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ABSTRACT: Janus kinases (JAKs) are a family of proinflammatory enzymes able to mediate the immune responses and the
inflammatory cascade by modulating multiple cytokine expressions as well as various growth factors. In the present study, the
inhibition of the JAK−signal transducer and activator of transcription (STAT) signaling pathway is explored as a potential strategy
for treating autoimmune and inflammatory disorders. A computationally driven approach aimed at identifying novel JAK inhibitors
based on molecular topology, docking, and molecular dynamics simulations was carried out. For the best candidates selected, the
inhibitory activity against JAK2 was evaluated in vitro. Two hit compounds with a novel chemical scaffold, 4 (IC50 = 0.81 μM) and 7
(IC50 = 0.64 μM), showed promising results when compared with the reference drug Tofacitinib (IC50 = 0.031 μM).

1. INTRODUCTION

The Janus kinase (JAK) family of nonreceptor protein tyrosine
kinases (PTKs) comprises four mammalian members, JAK1,
JAK2, JAK3, and TYK2, that are crucial intracellular
components of cytokine and growth factor signaling pathways.1

JAK1/2 and TYK2 are ubiquitously expressed, whereas JAK3 is
confined to hematopoietic, myeloid, and lymphoid cells.2

From a structural standpoint, JAKs share a complex
multidomain architecture, unique among PTKs, characterized
by seven distinct domains termed the JAK homology (JH1−
JH7) domains. A unique feature of JAKs is the presence of two
similar but nonidentical domains (JH1 and JH2) at the C-
terminus.3 While the JH1 domain comprises the highly
conserved PTK domain that is critically important for its
physiological function, the JH2 domain, also called the
pseudokinase domain or kinase-like domain, has no catalytic
activity but plays a crucial role in the regulation of the PTK
domain.4 The JH3−JH4 regions, which share some homology
with Src homology 2 domains, have no phosphotyrosine-
binding capability and seem to play a structural role in stabilizing
the conformation of the JAK FERM domain, which is known to

be critical for receptor binding and appears to be essential for the
overall regulation of the JAK proteins. Mutations and trans-
locations of the JAK genes, which result in constitutively active
JAK proteins, are associated with a variety of hematopoietic
malignancies, including autoimmune diseases, myeloprolifer-
ative syndromes, leukemia, and lymphomas, as well as
cardiovascular diseases.4 For example, JAK1 plays an essential
role in types I and II interferon signaling and elicits signals from
the interleukin-2, interleukin-4, gp130, and class II receptor
families. Loss of JAK1 leads to impaired T-cell and B-cell
production, a profound defect in interferons. Several JAK1
mutations have been associated with T-cell precursor acute
lymphoblastic leukemia and acute myeloid leukemia. A single
mutation in the kinase-like domain of JAK2 (V617F), on the
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other hand, seems to underpin a range of myeloproliferative
diseases, such as polycythemia vera, essential thrombocythemia,
and chronic idiopathic myelofibrosis. Finally, mature blood cells
have a limited life span and are thus continuously renewed in an
intricate multistep process. The Janus kinases play an important
role in normal hematopoiesis, and their dysregulation can result
in a variety of hematological illnesses. These enzymes also play a
role in a wide variety of processes including postnatal growth,
metabolism, and satiety.
The Janus kinase (JAK)−signal transducer and activator of

transcription (STAT) pathway is responsible for the stimulation
and production of more than 50 cytokines, many of which are
involved in the pathogenesis of autoimmune and inflammatory
disorders. As JAK-STAT signaling is required for proper
immune function, a loss of the cytokine−JAK-STAT signaling
causes immunodeficiency, while an overactivation is related to
autoimmune disease and cancer. Cytokine binding induces
receptor dimerization and activation of JAK kinase activity,
ultimately resulting in activation of STAT proteins. In mammals,
the JAK-STAT pathways include four JAKs (JAK1−3 and
tyrosine kinase 2, TYK2) and seven STATs (STAT1−5a/b,
6).5,6 The possibility of simultaneously blocking a wide array of
pathogenic cytokine production via inhibition of the down-
stream JAK-STAT pathway is becoming increasingly important.
Indeed, the US Food and Drug Administration has already
approved five JAK inhibitors (Ruxolitinib, Tofacitinib, Bar-
icitinib, Upadacitinib, and Fedratinib) to treat some auto-
immune/inflammatory and cancer disorders.5 In addition, JAK
inhibitors are undergoing clinical trials related to autoimmune
and inflammatory diseases.5 Taken together, the growing

number of diseases in which JAK inhibitors are demonstrating
efficacy and the vast pipeline of JAK inhibitors under
development make it likely that JAK inhibitors will become
crucial in treating autoimmune and inflammatory diseases.5

In addition to the above-reported implications related to the
discovery of novel JAK inhibitors, we highlight that the
regulation of the Janus kinases may also be of importance for
the treatment of COVID-19. Indeed, many COVID-19 patients
develop acute respiratory distress syndrome (ARDS), which
leads to pulmonary edema and lung failure, and also display liver,
heart, and kidney damages.7,8 These symptoms are associated
with a “cytokine storm”, manifesting elevated serum levels of
different cytokines (mostly interleukins and interferon). In this
context, JAK inhibitors may also play a role in controlling the
abnormal cytokine response in severe cases of COVID-19.9,10

Considering the relevance of the JAK-STAT signaling
pathway and its dysregulation in several physiopathological
processes, there is currently a pressing need to develop novel
JAK inhibitors possibly, but not necessarily, showing selectivity
toward the distinct subtypes. In the present work, by taking
advantage of their complementary features,11 we combined
ligand- and target-based in silico approaches for discovering
potential JAK inhibitors (Figure 1). Specifically, a quantitative
structure−activity relationship (QSAR) analysis based on
molecular topology (MT)12,13 and linear discriminant analysis
(LDA) was built using a library of known active compounds
toward JAKs and decoys. The derived quantitative model was
then used for screening the SPECS database and identifying
novel putative JAK inhibitors. Finally, the binding mode of the
prioritized compounds was characterized via docking calcu-

Figure 1. Screening and profiling workflow employed in this work.
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lations and further refined with molecular dynamics (MD)
simulations. In parallel, three specific QSAR models were also
developed to assess the likelihood of compounds to selectively
inhibit the distinct JAK subtypes. The top-ranked compounds
were predicted to display a marked (although not exclusive)
preference toward the inhibition of JAK2, which was eventually
assessed by in vitro assays. Even though several studies aimed at
identifying novel JAK inhibitors based on molecular docking
have been reported in the literature, to the best of our
knowledge,12−17 this is the first time that QSAR based on MT
has been applied for this purpose.

