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1  | INTRODUC TION

The geriatric population is explosively increasing worldwide 
(Commission, 2015). Approximately 617 million people (8.5% of 
people worldwide) are 65 years or older. This number is estimated to 
increase to 1.6 billion by 2050 (Kowal, Goodkind, & He, 2016). With 
an increasing population of the elderly, healthy aging has emerged as 
a crucial issue. Aging is a progressive disruption of the homeostasis 
of physiological systems with age. It results in structural destruc‐
tion, organ dysfunction, and increased susceptibility to injuries and 
diseases. The kidney is one of the most susceptible organs to aging 
(Wang, Bonventre, & Parrish, 2014). Aging‐associated complications 

can lead to kidney dysfunction, including a decreased glomerular 
filtration rate (GFR), tubular dysfunction, and glomerulosclerosis. 
Furthermore, kidney aging has important implications for aging‐as‐
sociated comorbidities, especially cardiovascular diseases. While 
the molecular mechanism underlying kidney aging remains unclear, 
chronic kidney disease (CKD) shares many phenotypic similarities 
with aging, including cellular senescence, fibrosis, vascular rarefac‐
tion, loss of glomeruli, and tubular dysfunction (Kooman, Kotanko, 
Schols, Shiels, & Stenvinkel, 2014). The pathogenic mechanisms in‐
volved in CKD may thus provide insight into the molecular pathways 
leading to kidney aging. They might also provide potential targets 
against kidney aging. Recent efforts to overcome aging have shifted 
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Abstract
Aging is defined as changes in an organism over time. The proportion of the aged popula‐
tion is markedly increasing worldwide. The kidney, as an essential organ with a high en‐
ergy requirement, is one of the most susceptible organs to aging. It is involved in glucose 
metabolism via gluconeogenesis, glucose filtration and reabsorption, and glucose utiliza‐
tion. Proximal tubular epithelial cells (PTECs) depend on lipid metabolism to meet the 
high demand for ATP. Recent studies have shown that aging‐related kidney dysfunction 
is highly associated with metabolic changes in the kidney. Peroxisome proliferator‐acti‐
vated receptor gamma coactivator‐1 alpha (PGC‐1α), a transcriptional coactivator, plays a 
major role in the regulation of mitochondrial biogenesis, peroxisomal biogenesis, and glu‐
cose and lipid metabolism. PGC‐1α is abundant in tissues, including kidney PTECs, which 
demand high energy. Many in vitro and in vivo studies have demonstrated that the acti‐
vation of PGC‐1α by genetic or pharmacological intervention prevents telomere short‐
ening and aging‐related changes in the skeletal muscle, heart, and brain. The activation 
of PGC‐1α can also prevent kidney dysfunction in various kidney diseases. Therefore, a 
better understanding of the effect of PGC‐1α activation in various organs on aging and 
kidney diseases may unveil a potential therapeutic strategy against kidney aging.
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from the identification of risk factors to the determination of endog‐
enous protective factors that might neutralize the adverse effects 
of aging. Among the various endogenous protective factors re‐
ported (Jeong & King, 2011), AMP‐activated protein kinase (AMPK) 
(Casalena, Daehn, & Bottinger, 2012; Kume, Thomas, & Koya, 2012; 
Sharma, 2015), fibroblast growth factor 21 (FGF21) (Salminen, 
Kaasniranta & Kauppinen, 2017), insulin (Artunc et al., 2016), and 
vascular endothelial growth factor (VEGF) (Schrijvers, Flyvbjerg, & 
De Vriese, 2004) have been extensively reviewed and are briefly 
summarized in Table 1. Pyruvate kinase isozyme type M2 (PKM2) 
has recently been suggested as an endogenous protective factor 
against diabetes‐induced kidney injury (Qi et al., 2017). This review 
aimed to discuss current data on endogenous PGC‐1α as a potential 
therapeutic target against kidney aging.

