and organic acids, many of which are intermediates
in metabolic processes, play significant roles in fruit growth, maturation, ripening, and
softening. In grapes, the sugar and organic acids’ levels greatly influence the taste and
flavor of the berry, the quality of a processed product, and, consequently, determine its
ultimate market value [10,35]. On the other hand, sugar and organic acids contribute to the
juice’s sensory quality because they ensure the balance between sweet and acid flavors,
which confers appreciated palatability [36].

TSS, acidity, and T/A ratio are broadly accepted parameters commonly used as grape
maturity indicators [37]. At harvest, the total sugars account for more than 90% of the
TSS [10]. The sugars in ripe berries are present at high concentrations in the flesh [38,39]. It
has been reported that berry density and size are related aspects to the physicochemical
properties of grapes [40]. Earlier studies suggested the reduction of sugar concentration
along with increasing berry size [41,42]. Roby et al. [43] suggested the positive correlation
between berry size and anthocyanin content. In this study, TSS content showed a moderate
range among the muscadine population (7.9–18.1 ◦Brix). Glucose and fructose are the major
sugars accumulated in bunch grape berries (Vitis–based grapes) due to sucrose hydrolyzing
and metabolism [41,44]. The enzymes responsible for sugar metabolism in bunch grape
berry are sucrose phosphate synthase, sucrose synthase, and invertase [45]. Sucrose is cut
into glucose and fructose in the berry by invertase or sucrose synthase [16]. It seems that
the variation in the TSS content between muscadine genotypes is due to differences in
aforesaid enzyme activity.

T/A ratio is a sign of grape ripeness, as the concentration of sugars and organic acids
under similar conditions varies from one year to another [46]. Organic acids are the most
notable contributors to the ultimate berry taste [47,48]. The primary organic acids of grape
juice are tartaric, malic, and citric acids, but small quantities of other acids are present.
Out of these three acids, tartaric and malic acids account for over 90% of the total acid
constituents of the juice [49]. The organic acids content and the balance between sugar
and acid (T/A ratio) are the largest determining factors for grape berry quality at harvest,
particularly those used for wine production. In this study, the acidity trait displayed
modest but significant differences among the population (2.6–4.8 g tartaric acid/L). In
general, the organic acid content in grapes is influenced by several factors such as grape
variety, degree of ripeness, growing region, level of insolation, climatic conditions, and
storage conditions or duration [12,13,50,51]. These components are essential signals in
determining the ripeness of the grape and the flavor of its derivatives [48]. The T/A ratio
trait also displayed significant differences among the population (2.2–6.8). The varied T/A
ratio among the muscadine population was different. The cause of the high T/A ratio could
be due to high TSS coincided with low acid contents or resulted from balanced low TSS
and reduced acid accumulations. However, the low T/A ratio was because of low TSS and
high acid contents. PCA analysis showed that the higher T/A ratio is usually associated
with higher TSS and pH variables. The grapes juice pH is also a critical factor for flavor and
resistance to spoilage during postharvest storage and downstream processing [52]. Grape
juice is acidic, with a pH that generally has a range of 3.2 to 4.0. In this study, the juice pH
of the muscadine genotypes did not show a significant difference among the population
(3.11–3.85).

Color is considered the basis for the quality assessment due to its aesthetic role and
nutrition value [53]. Breeding cultivars with new skin colors may open up new markets
for muscadines [54]. The skin color of grape berries is a critical trait that greatly influences
the end-use of the fruit. In both wine and table grapes, fruit color is a decisive breeding
target; both noir (“red,” “blue,” or “black”) and non-noir (“green” or “white”) grapes can
be desirable, depending on the intended use [55]. In table grapes, berry color has been
shown to influence consumer preference [56], while wine grape color influences the color
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of the final wine produce. In the current study, the color of grape berries was evaluated
using different factors, including total anthocyanin content (TAC), luminosity index (L*),
hue angle (h◦), and chroma index (C*). All color-related traits visibly varied among the
population. The lower and higher L* values were associated with colored berries and
non-colored berries, respectively. In color theory, according to Conway [57,58], h◦ refers
to a pure color. Contrary to the color luminosity trait, the higher hue angle values were
associated with colored berries, while lower h◦ values were allied to non-colored berries.
Chroma index refers to the degree of vividness or intensity of a color. In another meaning,
how the color is pure or saturated compared to its representative on the color wheel. Like
the luminosity index, the lower C* values were associated with colored berries, while
higher C* values were linked to non-colored.