2. RESULTS AND DISCUSSION
2.1. Development and Validation of the QSAR

Classification Models. An in silico QSAR strategy based on
molecular topology was adopted for discovering novel JAK
inhibitors. Generally, QSAR models are developed using the
notion of physicochemical descriptors as independent variables.
MT represents an alternative paradigm to molecular representa-
tion in which molecules are assimilated to a graph, and the
resulting adjacency matrix can be used to encode the structure
into several mathematical descriptors (often called topological
indices; see Figure 2). Notably, MT deals with the connectivity

of atoms in molecules and is not related to the geometrical
features thereof, such as distances, angles, or tridimensional
structure, which is common in other conventional approaches.18

MT coupled to LDA allows deriving specific equations (or
discriminant functions, DFs) that can be used for predicting if a
molecule, not included in the development of the model, will act
as an inhibitor or otherwise it will be inactive. During the last
decade, MT showed substantial results in drug design, leading to

the identification of several new lead molecules in diverse
pharmacological and chemical areas.19

In this work, four QSAR models were developed. The first
model focused on the identification of compounds showing JAK
inhibitory activity without preferences regarding the subtypes
(hereafter referred to as the general model and mathematically
described by the discriminant function DFgen). Conversely, the
three remaining models were specifically developed for
identifying selective inhibitors toward JAK1, JAK2, and JAK3
(referred to as subtype-specific models and described by DF1,
DF2, and DF3, respectively).

2.1.1. General Model for Predicting the JAK Inhibitory
Activity. The general QSAR model was developed with a
training set of known JAK inhibitors and putative inactive
molecules (decoys). The model turned out to correctly predict
the JAK inhibitory activity for a wide range of structurally
unrelated compounds. The discriminant function for this model
is reported in eq 1.

DF (SRW05 0.796) (CIC2 1.113)

(GATS6m 3.424) 3.717

gen = × − ×

− × + (1)

N = 101, Wilks’ Lambda = 0.686, F = 14.826, p < 0.00001.
In eq 1, the data set comprised a total of 101 molecules (N)

including both active and decoys compounds. The Wilks’
statistic for the overall discrimination can take values in the
range of 0 (perfect discrimination) to 1 (no discrimination). The
Wilks’ Lambda value obtained for this model (0.686)means that
DFgen is able to discriminate between active and inactive
compounds against JAK inhibition. F statistic, or Fisher−
Snedecor F, gives information about the significance of the
employed variables to explain JAK inhibition. The greater the F
value, the more significant are the variables to explain the JAK
inhibition. Finally, a p-value lower than the standard p < 0.05
required to reject the null hypothesis, that the observed
classification success is no better than that expected by random
chance, shows that DFgen is statistically significant. The
descriptors employed in DFgen were as follows: self-returning
walk count of order 5 (SRW05), Complementary Information
Content index − neighborhood symmetry of 2-order (CIC2),
and Geary Autocorrelation of lag 6 weighted by mass
(GATS6m). SRW05 is considered a walk and path count-type
index and is related to the presence of five-membered ring

Figure 2. Chemical graph and adjacency matrix of the isopentane.

Figure 3. Example of SRW05 and CIC2 values for DFpan for two JAK inhibitors (Tofacitinib and NSC33994) and two decoys (102-05-6 and 119-24-
4).
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structures. As the descriptor contributes positively to the
equation, the presence of five-membered rings is statistically
related to the JAK inhibitory activity. Analyzing the values for
SRW05 (Table S1 and Figure 3), it can be seen how 31/42 JAK
inhibitors have 5-membered rings in their chemical structure,
while only 18/59 show this characteristic among decoys.
Differently, the CIC2 descriptor is an information-type index,

which takes into account the presence of symmetry. Indeed,
higher values of this index are related to the presence of
symmetric structures (see Table S1 and Figure 3) such as 102-
05-06 (CIC2 = 2.227) and NSC33994 (CIC2 = 2.332).
Tofacitinib (CIC2 = 0.500) and 119-24-4 (CIC2 = 0.457),
however, which do not have symmetric structures, show lower
values. As this descriptor contributes negatively to eq 1, it can be
hypothesized that structural symmetry may be avoided when
searching for JAK inhibitory activity. However, no direct
correlation between symmetry and JAK inhibitory activity is
demonstrated, as symmetric molecules can be found in both
active compounds and decoys (see Figure 3). GATS6m is a 2D
autocorrelation descriptor that takes into account the atomic
mass for any atom in a structure. This descriptor shows a
negative coefficient in eq 1, which indicates that the JAK
inhibitory activity indirectly relates to the GATS6m descriptor.
Hence, it can be concluded that by increasing the atomic masses
at distance 6 between the atoms, the value of the descriptor will
increase, causing a reduction in the potential JAK inhibitory
activity. However, it can be seen how some molecules show low
and high values for GATS6m in either the active or inactive
group (see Figure 4). Therefore, this descriptor alone, as for
CIC2, cannot discriminate the JAK inhibitory activity among the
molecules under study, but at least it gives a useful, general
contribution to the analysis.
For any given compound, if the discriminant function DFgen

returns values greater than zero, it means that a potential JAK
inhibitory activity is expected. Otherwise, the compounds would
be labeled as inactive. Table 1 provides information on how
DFgen is able to correctly discriminate JAK inhibitors from
decoys, yielding an average of correct classification for 77% of
the molecules of the training set (see Table S1 in the Supporting
Information, SI, for further details). Notice that a random
classification should provide no better results than a 50%
correctness rate. In addition, DFgen exhibits both sensitivity and
specificity, with a correct classification of 79% for the actives and
76% for the inactives.
Once the model has been derived, it is possible to inspect how

active and inactive compounds distribute among the different

ranges of the discriminant function equation, determining the
region in which the probability of finding active compounds is
the maximum. For this purpose, the pharmacological distribu-
tion diagram (PDD) can be used. As it can be seen in Figure 5,

the majority of known JAK inhibitors tend to peak at values of
DFgen > to 0.5, even though aminor density of actives can also be
found in the interval [−1: −0.75]. Inactive compounds, on the
other hand, show a higher density on DFgen values from −2 to
0.5. Therefore, when this equation will be applied to the search
for novel JAK inhibitors, the cutoff value for JAK activity is set
for DFgen values between 0.5 and 5 and between −1 and −0.75.
Greater and lower DFgen values of 5 and−7, respectively, will be
considered as nonclassifiable for this model. Compounds

Figure 4. Examples of GATS6m values for two JAK inhibitors (Hexabromocyclohexane and AG490) and two decoys (12334-10-1 and 114145-29-8).

Table 1. Results of the PredictionsObtainedwith theGeneral
Model

compounds
classified as active

compounds
classified as inactive

correct
classification

(%)

Training set
active group 33 9 79
inactive group 14 45 76
total 47 54 77

Test set
active group 23 3 88
inactive group 9 24 72
total 31 28 80

Figure 5. PDD for the general model. Blue bars represent the
distribution of JAK inhibitors, and orange bars represent decoys.
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adopting values from −7 to 0.5 (except from the interval from
−1 to −0.75) will be considered inactive compounds toward
JAK inhibition.
The ability of the general model to correctly classify JAK

inhibitors was assessed through an external validation on a test
set not employed during the derivation of the model (see Table
1). The external validation revealed that the model is able to
identify with high accuracy JAK inhibitors from decoys.
Therefore, DFgen seems to be more sensitive than specific
(28% of compounds classified as active are false positives, and
only 12% of compounds predicted as inactive are false negatives)
(see also Table S2 in the SI for further details).
2.1.2. Specific QSAR Models for Predicting Selective