2  | FE ATURES OF KIDNE Y AGING

This section briefly summarizes the features of kidney aging 
(Figure 1), a complex process affected by various factors including 
chronic inflammation, oxidative stress, genetics, and accompany‐
ing chronic diseases such as diabetes and hypertension (Kaplan, 
Pasternack, Shah, & Gallo, 1975). In the seventh decade of life, the 
kidney mass is 20%–30% less than that in the fourth decade. Such 
an age‐related reduction is more pronounced in the cortex than in 
the medulla (Gourtsoyiannis, Prassopoulos, Cavouras, & Pantelidis, 
1990; Hoy et al., 2003). Pathological fibrosis, a representative hall‐
mark of aging, is also observed in kidney aging. Disruptions and 
changes in normal kidney structure may be accelerated by aging‐
induced profibrotic signals such as transforming growth factor‐β 

(TGF‐β) (McLachlan, 1978; Yang et al., 2017). Progressive tubular 
dysfunction is accompanied by decreased sodium reabsorption and 
potassium excretion with reduced urine concentrating capacity. 
Because podocytes have very limited regenerative potential, the ex‐
cessive atrophy of podocytes contributes to glomerular hyperfiltra‐
tion (Wiggins et al., 2005). Alterations in kidney vasculature, such 
as intimal and medial hypertrophy and arteriosclerosis in afferent 
arterioles, have been observed in kidney aging (Michelis, 1990). A 
massive loss of functional glomeruli with age also results in the ir‐
regularity and tortuosity of afferent arterioles and direct connec‐
tions between afferent and efferent vessels, leading to blood flow 
bypassing the glomeruli (Kaplan et al., 1975). The aging kidney also 
exhibits a gradual reduction in kidney plasma flow, mainly in the kid‐
ney cortex. Kidney vascular responses to endogenous vasodilators 
such as nitric oxide, atrial natriuretic peptide, and amino acids are 
decreased, whereas the sympathetic tone and response to angioten‐
sin II are increased (Wiggins et al., 2005). As a result, vasoconstric‐
tion increases with age (Takazakura et al., 1972).

3  | METABOLISM IN KIDNE Y AGING AND 
CKD

The kidney is not generally considered a major metabolic organ, al‐
though it contributes to glucose metabolism via gluconeogenesis, 
glucose filtration and reabsorption, and glucose utilization (Alsahli 
& Gerich, 2017). The kidney accounts for approximately 10% of 
all glucose utilized by the body under normal conditions. Under 
normal conditions, 180  g/day of glucose is filtered by the kidney 
glomerulus and reabsorbed in the proximal tubule (Gerich, 2010). 

TA B L E  1   Effects of various endogenous protective factors on the kidney

Endogenous pro‐
tective factors Protective effect/mechanism References

AMPK Glomerulus—increases autophagy and mitochondrial biogenesis; re‐
duces apoptosis; reduces oxidative stress

Tubule—increases autophagy, fatty acid oxidation, and mitochondrial 
biogenesis; reduces oxidative stress

Decleves, Mathew, Cunard, and Sharma (2011), 
Decleves et al. (2014), Dugan et al. (2013), 
Fang et al. (2013), Jin, Liu, Ma, Xiao, and Chen 
(2017), Sharma et al. (2008), Sohn et al. (2017)

FGF21 Glomerulus—maintains differentiated podocytes; reduces oxidative 
stress

Tubule—reduces apoptosis and oxidative stress; increases autophagy

Davidson, Dono, and Zeller (2001), Kim, Lim, et 
al. (2013), Li, Liu, Tang, Cai, and Dong (2018), 
Minami et al. (2017), Zhang, Shao, et al. 
(2013), Zhang, Zhou, et al. (2013)

Insulin Glomerulus—maintains the integrity of the glomerular filtration barrier 
through cytoskeletal reorganization; reduces mesangial cell apoptosis

Tubule—inhibits gluconeogenesis in the proximal tubules; increases Na 
reabsorption in the distal tubules

Hiromura et al. (2002), Tiwari et al. (2008, 
2013), Welsh et al. (2010)

PKM‐2 Glomerulus—increases glucose metabolic flux and mitochondria 
metabolism; inhibits the production of toxic glucose metabolites in 
podocytes

Qi et al. (2017)

VEGF Glomerulus—reduces apoptosis; maintains podocyte foot processes and 
endothelial cells fenestration; increases endothelial cells proliferation; 
preserves the glomerular capillary endothelium