The total anthocyanin content and the proportions with color determine the final
coloration of the grape skin [10]. It has been reported that the anthocyanins were unevenly
distributed in different parts of muscadine grapes. However, anthocyanins were mainly
accumulated in the skin [5]. Total anthocyanin content (TAC) and relative amounts of
individual anthocyanins are significantly correlated with the CIELAB coordinates of L*, a*,
and b* [59]. Through evaluating 32 red grape varieties, Carreno et al. [60] determined that
amounts of anthocyanins in grape skin varied between 6.3–201 mg/100 g. In addition, total
anthocyanin in 20 black and bronze muscadine cultivars varied among cultivars by which
black cultivars had the highest total anthocyanin [61,62]. In this study, the total anthocyanin
content (TAC) trait revealed vast differences within the population (0.2–398.1 µg/g DW),
where bronze muscadine genotypes displayed substantially the lowest TAC levels. It
has been reported that accountable for blue, red, and purple colors, five anthocyanins
were detected in Vitis vinifera species, including malvidin, petunidin, peonidin, cyanidin,
and delphinidin [63]. Identification of anthocyanins in muscadine grapes showed that
approximately 90% of the total anthocyanins were 3,5-diglucoside of delphinidin, cyanidin,
and petunidin; the remaining 10% were 3,5-diglucoside of peonidin and malvidin. The
dominant allele involved in the production of diglucosidic anthocyanins is not present
in V. vinifera, resulting in the sole production of 3-O-monoglucosides [64]. In contrast,
other grape species, including muscadine, can form 3,5-O-diglucosidic anthocyanins. The
3,5-diglucosides may be more resistant to thermal degradation than the monoglucosides,
but they have a diminished ability to form polymeric pigments, making them more prone
to oxidation and browning [22,65,66]. Ballinger et al. [27] examined the anthocyanin
profile of several M. rotundifolia clones and found that delphinidin was the predominant
anthocyanin. Despite the predominance of delphinidin, delphinidin content was not
associated with visual color ratings of the berries and wines. Wines with good red color
were strongly associated with high contents of malvidin and, to a lesser extent, with
petunidin. Population data analysis suggested that only L* and h◦ traits could distinguish
between colored and non-colored muscadine berries population. However, the TAC and
C* traits could not fully distinguish between colored and non-colored muscadine berries.
Several red berry genotypes displayed lower TAC levels and higher C* values than those
in bronze genotypes. This suggested the contribution of the level of total anthocyanin and
the type of dominant anthocyanin accumulated. Accordingly, HPLC analysis with a larger
number of muscadine individuals is needed to confirm this hypothesis. The hierarchical
cluster map confirmed the contribution of L* and h◦ via separating the population into two
large groups of colored and non-colored grapes based on these two variables.

PCA analysis, including nutraceutical parameters of muscadine grapes, resulted
in two unexpected correlations. It highlighted the significant contribution of acidity to
enhanced TPC, TFC, and, consequently, antioxidant activity. The fruit possesses abundant
organic acids with different and complex compositions that can influence the polyphenol
structure of the samples [67]. Among all the detected organic acids in fruits, the tartaric acid
and malic acid (the most abundant acids in the muscadine grape) should be responsible
for enhanced antioxidant activity [68]. One of the most pronounced results from the
PCA study was the minor contribution of TAC to TPC, TFC, and DPPH. Anthocyanins
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are colored, water-soluble pigments belonging to the phenolic group. In several fruit
species, the contribution of anthocyanin to the antioxidant activity and nutraceutical value,
including grapes, is evident [69]. It is tempting to speculate that the nature of anthocyanins
accumulated in muscadine grapes, as diglucoside anthocyanins, might influence their
bioactivities. Antioxidant assays using pure anthocyanins extracted from muscadine
grapes are needed to confirm this hypothesis. Overall, a better understanding of berry
color, led by improved phenotyping techniques, will help grape breeders target desirable
color profiles and breed for them more efficiently.

5. Conclusions

The current study is the first comparative investigation on juice attributes and skin
color of 90 muscadine grape genotypes. Biochemical juice attributes and color of muscadine
grapes showed significant differences among the population. In addition, the TAC level
is not enough to determine the quality of berry color. Other components, such as L*, h◦,
and C*, should support the evaluation of berry color. The muscadine population in this
germplasm collection had significant diversity for the breeding program, leading to more
potential in the nutraceutical arena. Overall, the comparative study on muscadine grape
genotypes can better improve our understanding of berry color and assist grape breeders in
selecting the desired color profiles. Based on overall performance, the muscadine genotypes
B20-18-2 and C11-2-2 were selected as an advanced selection to be monitored for another
season, suitable for red wine production.
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