Inhibitory Activity toward Each JAK Subtype. The general
model described in the previous section provides useful insights
regarding the JAK inhibitory activity of molecules; however,
more information about which JAK subtype is actually targeted
is of great importance. Therefore, three additional QSAR
models specific for each JAK subtype were derived. The
discriminant functions DF1‑3 of the subtype-specific models are
reported in Table 2. The descriptors employed in eqs 2−4
belong to different families of topological and topo-chemical
descriptors, such as (i) walk and path counts (PCD: difference
between multiple path count and path count); (ii) 2D
autocorrelation descriptors, like the Moran autocorrelation of
lag 5 weighted by the ionization potential (MATS5i), the Geary
autocorrelation of lag 4 weighted by the Sanderson electro-
negativity (GATS4e), the Geary autocorrelation of lag 8
weighted by mass (GATS8m), and the Geary autocorrelation
of lag 5 weighted by the Sanderson electronegativity (GATS5e);
(iii) edge adjacency indices such as Eig05_AEA(dm)
(eigenvalue n. 5 from the augmented edge adjacency matrix
weighted by the dipole moment); (iv) P_VSA-like descriptors
such as P_VSA_LogP_5 (P_VSA-like on Log P, bin 5); and (v)
topological charge indices such as JGI8 (mean topological
charge index of order 8).
The different descriptors employed in the distinct models

provide useful information regarding the topological and/or
physicochemical features that are required for the specific
inhibitory activity toward JAK1, JAK2, or JAK3 subtypes. For
example, it is possible to see how JAK1 inhibitors present
negative values for the MATS5i index and PCD index values
lower than 4 (see also Table S3 for the compounds Baricitinib,
Ruxolitinib, Itacitinib, Solcitinib, PF-04965842, Oclacitinib,
Momelotinib, and Filgotinib). Since both indices contribute
negatively to the equation, the fact that they adopt small
unsigned values is correlated with favoring the inhibitory activity
against JAK1. Regarding the inhibitory activity against the JAK2
subtype, it is observed that compounds with values of the JGI8
index < 0.01 always present JAK2 activity (see Table S4,
compounds Hexabromocyclohexane, Ruxolitinib, XL019, Pa-
critinib, AT9283, Momelotinib, Tofacitinib, Cerdulatinib,

WP1066, Filgotinib, Go6976, Gandotinib). Conversely, the
inhibitory activity toward JAK2 is observed for JGI8 index values
>0.01 only when the descriptor Eig05_AEA (dm) adopts values
greater than 2.5 (see Table S4, compounds baricitinib, NVP
-BSK805, CEP33779, TG101209, BMS-911543, and AZ-960),
in agreement with eq 3. Concerning eq 4 (Tables 2 and S5), we
can see that except for the GATS8m descriptor that contributes
positively to the inhibitory activity against JAK3, in general, the
higher the value the remaining descriptors adopt, the lower is the
ability to inhibit this JAK subtype.
In Table 3, we summarize the performance of the three

specific models. As it can be seen, the correct classification for

the three predictive models against different JAK subtypes
presents an average value higher than or equal to 83%. In
addition, it should be noted that all models are more specific
than sensitive, a feature that makes it difficult to select false assets
when using these models for database screening.
An internal validation process, “leave some out” cross-

validation, has been performed on the models. A maximum
difference of 7% between the values obtained by the models and
the internal validation can be observed (Tables 3 and S6, S7, and
S8), showing that all models developed for the prediction of
inhibitory activity against the different JAK subtypes are robust
and predictive. In Figure 6, the PDDs for the subtype-specific
models are shown. As it could be seen, JAK1 inhibitors are
mainly present in DF1 ranges spanning from−1 to 8, while JAK2
inhibitors are found at values ranging from −0.5 to 6 on DF2.
Finally, JAK3 inhibitors are present mostly in ranges of DF3
going from −0.5 to 7.5.

2.2. Virtual Screening of a Commercial Database. The
general QSAR model for JAK inhibition was used to perform a
ligand-based virtual screening on the Specs database of
commercial compounds. Using the cutoff values of DFgen
inferred from the PDD shown in Figure 4, we selected 47
compounds that were further profiled by the subtype-specific
models for assessing their preferential ability to inhibit the
activities of JAK1, JAK2, or JAK3. In Table 4, the prioritized
compounds and their classification according to the subtype-
specific models are reported.

Table 2. Models Predicting JAK1, JAK2, and JAK3 Inhibitory Activity and Statistical Parameters

model eq. no. N λ F p <

DF (PCD 1.936) (MATS5i 30.783) 5.7821 = − × − × + (2) eq 2 29 0.462 15.155 0.00001

DF (GATS4e 8.928) (JGI8 517.819) (Eig05AEA 4.843)

14.746

2 (dm)= × − × + ×

− (3)
eq 3 29 0.490 9.009 0.0003

P

DF (GATS8m 7.008) (GATS5e 5.993) (GATS5i 14.842)

(P VSA Log 5 0.084) 16.520
3 = × − × − ×

− _ _ _ × + (4)
eq 4 29 0.462 6.706 0.0010

Table 3. Percentage of Correct Classifications for the
Subtype-Specific Models

percent of correct classification

DF1 DF2 DF3

active group compounds 73 90 82
inactive group compounds 89 90 94
total 83 90 89
internal validationa 77 83 87

aAverage value.
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2.3. Molecular Docking. To further narrow down the
number of potential inhibitors, we adopted the target-based
approach of molecular docking. Since the conformational
plasticity of the target is only partially taken into account in
docking calculations, the results of these methodologies are
often very sensitive to the quality of the input structure. Given
that a total number of 159 crystallographic structures of the
different JAK subtypes were found in the Protein Data Bank
(PDB), we set up a simple procedure to choose the most suited

protein structures on which performing the docking calculations
(see Section 4.2 for details). A cross-docking exercise was then
carried out to validate the ability of the docking protocol to
reproduce the available experimental complexes and to find out
the structures endowed with the better propensity to reproduce
not only the native binding mode but also the one displayed by
other structures (Figure S1). As a result of the cross-docking, we
selected the PDB-IDs 4IVD,20 5CF6,21 and 6GLA22 as
representatives of JAK1, JAK2, and JAK3 subtypes. In Figure
7, we report the main interactions established by the native
compounds cocrystallized with the structures chosen to
represent the three JAK subtypes.
Once determined the reference crystal structures for JAK1,

JAK2, and JAK3, a molecular docking study was performed
either for reference JAK inhibitors (Table 5) or for the
compounds selected by the general QSAR model (Table S9).
As can be seen in Table 5, just Cerdulatinib, Filgotinib, and