Tubule—reduces apoptosis; preserves the peritubular capillary 
endothelium

Harvey, Engel, and Chade (2016), Kanellis 
Fraser Katerelos & Power (2000), Kang, 
Hughes, Mazzali, Schreiner, and Johnson 
(2001), Kim et al. (2000), Sison et al. (2010)
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Gluconeogenesis in the kidney contributes up to 25% of systemic 
glucose levels under normal conditions (Mather & Pollock, 2011). 
Patients with type 2 diabetes mellitus (T2DM) exhibit increased 
glucose production (up to 300%) and glucose uptake by the kidney 
(Alsahli & Gerich, 2017).

Insulin plays an important role in glucose homeostasis. Insulin 
receptor (IR) is expressed throughout the kidney, suggesting an im‐
portant role of insulin in the kidney. Under insulin resistance, an im‐
paired insulin cascade is observed not only in classical insulin target 
tissues (liver, skeletal muscle, and white adipose tissue) but also in 
the kidney (Horita et al., 2016). In the kidney of T2DM patients, the 
IRS1‐dependent inhibition of gluconeogenesis is impaired in prox‐
imal tubules (Horita et al., 2016), while IRS2‐dependent signaling 
is preserved in proximal and distal tubules, leading to hypertension 
through increased sodium reabsorption (Artunc et al., 2016). Proximal 
tubule‐specific insulin‐resistant‐knockout mice show hyperglycemia 
through increased gluconeogenesis (Tiwari et al., 2013), whereas 
podocyte‐specific insulin‐resistant‐knockout mice show losses of 
podocyte foot processes and cytoskeletal architecture and develop 
significant albuminuria under normoglycemic conditions (Welsh et 
al., 2010). An impairment in IRS1 signaling induces podocyte dys‐
function and deteriorates the podocyte structure, which may induce 
diabetic kidney injury (Welsh et al., 2010). In addition, insulin confers 

protection from apoptotic stimuli by stimulating the PI3K‐Akt path‐
way in mesangial cells (Hiromura, Monkawa, Petermann, Durvasula, 
& Shankland, 2002).

Kidney proximal tubules have high levels of baseline energy con‐
sumption (Kang et al., 2015; Meyer, Nadkarni, Stumvoll, & Gerich, 
1997). Fatty acid oxidation (FAO) is the preferred energy source in 
proximal tubules because fatty acid (FA) generates more ATP than 
glucose at an equal molar concentration during oxidation. In fact, 
the kidney cortex has low glucose‐phosphorylating capacity but 
high levels of oxidative enzymes, supporting that the kidney cortex 
uses free fatty acids (FFAs) and not glucose as the main source of 
energy (Gerich, 2010). The kidney medulla uses glucose anaerobi‐
cally for its energy requirement due to its low levels of oxidative 
enzymes.

Lipoprotein lipase and CD36 are two important molecules for 
FA uptake. Cytosolic FAs can be supplied either by in situ cytosolic 
synthesis or by the deacylation of cellular phospholipids through 
the action of phospholipase A2 (Simon & Hertig, 2015). FAs are 
then transported from the cytosol to respective organelles (mi‐
tochondria and peroxisomes) to be oxidized to provide cells with 
ATP. The mitochondrial transporter system consists of two com‐
ponents: carnitine palmitoyltransferases (CPT1 and CPT2) and a 
carnitine‐acylcarnitine translocase. The peroxisome transporter 
system requires three ATP‐binding cassette transporter D subfam‐
ily proteins: ABCD1, ABCD2, and ABCD3 (Wanders, 2013). Human 
kidney samples with diabetic nephropathy show lipid accumulation 
in the glomeruli and tubulointerstitium along with the upregulation 
of CD36 (Herman‐Edelstein, Scherzer, Tobra, Levi & Gafter, 2014; 
Hua et al., 2015).