Tofacitinib show favorable interactions with all three JAK
subtypes. Of these drugs, the one that presents a better average
docking score value for the different JAKs is Tofacitinib
(docking scores of −9.31 kcal/mol JAK1, −8.50 kcal/mol
JAK2, and −8.08 kcal/mol JAK3), so this compound will be
taken as the reference drug.
In Table S9, the values of the docking score for the

compounds selected by the general QSAR model are reported.
To select the best candidates to be tested in vitro, the following
criterion was applied: only molecules with docking score equal
to or less than −7 kcal/mol at least for one JAK subtype were
considered. As can be seen in Table S9, 23 compounds from a
total of 47 fulfill such a requirement. Of these 23 compounds,
based on their commercial availability and price, a final selection
of eight compounds was made to be further tested in vitro
(Figure 8 and Table 6).
In Figure 9, we report the results of the docking calculations

for the compounds showing the best value of the docking score
for each JAK subtype together with the binding mode predicted
for the reference compound (Tofacitinib). Interestingly, the
pyrrolopyrimidine scaffold of Tofacitinib displays a consistent
binding mode in all JAK subtypes, establishing hydrogen bonds
with the backbone of residues in the hinge region (Glu957 and
Leu959, Glu930 and Leu932, and Glu903 and Leu905 in JAK1,
JAK2, and JAK3, respectively). Conversely, the cyanoacetyl-
methyl piperidine substituent is differently oriented in the
binding pocket of JAK2 compared to the other two subtypes. In
JAK2, the specific orientation of the substituent allows the cyano
group of Tofacitinib to establish an additional hydrogen bond
with the side chain of Gln853, which is a residue not conserved
in JAK1 and JAK3 (where the shorter asparagine and serine are
found in the corresponding sequence position, respectively). As
expected, hydrogen bonding with residues belonging to the
hinge region of the enzyme is a shared feature among all selected
compounds, even though the optimal geometry of the
interaction is not always satisfied.
To refine the binding modes obtained through the docking

procedure, we applied MD simulations to all complexes
involving the prioritized molecules. By doing so, it is possible
to unmask unreliable docking results by monitoring the stability
of the binding mode over time. Accordingly, docking poses
showing low stability, or even spontaneous dissociation events,
during relatively short MD runs should be regarded as
suspicious, probably the result of artifacts due to the several
approximations introduced into the scoring function. Con-
versely, a meaningful docking pose will display stable and

Figure 6. PDD for the subtype-specific models: DF1, DF2, and DF3 in
panels (a), (b), and (c), respectively. Black bars represent the
distribution of JAK inhibitors, and white bars represent decoys.
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specific interactions with the target, showing a low root-mean-
square deviation (RMSD) over time, with respect to the starting
configuration. Even though more rigorous (but computationally
much more demanding) approaches should be employed for
unambiguously ruling out false positives from docking out-
comes,23 a simple structural analysis of MD trajectories has
proven to significantly improve the predictions of docking
programs.24,25

In Figure 10, we show that all investigated complexes reached
a stable conformation during the time course of the simulations.
In particular, Tofacitinib displayed a strikingly stable binding
mode, especially in JAK1 and JAK3, whereas noticeable
fluctuations were recorded when in complex with JAK2. The
lower stability shown by Tofacitinib in JAK2 can be attributed to
the different orientations of the cyanoacetyl-methyl piperidine
substituent. High stability was observed for compound 2 bound
to JAK2, while higher RMSD values were noticed for the binding

Table 4. Discriminant Function Values Predicted by the Different Models for All 47 Selected Compoundsbc

JAK model JAK1 model JAK2 model JAK3 model

compound DFgen DF1 class. DF2 class. DF3 class.

AA-516/30011028 1.370 4.408 JAK1 5.096 JAK2 −7.554
AB-323/13887443 0.996 4.940 JAK1 −2.528 −3.924
AC-907/34131030 1.729 1.524 JAK1a 3.415 JAK2 −5.154
AE-848/34779061 1.682 1.830 JAK1a 0.956 −5.407
AF-399/13277002 2.313 1.661 JAK1a −9.474 34.181 N.C.
AF-399/13426006 1.013 8.821 N.C. 6.795 N.C. −6.897
AF-399/15031149 1.546 0.951 JAK1a −0.561 −5.680
AF-399/15032375 0.981 5.213 JAK1 −0.973 −7.423
AF-399/33696009 1.977 5.731 JAK1 2.553 JAK2 −3.293
AF-399/37297037 1.454 −2.344 −2.130 −0.599
AF-399/41668884 1.270 6.604 JAK1 2.890 JAK2 −7.146
AF-399/41945530 1.875 0.214 JAK1a 2.056 JAK2 −2.432
AF-399/42056988 0.978 2.044 JAK1a 5.767 JAK2 4.314 JAK3
AF-399/42100326 1.649 4.054 JAK1 2.115 JAK2 −4.967
AF-399/42762404 1.901 5.191 JAK1 3.680 JAK2 −8.082
AG-205/11444099 0.921 2.650 JAK1 6.925 N.C. 7.388 JAK3
AG-205/11674118 0.993 1.653 JAK1a 2.922 JAK2 7.297 JAK3
AG-205/12010072 0.954 4.327 JAK1 1.075 JAK2 −3.811
AG-205/14250132 0.508 1.765 JAK1a −3.150 −4.043
AG-205/14673025 1.414 1.456 JAK1a 2.119 JAK2 −0.373
AG-401/02041003 1.810 −3.699 −5.515 3.404 JAK3
AG-670/13619018 -0.978 3.426 JAK1 3.325 JAK2 −0.314
AG-690/36926024 2.249 −2.545 −0.516 JAK2 4.618 JAK3
AH-357/03329001 0.530 0.563 JAK1a 0.175 JAK2 −5.608
AK-778/43206447 2.346 0.171 JAK1a 5.559 JAK2 −0.863
AK-968/15359231 2.103 3.603 JAK1 3.093 JAK2 −4.128
AM-807/37225018 0.646 11.083 N.C. 1.879 JAK2 −16.247
AN-329/11658808 2.503 2.659 JAK1 4.496 JAK2 0.445 JAK3
AN-329/41717385 −1.097 7.420 JAK1 3.673 JAK2 −5.092
AN-584/40652663 2.879 7.470 JAK1 7.042 N.C. 5.262 JAK3
AN-584/43492329 1.641 3.542 JAK1 3.279 JAK2 6.518 JAK3
AN-988/41531688 0.663 −1.129 JAK1a 4.160 JAK2 −3.345
AO-365/43473564 1.559 4.322 JAK1 −0.516 JAK2 5.543 JAK3
AO-476/41610187 1.340 0.351 JAK1a −9.178 3.540 JAK3
AO-476/43250148 1.253 5.967 JAK1 −2.347 0.294 JAK3
AO-476/43250150 2.215 6.816 JAK1 −1.103 −2.306
AO-476/43250160 1.120 6.705 JAK1 −1.464 -3.291
AO-476/43417077 1.690 −1.031 JAK1a 3.833 JAK2 1.214 JAK3
AP-064/42049177 0.803 −6.558 −0.021 JAK2 1.564 JAK3
AP-501/43286814 1.120 −0.082 JAK1a 1.093 JAK2 −4.604
AQ-405/42300191 0.548 0.990 JAK1a 5.571 JAK2 −2.172
AQ-432/43399984 0.528 5.710 JAK1 3.595 JAK2 −5.423
AQ-432/43400108 1.617 2.557 JAK1 4.888 JAK2 0.677 JAK3
AQ-432/43400219 0.862 0.113 JAK1a 3.845 JAK2 2.936 JAK3
AQ-432/43400304 0.772 5.631 JAK1 3.870 JAK2 −5.792
AQ-432/43400319 1.602 2.562 JAK1 4.251 JAK2 3.808 JAK3
AT-417/43503979 0.903 3.253 JAK1 8.632 N.C. 20.232 N.C.