A defective FAO pathway induces lipid accumulation, result‐
ing in lipotoxicity that contributes to the development of CKD in 
humans and rodents (Chung et al., 2018; Hager, Narla, & Tannock, 
2017; Han et al., 2016; Kang et al., 2015; Nitta, 2012). These re‐
sults suggest that the proper adaptation of FAO is an important 
strategy against kidney aging. A recent lipidomic analysis re‐
vealed significant age‐related differences in lipid metabolites of 
the kidney (Braun et al., 2016). In addition, large cohort studies 
have demonstrated that distinct metabolomic signatures, includ‐
ing lipid metabolism, are associated with longevity in humans 
(Cheng et al., 2015).

PGC‐1α and peroxisome proliferator‐activated receptor α 
(PPARα) are important in glucose metabolism and act as master 
regulators of lipid metabolism by regulating mitochondrial and 
peroxisomal FAO‐related genes (Chung et al., 2018). While the in‐
teraction between these two proteins has been well established, 
PGC‐1α can also coactivate PPARδ, which induces FAO (Kleiner 
et al., 2009). The levels of PGC‐1α, PPARα, and FAO‐associated 
enzymes are reduced in aged kidneys with significantly increased 
lipid accumulation (Chung et al., 2018; Lim et al., 2012). PGC‐1α‐
related FAO genes are reduced in CKD. The overexpression of 
PGC‐1α ameliorates Notch‐induced kidney fibrosis, a phenotype 
in aging.

F I G U R E  1   Age‐associated changes in the kidney. Altered 
macroscopic and microscopic changes decrease kidney function 
during the aging process. GBM, glomerular basement membrane
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4  | PGC‐1α :  A KE Y PL AYER IN 
METABOLISM

PGC‐1α plays a central role in the regulation of metabolism. It belongs 
to the PGC‐1 family comprised of PGC‐1α, PGC‐1β, and PGC‐related 
coactivator (Figure 2a) (Lynch, Tran, & Parikh, 2018). The PGC‐1 fam‐
ily shares sequence homology in the activation domain, the proline‐
rich domain, the Arg/Ser‐rich domain, and the RNA‐binding domain 
of the gene. PGC‐1β lacks the proline‐rich and Arg/Ser‐rich domains 
(Scarpulla, 2011). Although these proteins show structural and func‐
tional similarities, PGC‐1 family members have different tissue distri‐
butions (Vega, Huss, & Kelly, 2000). PGC‐1α is expressed abundantly 
in kidney tubular epithelial cells, whereas PGC‐1β is barely present 
in the kidney (Liang & Ward, 2006; Lin, Puigserver, Donovan, Tarr, 
& Spiegelman, 2002; Rasbach & Schnellmann, 2007). Thus, PGC‐1α 
has been extensively studied in kidney cells and tissues among 
PGC‐1 family members.

PGC‐1α was first discovered in 1998 as an inducible thermo‐
genic regulator in brown fat and skeletal muscle upon the exposure 
of mice to cold (4°C) (Puigserver et al., 1998). PGC‐1α expression 
is increased in response to physical activity, nutritional deficiency, 
hypoxia, cyclic adenosine monophosphate activation, and oxidant 
stress (Lynch et al., 2018). PGC‐1α is critical for maintaining energy 
homeostasis. PGC‐1α regulates cold‐induced thermogenesis, mi‐
tochondrial biogenesis, hepatic gluconeogenesis, and FAO (Cheng, 

Ku, & Lin, 2018; Ventura‐Clapier, Garnier, & Veksler, 2008). PGC‐1α 
regulates oxidative phosphorylation by targeting genes involved in 
the subunits of the respiratory chain, including β‐ATP synthase, 
cytochrome C oxidase (COX) IV, and cytochrome C (Finck & Kelly, 
2006). PGC‐1α partners, including PPARs (PPARα and PPARδ), es‐
trogen‐related receptor (ERR), hepatic nuclear factor 4α (HNF4α), 
forkhead box protein O1 (FOXO1), nuclear respiratory factor 1 
(NRF1), and myocyte enhancer factor 2 (MEF2), have been identi‐
fied (Fernandez‐Marcos & Auwerx, 2011; Puigserver et al., 2003; 
Semple et al., 2004) (Figure 2b), indicating that this coactivator 
can serve as a regulator of multiple pathways involved in cellular 
energy metabolism.