aOverlapping zone with other JAK inhibitor subtypes, nonabsolutely sure being correctly classified by this model. bN.C., not classifiable by this
model, out of range of the applicability domain. cBold: in vitro tested.
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modes of the other compounds. This structural stability was not
observed for all investigated compounds. For example, in JAK1,
two spontaneous dissociation events were observed (com-
pounds 6 and 7) even though stable binding modes were
obtained in most of the cases. In particular, compounds 3 and 8
displayed remarkably stable interactions. In some cases (1, 2, 4,
and 5), large fluctuations of the ligand within the binding pocket

were found, but the main interactions of docking pose were

maintained. In general, greater stability and smaller fluctuations

were observed in the case of JAK2, except for compound 6,

which changed the binding mode, and 4, which left the binding

site. Concerning JAK3, almost the entire pool of ligands showed

low RMSD values, with the exception of compounds 1 and 8,

Figure 7. Representation of the binding sites of the JAK1, JAK2, and JAK3 structures in complex with the native ligands that were selected for the
docking calculations (PDB-ID: 4IVD, 5CF6, and 6GLA, respectively).20−22 The conserved residues are represented as sticks with carbon atoms
colored in white, while specific amino acids are differently colored (orange, yellow, and green for JAK1, JAK2, and JAK3, respectively). Hydrogen
bonds are explicitly reported as black dots.
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which left the binding pocket in the early stages of the
simulations.

For the compounds that showed a stable binding mode,
further characterizing the interactions preserved or gained
during the MD simulations can be of some interest for grasping
some aspects related to the potential selectivity toward specific
JAK subtypes. In Figure 11, we show a per-residue interaction
analysis of the persistence of the interaction for compounds 5, 2,
and 6 bound to JAK1, JAK2, and JAK3, respectively. For
comparison, the same plot obtained for Tofacitinib is also
reported. From the plots, it can be inferred that for all JAK
subtypes Tofacitinib preserved the key interactions with the
residues belonging to the hinge region of the enzyme for the
entire duration of the simulation (blue bars in Figure 11). These
key interactions were also maintained in the simulations of the
selected molecules, with the exception of compound 2, which
established a long-lasting hydrogen bond only with the
backbone of Leu932 in JAK2. Interestingly, in JAK1 and
JAK2, Tofacitinib was found to establish stable van der Waals
interactions with a conserved leucine residue at the bottom of
the binding site (Leu1010 and Leu983, respectively), while this
interaction seems to be much less relevant in the case of JAK3
(Leu956). The same pattern for the same residue can be
observed for compounds 5, 2, and 6 (bound to JAK1, JAK2, and

Table 5. Docking Score for Known JAK Inhibitors and 4IVD,
5CF6, and 6GLA as Target Proteins

compound

docking score
JAK1 (PDB-
ID: 4IVD)

docking score
JAK2 (PDB-
ID: 5CF6)

docking score
JAK3 (PDB-
ID: 6GLA)

AT9283 −6.14a −6.95
AZ-960 −8.23
AZD1480 −8.63
Baricitinib −8.97 −9.49
BMS-911543 −9.68
CEP33779 −9.27
Cerdulatinib −6.28 −8.38 −8.28
Decernotinib −9.62
Filgotinib −7.29 −9.62 −8.85
FLLL32 −5.35
Gandotinib −8.94
Go6976 −8.28
Hexabromocyclohexane −2.93
Itacitinib −8.88
JANEX-1 −8.43
Momelotinib −8.84 −7.63
NVP-BSK805 −10.05
Oclacitinib −9.28
Pacritinib −6.84
PF-04965842 −8.61 −7.96
PF 06551600 malonate −8.97
Ruxolitinib −8.75 −9.27
Solcitinib −8.43
TG101209 −6.01
Tofacitinib −9.31 −8.50 −8.08
WHI-P154 −7.19
WHI-P97 −6.60
WP1066 −6.15
XL019 −9.30
ZM39923 hydrochloride −6.92 −6.30
akcal/mol. bBold: reference drug.

Figure 8. Chemical representation and codification for the eight selected compounds as potential JAK inhibitors.

Table 6. Docking Score for the Prioritized Compounds
against Each JAK Subtypec

docking score (kcal/mol)

compound
JAK1 (PDB-ID:

4IVD)
JAK2 (PDB-ID:

5CF6)
JAK3 (PDB-ID:

6GLA)

Tofacitinib −9.31a −8.50 −8.08
1 −7.06 −7.61 −8.00
2 −6.82 −9.46 −6.96
3 −8.24 −7.31 −7.89
4 −6.81 −8.17 −7.26
5 −9.05 −7.11 −6.90
6 −8.14 −9.03 −8.32
7 −5.34 −7.34 −6.88
8 −8.13 −6.28 −5.73

akcal/mol. bUnderlined: docking score from the reference drug.
cBold: top docking score for each JAK subtype under analysis.
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JAK3, respectively). Regarding the other five prioritized
molecules, we can summarize the following results. For JAK1,
molecules like 1, 3, and 4 show an interaction pattern similar to
the reference drug and the top scorer for the considered subtype
(compound 5). On the other hand, compounds that establish
during more than 60% of the simulated period interactions with
Asp1021 (4, 7, and 8) are found, with generally better docking
score values. Therefore, this amino acid might contribute to the
inhibitory activity against JAK1. Concerning JAK2, it is
interesting to highlight how additional interaction not
appreciated during the docking study with Leu983 is present
in several compounds (Tofacitinib, 2, and 6) and seems to be
key in obtaining favorable docking score values. Lastly, another
interaction that was not appreciated in the docking results is
represented by Leu905 in the case of JAK3. This interaction
seems to be important for achieving good stability, especially if it
is accompanied by interactions with Lys830 and/or Arg953 (1,
3, and 7), allowing us to establish more stable interactions with
the protein (Table 7).

Analyzing the QSAR prediction, we see that four compounds
are potentially JAK1 inhibitors, seven are inhibitors of JAK2, and
only two would inhibit JAK3. When analyzing the data obtained
in the molecular docking study, the criterion of counting how
many compounds have obtained a docking score value of less
than −7 kcal/mol for the different JAKs studied was applied.
When looking at the table, it can be seen how five compounds
obtain values lower than −7 kcal/mol for JAK1, seven for JAK2,
and four for JAK3. Even though scoring functions are not
enough sensitive for describing selectivity in general, we can
observe an encouraging consensus between the predictions of
the QSAR models and the indications returned by the docking
scores. In particular, both strategies suggest a potential ability of
the selected molecules to inhibit JAK1 and JAK2, with a slight
preference over the latter subtype. This information was
instrumental to direct the in vitro biological assays toward the
JAK2 subtype.