The role of AMPK, a well‐recognized upstream regulator of 
PGC‐1α, in kidney disease and aging has been extensively reviewed 
elsewhere (Casalena et al., 2012; Kume et al., 2012; Sharma, 2015). 
In brief, AMPK is inhibited in pathological conditions such as inflam‐
mation, diabetes, and aging. The activation of AMPK has beneficial 
effects on these conditions. AMPK can also critically regulate mito‐
chondrial functions linked to multiple pathways involved in aging. 
AMPK enhances mitochondrial biogenesis not only by inducing the 
transcription of PGC‐1α but also by activating PGC‐1α by the phos‐
phorylation of threonine‐177 and serine‐538 (Jager, Handschin, St‐
Pierre, & Spiegelman, 2007; Jorgensen et al., 2005; Suwa, Nakano, 
& Kumagai, 2003). Excessive mitochondrial superoxide under hyper‐
glycemic stress is generally acknowledged as the driver of diabetic 

F I G U R E  2   (a) Domain structure 
of PGC‐1 coactivators. (b) Upstream 
regulator and target of PGC‐1α. Ca2+, 
ROS, SIRTs, AMPK, and Akt can regulate 
the expression and/or activity of PGC‐1α. 
PGC‐1α then coactivates transcription 
factors such as NRFs, ERRs, and PPARs, 
which regulate different aspects of energy 
metabolism, including mitochondrial 
biogenesis, peroxisomal biogenesis, fatty 
acid oxidation, and antioxidant activity. 
CaMK, Ca2+/calmodulin‐dependent 
protein kinase; CnA, calcineurin; GCN5, 
general control of amino acid synthesis 
5; ROS, reactive oxygen species; RXR, 
retinoid receptor
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vascular and kidney injury (Brownlee, 2005). However, this hypothe‐
sis was recently challenged by the concept of mitochondrial hormesis 
(Sharma, 2015). Excessive glucose or nutrients can reduce mitochon‐
drial superoxide production, oxidative phosphorylation, and ATP gen‐
eration in the target tissues of diabetic complications. A persistent 
reduction in oxidative phosphorylation in the mitochondria may trig‐
ger reactive oxygen species (ROS) generation in nonmitochondrial 
compartments and the upregulation of proinflammatory and profi‐
brotic cytokines (Coughlan & Sharma, 2016; Dugan et al., 2013). As 
expected, the activation of AMPK can restore mitochondrial func‐
tion and superoxide production (Sharma, 2015), underscoring the 
importance of maintaining physiological mitochondrial superoxide 
production.

TGF‐β plays a pivotal role in the development of fibrotic tissue, 
a common hallmark of aging. Interestingly, AMPK activation can 
downregulate TGF‐β transcriptional activity in various tissues, such 
as the kidney, liver, and lung. AMPK also inhibits the interaction be‐
tween the transcription coactivator p300 and SMAD3 in hepatic 
stellate cells (Casalena et al., 2012). Thus, AMPK might serve as a 
potential target against kidney aging.

Akt and sirtuin 1 (SIRT1) are major upstream regulators of 
PGC‐1α. The activation of Akt induces the phosphorylation of 
PGC‐1α at serine‐570, a reduced form of activated PGC‐1α (Li, 
Monks, Ge, & Birnbaum, 2007). Recently, it was demonstrated that 
cdc2‐like kinase (Clk2) protein levels and kinase activity can be in‐
duced by the insulin/Akt pathway. Clk2 directly phosphorylates 
the SR domain on PGC‐1α, resulting in the repression of PGC‐1α 
expression (Rodgers, Haas, Gygi, & Puigserver, 2010). In addition, 
13 conserved arginines of PGC‐1α are sites of inhibitory acetyla‐
tion by the acetyltransferase GCN5. The deacetylation and reac‐
tivation of PGC‐1α are mediated by SIRT1 and are associated with 
longevity (Canto & Auwerx, 2009; Rodgers, Lerin, Gerhart‐Hines, 
& Puigserver, 2008). In response to fasting, SIRT1 deacetylates 
PGC‐1α to control gluconeogenic and glycolytic gene expression 
in a nicotinamide adenine dinucleotide (NAD)‐dependent pathway 
(Rodgers et al., 2005). PGC‐1α is a coactivator of the transcription 
factors NRF‐1 and NRF‐2, which regulate the expression of TFAM, 
a nuclear‐encoded transcription factor essential for replication, 
maintenance, and the transcription of mitochondrial DNA. NRF‐1 
and NRF‐2 also control the expression of nuclear genes encoding 
respiratory chain subunits and proteins required for mitochondrial 
function (Lin, Handschin, & Spiegelman, 2005; Schreiber et al., 
2004; Wu et al., 1999). Both AMPK and SIRT1 are major metabolic 
signaling pathways activated under calorie restriction (CR) (Martin‐
Montalvo & de Cabo, 2013), the most effective measure to prevent 
age‐associated diseases and extend longevity.

Several pathways are involved in PGC‐1α expression in response 
to exercise: Ca2+/calmodulin‐dependent protein kinase (CaMK), 
calcineurin (CnA), AMPK, ROS, and NAD. CnA interacts with and 
activates MEF2, which subsequently induces PGC‐1α transcription 
(Handschin, Rhee, Lin, Tarr, & Spiegelman, 2003). The Ca2+‐induced 
CaMK phosphorylation and activation of CREB induce PGC‐1α tran‐
scription (Handschin et al., 2003). CaMK is also upstream kinase of 

AMPK. AMPK is activated by contractile activity in skeletal muscle 
(Fujii et al., 2000). Activation of the p38 MAPK pathway after ex‐
ercise stimulates PGC‐1α promoter activity (Akimoto et al., 2005). 
ROS are also functionally important for exercise‐induced PGC‐1α 
expression (Lira, Benton, Yan, & Bonen, 2010). ROS are involved in 
p38 MAPK and AMPK activation and the consequent regulation of 
PGC‐1α expression. In addition, increased NAD during exercise acti‐
vates SIRT1, which consequently activates PGC‐1α (Kang, O'Moore, 
Dickman, & Ji, 2009).

The endogenous protective molecules shown in Table 1 can also 
regulate PGC‐1α. FGF21, a hormone‐like member of the FGF family, 
is induced by endoplasmic reticulum (ER) stress, mitochondrial dys‐
function, and autophagy (Suwa et al., 2003). FGF21 controls energy 
metabolism by enhancing energy expenditure, ameliorates age‐related 
metabolic disorders such as atherosclerosis, obesity, and T2DM (Suwa 
et al., 2003), upregulates hepatic PGC‐1α expression (Potthoff et al., 
2009), increases NAD levels leading to the activation of SIRT1 and the 
deacetylation of PGC‐1α that consequently activates PGC‐1α in adipo‐
cytes (Chau, Gao, Yang, Wu, & Gromada, 2010), and enhances SIRT1 
binding to liver kinase B (LKB1), which decreases LKB1 acetylation 
and subsequently induces the activation of AMPK in cardiomyocytes 
(Wang, Wang, Zhang, Liu, & Gu, 2017). The transgenic overexpression 
of FGF21 extends the lifespan of mice by blunting the growth hormone/
insulin‐like growth factor 1 signaling pathway in the liver (Zhang et al., 
2012). Among the isoforms of pyruvate kinase, PKM2 has been exten‐
sively studied due to its important role in cancer metabolism (Alves‐
Filho & Palsson‐McDermott, 2016). A recent study demonstrated that 
the podocyte‐specific deletion of PKM2 accelerated albuminuria in 
streptozotocin‐induced diabetic mice and that TEPP‐46, a small mol‐
ecule PKM2 activator, reversed hyperglycemia‐induced elevation in 
toxic glucose metabolites and mitochondrial dysfunction by increasing 
the PGC‐1α level (Qi et al., 2017). In addition, VEGF, one of the most 
important endogenous proangiogenic and prosurvival factors, can re‐
spond to hypoxia under normal physiological conditions (Schrijvers et 
al., 2004). PGC‐1α induces VEGF by coactivating the transcription fac‐
tor ERR on an enhancer located in the first intron of the VEGF gene in 
myotubes (Arany et al., 2008). VEGF‐A‐knockout mice show losses of 
podocyte foot processes and endothelial cell fenestrations, suggesting 
a crucial role for VEGF in maintaining the function of the glomerular 
filtration barrier (Sison et al., 2010). In contrast, VEGF expression cor‐
relates with fibrotic markers in diabetic kidneys (Kinashi et al., 2017), 
and a selective VEGFR‐3 inhibitor ameliorates diabetic kidney injury in 
db/db mice (Hwang et al., 2019). Thus, the protective effect of VEGF in 
the kidney is controversial.