2.4. Chemical Diversity of Potential JAK Inhibitors.The
chemical diversity of potential JAK inhibitors (in vitro tested)

Figure 9. Ball and stick representation of the three top-ranked compounds for each JAK subtype: 5 bound to JAK1, 2 bound to JAK2, and 6 bound to
JAK3 (panels b, d, and f, respectively). For comparison, the binding mode of the reference compound Tofacitinib is also reported (panels a, c, and e for
JAK1, JAK2, and JAK3, respectively).
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compared to known JAK inhibitors has been analyzed. As
reported in Section 4.4, all pairwise distances betweenmolecules
were computed from their fingerprints, using a metric derived
from the Tanimoto coefficient for the corresponding binary
strings.

Cluster analysis is depicted on a hierarchical clustering
dendrogram panel (Figure S2) on supplementary material. In
this dendrogram, analyzed data is divided into six clusters based
on chemical diversity: cluster #1 (HBCH, hexabromocyclohex-
ane), cluster #2 (1), cluster #3 (4), cluster #4 (8), cluster #5 (45

Figure 10. RMSD values of Cα atoms of the three JAK subtypes (a:
JAK1; b: JAK2; and c: JAK3) in the complexes with the best-ranking
molecule for each subtype and Tofacitinib along the 50 ns of MD
simulations (blue lines). In purple, the RMSD computed using the
heavy atoms of the ligands (after least-squares-fit superimposition to
the Cα atoms of the protein) is also shown.

Figure 11. Protein−ligand contact interaction over the MD trajectory.
Hydrogen bonds are shown in blue, water-mediated hydrogen bonds in
red, hydrophobic interactions in gray, salt bridges in yellow, π−π
interactions in green, and cation−π interactions in orange.
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molecules, known JAK inhibitors, and compounds 2, 3, 5, and
6), and cluster #6 (7).
The most populated cluster is cluster #5, where almost all

known JAK inhibitors plus potential JAK inhibitors 2, 3, 5, and 6
are found. Thus, there is a chemical similarity between these
potential JAK inhibitors and already known ones. The rest of the
potential JAK inhibitors (1, 4, 7, and 8) belong to different
clusters; therefore, a chemical diversity (potential hits with novel
scaffolds) is pointed in relation to known JAK inhibitors.
2.5. In Vitro Tests. 2.5.1. MTT Cell Viability. The MTT

analysis revealed that the majority of JAK2 potential inhibitors
did not evidence cytotoxic effects. In fact, SH-SY5Y cells
exposed to the lower concentrations (1 and 10 μM) of the
investigated substances did not show significant survival
alterations after both 5 and 24 h (Figure 12).
Even though the majority of tested drugs did not cause

changes in cell viability at 100 μM, a significant decrease was
observed after the exposure to both 8 and 6 compounds, after
either 5 or 24 h (*p < 0.05; **p < 0.01 vs the respective control)
(Figure 12b,f). As a consequence, compounds 8 and 6would not
be utilized at higher concentrations and cautionally cannot be
considered candidates for further study.
It is to be noted that 2 was not tested in vitro because of

solubility problems even if it was one of the most promising
candidates. It showed high specific JAK2 inhibition capability
according to the docking analysis (Table 7).
Taken together, the obtained results suggest that the majority

of selected compounds showed low cytotoxicity, thus stimulat-
ing further investigation to better define their possible utilization
as candidates in vivo.
2.5.2. JAK2 Activity Assay. The JAK2 inhibitory activity was

tested for each compound from 0.1 nM to 100 μM.Tofacitinib, a
well-known JAK pan inhibitor, was used as a positive control. All
tested compounds exhibited a JAK2 inhibitory activity lower
than Tofacitinib (Table 8). However, for compounds 4 and 7, it
has been possible to calculate the IC50 (half maximal inhibitory
concentration) value in the adopted range of concentrations
(Table 8).
As revealed by fingerprint-based cluster analysis, compounds

4 and 7 share no chemical similarity with already known JAK2
inhibitors; therefore, they can be considered as novel scaffolds
for JAK2 inhibitors. Furthermore, compounds 4 and 7 show a
JAK2 inhibitory activity comparable to that of commercially
available JAK2 inhibitors (Figure 13).26−28

According to QSAR outcomes, all candidates were classified
by DF2 as potential JAK2 inhibitors except for compound 7. In
contrast, molecular docking studies predicted for this molecule a
higher level of affinity against JAK2 (see Table 7) compared with
other JAK subtypes under study. In the particular case of 4
(second in JAK2 inhibition potency), there is a consensus
between the QSAR model prediction and docking study, as it
was predicted as a potential JAK2 inhibitor and its docking score
for JAK2 was greater than the other JAK subtypes under analysis
(Table 7).
The analysis of which amino acid enzyme residues interact

with compounds showing the highest in vitro inhibitory activity
against JAK2 identifies Leu932 as the only residue in which both
best compounds and the reference drug Tofacitinib coincide
(see Figures 9 and 14). It can be deduced that the hydrogen-
bond-type interactions established between compounds and the
binding site of 5CF6 (JAK2) are essential for the activity. It can
be hypothesized that in addition to Leu932, residue Glu930 (a
residue with which it interacts Tofacitinib and 7), Ser936,
Asp939, and Arg938 might contribute to the inhibitory activity
of the considered compounds against JAK2 (see Figures 9 and
14).

3. CONCLUSIONS

In this work, we have described a combined approach based on
topological QSAR models, molecular docking, and molecular
dynamics simulations for the discovery of novel JAK inhibitors
that may be potentially useful to treat different autoimmune
diseases and certain types of leukemia and, above all, for the
control of the cytokine storm caused by SARS-CoV-2 infection.
Among the eight prioritized compounds, two of them, 4 and 7,
showed a promising activity toward the inhibition of JAK2, with
IC50 values of 0.81 and 0.64 μM, respectively, and displaying
innovative scaffolds. The activity is comparable to that of other
commercially available JAK2 inhibitors, and future lead
optimization studies will be required for increasing the potency
and tailoring the druglike properties of the selectedmolecules. In
addition, the identified hit compounds could also be tested in
cell-based assays and in animal models of disease related to the
STAT/JAK pathway to characterize their efficacy and safety
profiles.

4. EXPERIMENTAL: IN SILICO MODELING

4.1. QSAR Model. 4.1.1. Strategy to Identify Novel JAK
Inhibitors. In this section, the strategy for identifying novel JAK
inhibitors by applying QSAR based on LDA and MT is
presented. As reported in Figure 1, the first step is creating a
comprehensive database of compounds including both JAK
inhibitors and structurally unrelated inactive compounds (or
decoys). Once the database is prepared, topological descriptors
for all data are calculated using AlvaDesc software.29

The data set is then divided into two groups, training and test
sets. Considering the large data set of compounds, a significant
percentage of the data is used as the test set (approximately
35%) during the construction of the general model. For the
subtype-specific models, only the training set was used because
of the short availability of compounds in the data set.
All of the models were built using the LDA method,

considering only the training set. Then, they were validated
through internal or external validation, and finally, the general
model was used to perform a virtual screening of the SPECS
Screening compounds library database (over 200 000 com-

Table 7. Potential JAK Inhibitor Selectivity for Selected
Compounds to be Tested in vitro: QSAR Model, Molecular
Docking, and Dynamics Analysis

docking score (kcal/mol)

compound predicted subtype

JAK1
(PDB-
ID:

4IVD)

JAK2
(PDB-
ID:

5CF6)

JAK3
(PDB-
ID:

6GLA)

1 JAK1 JAK2 −7.06b −7.61 −8.00
2 JAK1 JAK2 −6.82 −9.46 −6.96
3 JAK1 JAK2 −8.24 −7.31 −7.89
4 JAK1 JAK2 −6.81 −8.17 −7.26
5 JAK1a JAK2 −9.05 −7.11 −6.90
6 JAK1a JAK2 JAK3 −8.14 −9.03 −8.32
7 JAK1a JAK3 −5.34 −7.34 −6.88
8 JAK1a JAK2 −8.13 −6.28 −5.73

aOverlapping zone with other JAK inhibitor subtypes, nonabsolutely
sure being correctly classified by this model. bkcal/mol.
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pounds available in 10 mg amounts or more) using the
discriminant function DFgen. Conversely, the subtype-specific
models were used after the screening for profiling the likelihood
of the selected compounds to inhibit JAK1, JAK2, or JAK3
(through the usage of the discriminant functions DF1, DF2, and
DF3, respectively).

4.1.2. Data-Set Compilation.The database of JAK inhibitors
was prepared using information from the literature30,31 and from
commercial databases such as Tocris DB,32 ABCAM,33 and
Selleck.34 In particular,

• Data set for the general model. Active compounds were
JAK inhibitors retrieved from the literature26,30,31 and
from the commercial database, and inactive compounds
were taken from the Sigma-Aldrich catalog (therefore

Figure 12. Cell viability of SH-SY5Y cells exposed to different concentrations of tested drugs for 5 and 24 h, evaluated by the MTT assay. Data are
expressed as a percentage of OD values of treated cells compared to vehicle-treated ones and reported as themean± standard error of themean (SEM)
(*p < 0.05; **p < 0.01 vs the respective control, one-way analysis of variance (ANOVA) test followed by Dunnett’s test).

Table 8. IC50 Values in the Enzymatic Assay for JAK2
Inhibition

compounds IC50 (nM)

1 >10 000
3 >10 000
4 807 (643−1007)
5 >10 000
6 >10 000
7 637 (367−1076)
8 >10 000
Tofacitinib 31.4 (16−61)

a95% confidence limits are shown in brackets.
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they act as putative inactive compounds, or decoys). A
chemical similarity analysis was performed between active
and inactive groups, by selecting compounds with similar
MW, and the number of carbon, nitrogen, oxygen, and
halogens atoms.

• Data set for the JAK1 subtype-specific model. Active
compounds were commercial JAK1 inhibitors, and
inactive compounds were commercial JAK2 and JAK3
inhibitors.

• Data set for the JAK2 subtype-specific model. Active
compounds were commercial JAK2 inhibitors, and
inactive compounds were commercial JAK1 and JAK3
inhibitors.

• Data set for the JAK3 subtype-specific model. Active
compounds were commercial JAK3 inhibitors, and
inactive compounds were commercial JAK1 and JAK2
inhibitors.

4.1.3. Calculation of Descriptors. AlvaDesc software was
employed for the calculation of the descriptors. Approximately
1500 indices, belonging to different categories like constitutional
indices, ring descriptors, topological indices, walk and path
counts, connectivity indices, information indices, 2D matrix-
based descriptors, 2D autocorrelation, Burden eigenvalues,

P_VSA-like descriptors, ETA indices, and edge adjacency
indices, have been calculated.

4.1.4. Statistical Analysis to Build the Model. To predict the
JAK inhibitory activity, an LDA model was built (general
model). A discriminant model can be defined as a classifier: it
predicts a qualitative response from a specific observation, as for
example, whether one molecule described by several topological
indices shows a JAK inhibitor profile or not. An LDA model can
be written as a discriminant function that is linear on the
molecular indices

a a aDF( ) ...j n n0 1 1λ λ λ= + × + + × (5)

where λj are the topological indices characteristic of the
molecule j and ai are the adjustable model parameters. The
molecule j will be classified as a JAK inhibitor if DF is positive
and as a non-JAK inhibitor if DF is negative.
As described above, one can calculate several topological

descriptors for a specific molecule, but not all of them will
actually be helpful to understand the property we are trying to
model. Thus, it is necessary to choose a subset of indices from
which the model will be built. We used the hybrid stepwise
selection algorithm35 as implemented in STATISTICA.36 The
algorithm proceeds iteratively. At every step, it may either add a

Figure 13. Chemical structure and IC50 (μM) for commercially available JAK2 inhibitors.26−28

Figure 14. Amino acid interaction between in vitro-tested compounds 4 (a) and 7 (b) and JAK2 (PDB: 5CF6).
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variable to the model or remove a variable already present in the
model, based on the p-value < or > 0.05. Once this procedure is
terminated, the algorithm stops when the model reaches a
maximumof 20 topological descriptors, which should be enough
to minimize the bias of the model, but at the same time, still
allowing an exhaustive search. The search was performed using
as the selection criterion the minimization of Wilks’ λ. Wilks’ λ
applied this way measures whether every parameter is
contributing significantly to reducing the variance and not just
the final classification results. The shorter the Wilks’ parameter
value, the smaller the overlap of the active and inactive (λ = 0
would mean a perfect separation between the groups).
Optimizing this statistic yields some confidence that the selected
indices for a given model are statistically significant, hopefully
allowing us to draw a trend valid for the whole set of molecules.
Finally, the Fisher−Snedecor F statistic parameter provides

information related to the significance of each independent
variable in explaining the dependent variable (in our particular
case, JAK inhibition). The higher the F value, the more
significant the variables are in a discriminant model.
4.1.5. Pharmacological Distribution Diagram. A pharma-

cological distribution diagram (PDD) is a graphical representa-
tion that provides a direct way of visualizing the zones of
minimum overlap between active and inactive compounds, as
well as the region in which the probability of finding active
compounds is the maximum.37 From a different perspective, a
PDD is a frequency distribution diagram of dependent variables
in which the ordinate represents the expectancy (probability of
activity) and the abscissa represents the DF values in the range.
For an arbitrary range of values of a given function, the
expectancy of activity can be defined as Ea = a/(i + 1), where a is
the number of active compounds in the range divided by the
total number of active compounds and i is the number of inactive
compounds in the interval divided by the total number of
inactive compounds. The expectancy of inactivity is defined
likewise as Ei = i/(a + 1). Bymeans of these diagrams, it is easy to
visualize the intervals in which there is a maximum probability to
find new active compounds as well as the minimum probability
to find inactive compounds.
4.1.6. Validation of the Models. Two points of interest are

(i) to estimate the correctness rate achievable with new
molecules not previously used when training the model and
(ii) to know the optimal model complexity, i.e., the most
appropriate number of molecular indices to consider for making
predictions without overfitting. Both cases are addressed by
means of validation. The models employed in this paper were
subjected to both internal and external validation.38

Once a predictive model is created, different validation
approaches can be performed on two types of data: data used to
build the model (internal validation) or data that was not used
(external validation). The internal validation allows analyzing
the robustness of the model, while the external validation allows
understanding of the predictive performance of the model
deteriorations when new data is provided.
For the general model, considering that the data set was large

enough to leave aside randomly the 20% of the compounds to
create a test set, an external validation was carried out. For the
subtype-specific models, instead, the data set was not large
enough to create a test set, so an internal validation was used
with a 10-fold leave-some-out cross-validation (LSOCV). The
procedure consists of leaving aside 20% of the training set as an
artificial test set (7 compounds). The rest of the compounds,
either active or inactive, are used for training the model, and the

remaining one is used for cross-validation (Table S4). This is
repeated 10 times, each time using a different group for cross-
validation. At the end of LSOCV, the reliability of the
discriminant function can be evaluated by a recalculation of
the Wilks’ parameter (λ′) in each of the LSOCV cases. Similar
values of λ and λ′ indicate a good validation of the model.