Peroxisomes play an important role in FAO. PGC‐1α has been 
suggested to play a critical role in the regulation of peroxisomal 
function and biogenesis (Bagattin, Hugendubler, & Mueller, 2010; 
Huang et al., 2017). The ectopic expression of PGC‐1α increases the 
levels of peroxisomal β‐oxidation‐related genes (including acyl‐CoA 
oxidase‐1 and enoyl‐CoA hydratase/3‐hydroxyacyl‐CoA dehydroge‐
nase) and genes involved in peroxisomal biogenesis (such as Pex11α, 
Pex11β, Pex13, and Pex16). The detailed mechanism of PGC‐1α‐in‐
duced peroxisomal biogenesis remains unclear.
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PGC‐1α may act as an endogenous regulator in autophagy. PGC‐1α 
induces not only mitochondrial biogenesis but also autophagy/mitoph‐
agy in muscle following acute exercise. Autophagy‐related genes such 
as microtubule‐associated protein 1 light chain 3 and sequestosome 
1 are induced by exercise but attenuated in the skeletal muscle of 
PGC‐1α‐knockout mice (Vainshtein, Tryon, Pauly, & Hood, 2015).

While PGC‐1α increases ROS in different organelles, including 
the mitochondria, peroxisomes, and ER, it also stimulates the ROS 
scavenging pathway to balance ROS production and detoxification. 
Manganese superoxide dismutase (MnSOD) and glutathione peroxi‐
dase‐1, major mitochondrial components involved in ROS metabolism, 
are induced by at least fivefold in C2C12 myotubes expressing PGC‐1α. 
PGC‐1α also increases the expression of uncoupling protein 2 (UCP2) 
and UCP3, which protect mitochondria against ROS stress (St‐Pierre 
et al., 2003), leading to a redox balance in response to oxidative stress.

5  | PROTEC TIVE EFFEC T OF PGC‐1α  IN 
KIDNE Y DISE A SE

We first summarize the data demonstrating the protective role of 
PGC‐1α in acute kidney injury (AKI) followed by chronic kidney in‐
jury (Table 2).

5.1 | PGC‐1α in AKI

The elderly are vulnerable to AKI, showing high mortality due to 
their decreased ability to adapt and regenerate. AKI is a crucial risk 
factor in kidney disease progression (Jung, Choi, Song, & Ahn, 2018; 
Oh, 2016). The mechanism underlying the elderly's increased sus‐
ceptibility to CKD after AKI is unclear.

AKI caused by diverse etiologies is characterized by mito‐
chondrial dysfunction. Accordingly, the activation of PGC‐1α 
is beneficial in AKI (Lynch et al., 2018). The expression level of 
PGC‐1α is decreased in various models of AKI, including cispla‐
tin‐ (Morigi et al., 2015; Portilla et al., 2002), folate‐ (Ruiz‐Andres 
et al., 2016), ischemia/reperfusion (IR)‐ (Lempiainen et al., 2013; 
Tran et al., 2016), and lipopolysaccharide (LPS)‐induced kidney in‐
juries (Smith, Stallons, Collier, Chavin, & Schnellmann, 2015; Tran 
et al., 2011). PGC‐1α‐knockout mice exhibit worse kidney func‐
tion, greater fat accumulation, and more tubular injury following 

IR injury than wild‐type (WT) mice (Tran et al., 2016). Tubule‐spe‐
cific PGC‐1α‐knockout mice exhibit normal basal kidney function 
but more persistent injury after LPS treatment (Tran et al., 2011). 
Tubule‐specific PGC‐1α‐overexpressing mice show increased lev‐
els of NAD, nicotinamide (NAM), and NAD synthetic enzymes, 
with higher resistance to ischemia (Tran et al., 2016). The reac‐
tivation of PGC‐1α using transgenic overexpression enhances re‐
covery from kidney injury in various animal models of AKI (Lynch 
et al., 2018). These results suggest that the restoration of PGC‐1α 
in the kidney may be essential for functional recovery from AKI. 
Interestingly, CR ameliorates IR‐induced AKI (Lempiainen et al., 
2013).