4.2. Molecular Docking Simulations. The crystal
structures of JAK1, JAK2, and JAK3 were retrieved from Protein
Data Bank (PDB-IDs: 4IVd, 5CF6, and 6GLA).20−22 The
definition of the binding site pocket for the different JAK
subtypes was provided by the coordinates of the cocrystallized
ligands. Once the ligand and protein were prepared, the grid was
generated according to the largest ligand and used as the
reference to perform the cross-docking analysis (box size of 20 Å
per side).

4.2.1. Molecular Docking. The disordered regions of the
proteins were reconstructed using the Prime-v34012 module of
Schrodinger LLC (NY).39 Docking calculations were performed
using the Schrödinger software suite molecular modeling
package (version 2017-3),39 using default parameters unless
otherwise reported. Known and potential JAK inhibitors were
docked into different JAK subtype binding sites using Glide SP
to evaluate their potential role against each JAK subtype.

4.2.2. Cross-Docking Analysis. The Xglide tool from the
Schrödinger software suite molecular modeling package
(version 2017-3)39 was used to perform a cross-docking analysis
for all of the selected cocrystallized JAK proteins and their
ligands.
The docking accuracy was evaluated in terms of (i) the

average RMSD values calculated between the positions of ligand
atoms in the X-ray structure and the docked complex and (ii) the
percentage of accurate poses having an RMSD < 2 Å (success
rate).

4.3. Molecular Dynamics Simulations. MD simulations
were performed using the Desmond code.39 All systems were
solvated in an orthorhombic box (a margin of 10 Å between the
solute and the side of the box was used in each dimension) with
explicit TIP3P water molecules. All systems were neutralized,
and an ionic salt concentration of 0.15 M of Na+ and Cl− was
added. Atomistic interactions were calculated with the OPLS3e
force field (Desmond 5.9). After the construction of the solvent
environment, each complex system was composed of about
35 000 atoms. Before equilibration and the long-productionMD
simulations, the systems were minimized and pre-equilibrated
using the default relaxation routine implemented in Desmond. A
multiple time-stepping of 2, 2, and 6 fs was used. The system
equilibration was done via NVT and NPT ensembles using the
SHAKE algorithm and by bringing the temperature up to 300 K
and pressure up to 1 bar. Then, the systems were submitted in 10
and 50 ns MD simulations for equilibration and production MD
runs for each system. Finally, 50 ns nonconstrained MD
simulation was performed for each system, and the coordinates
were saved for every 5 ps.

4.4. Chemical Diversity of Potential JAK Inhibitors. To
determine the chemical diversity between the known and the
identified potential JAK inhibitors (in vitro tested), the
Tanimoto coefficient was employed. In particular, pairwise
fingerprinting, generated using default atom-typing scheme
Carthart atom types (Car), was calculated for all known and
potential JAK inhibitors using the Canvas application of the
Schrodinger Suite.39 Each compound is mapped to a binary
string (32 bits long using default Canvas settings), which serves
as a compact one-dimensional descriptor of the chemical
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structure. Finally, a similarity matrix, based on the Tanimoto
similarities between each set of fingerprints, was calculated. The
resulting distance matrix was used to generate a hierarchical
clustering of the compounds, and by application of an
appropriate distance threshold, the hierarchical grouping gave
rise to a set of defined clusters with a specific compound
membership. Chemical similarities between analyzed molecules
(known and potential JAK inhibitors) were represented by
dendritic hierarchal clustering performed using the Kelley
criterion.

5. EXPERIMENTAL: IN VITRO ASSAYS

5.1. Cell Culture. Human SH-SY5Y neuroblastoma cells
purchased from ICLC-IST (Genoa, Italy), were cultured in
Dulbecco’s modified Eagle’s medium (DMEM), supplemented
with 10% (v/v) fetal bovine serum (FBS), 100 units/mL
penicillin, 100 μg/mL streptomycin, and 2 mM glutamine. Cells
were incubated at 37 °C in a humidified atmosphere containing
5% CO2 and were allowed to reach 80% confluence before
starting treatments. All reagents employed for cell culture were
purchased from Lonza (Milan, Italy).
5.2. Cell Viability Assay.Drugs effects on cell viability were

measured using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide] assay.40 All reagents were
purchased from Sigma-Aldrich (Milan, Italy) unless otherwise
indicated. Briefly, cells were plated on 24-well plates at a density
of 3 × 104 cells/well and were grown to reach 80% confluence.
Cells were treated with vehicle (DMEM containing 0.1%
dimethyl sulfoxide (DMSO)) or drugs dissolved in vehicle at the
final concentrations of 1, 10, or 100 μM. After 5 or 24 h, the
culture medium was removed and replaced with fresh DMEM
containing the MTT solution (0.5 mg/mL) and cells were
incubated in the dark for 3 h at 37 °C. After supernatant removal,
a dimethyl sulfoxide/ethanol (4:1) mixture was added to each
well to dissolve formazan crystals. The optical densities (ODs)
were then recorded using a microplate spectrophotometer
(GENios Tecan, Austria) at 590 nm. Results were expressed as a
percentage of OD values of drug-treated cell cultures compared
to vehicle-treated ones.
5.3. JAK2 Assay. The ability of tested compounds to inhibit

JAK2 activity was performed using the JAK2 assay kit (BPS
Bioscience, San Diego, CA). According to the manufacturer’s
instructions, the assay was performed in a white 96-well plate, in
a total volume of 50 μL, adding a 5× kinase assay buffer, ATP
(500 μM), protein tyrosine kinase substrate (10mg/mL), water,
tested molecules diluted in 0.1% DMSO solution, and JAK2
enzyme (2.5 ng/μL).
The plate was incubated for 45 min at 30 °C, and then, the

protein kinase activity was revealed adding Kinase Glo Max
(Promega). After 15 min of incubation at room temperature, the
luminescence was measured by EnSpire Multimode Plate
Reader (Perkin Elmer). All measurements were performed in
triplicates for each compound, and the concentration range
tested was 0.1−10 000 nM.
5.4. Statistical Analysis. MTT assay results were statisti-

cally analyzed by one-way ANOVA followed by Dunnett’s test
and are reported as the mean of values ± SEM. Statistical
analysis was performed using GraphPad Prism software (version
8.00 for Windows, GraphPadSoftware, San Diego CA), and
statistical significance was set at p < 0.05.
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