Increased levels of inflammatory mediators in AKI downregulate 
PGC‐1α through histone deacetylation. Upon TWEAK stimulation, 
NF‐κB Rel A directly binds to the promoter of the PGC‐1α gene 
(Figure 4) to recruit histone deacetylase corepressor proteins, lead‐
ing to histone deacetylation and chromatin packing that suppress 
PGC‐1α expression (Ruiz‐Andres et al., 2016). Systemic LPS expo‐
sure leads to the activation of TLR4, which in turn initiates signal‐
ing through the TPL2/MAPK/ERK pathway, leading to a decrease in 
PGC‐1α mRNA (Smith et al., 2015).

5.2 | PGC‐1α in CKD

Kidney specimens from CKD patients show decreased PGC‐1α ex‐
pression (Han et al., 2017; Sharma et al., 2013), which is associated 
with a decreased GFR in human kidney fibrosis (Lemos et al., 2018). 
PGC‐1α is decreased in various models of CKD, including unilateral 
ureteral obstruction‐induced fibrosis (Han et al., 2017), db/db dia‐
betic mice (Hong et al., 2014; Kim, Lee, et al., 2013; Kim, Lim, et al. 
2013; Long et al., 2016; Yuan et al., 2018; Zhang, Liu, Zhou, Wang, 
& Chen, 2018), and streptozotocin‐induced diabetic mice (Kwon 
et al., 2017). Our results also show that PGC‐1α expression is sig‐
nificantly decreased in diabetic mice (Figure 3). The tubule‐specific 
overexpression of PGC‐1α ameliorates Notch‐induced kidney in‐
juries, such as apoptosis, impaired mitochondrial morphology and 
the FAO pathway, and fibrosis (Han et al., 2017). Thus, restoring 
PGC‐1α activity could be a promising treatment strategy against 
CKD.

As shown in Figure 4, TLR4 and NF‐κB mediate diabetes‐induced 
PGC‐1α downregulation (Yuan et al., 2018). Transcriptional repressor 

TA B L E  2   Protective effects of PGC‐1α on kidney injury

Disease models Altered metabolic change References

Cisplatin‐induced AKI
Folic acid‐induced AKI
Ischemia/reperfusion‐induced AKI
LPS‐induced AKI

Autophagy
Fatty acid oxidation
Mitochondrial biogenesis

Lempiainen et al. (2013), Portilla et al. (2002), Ruiz‐Andres et al. 
(2016), Smith et al. (2015), Tran et al. (2011), Tran et al. (2016)

db/db diabetic mice
Kidney fibrosis

Fatty acid oxidation
Mitochondrial biogenesis
Mitochondrial oxidative stress

Han et al. (2017), Hong et al. (2014), Kang et al. (2015), Kim, Lee, 
et al., (2013), Kim, Lim, et al. (2013), Long et al. (2016), Yuan et al. 
(2018), Zhang et al. (2018)

Aged mice Fatty acid oxidation
Mitochondrial biogenesis

Chung et al. (2018), Svensson et al. (2016)
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Hes1 (a downstream target of fibrotic Notch signaling) directly binds 
to the PGC‐1α promoter region (Han et al., 2017). TGF‐β inhibits the 
transcription of PGC‐1α in a SMAD3‐dependent manner, leading to 
FAO in kidney fibrosis (Kang et al., 2015). However, taurine‐upregu‐
lated gene 1 (Tug1), an evolutionarily conserved long intergenic non‐
coding RNA, binds directly to an R/S‐rich region in the C‐terminal 
domain of PGC‐1α and enhances its expression (Long et al., 2016). 
The podocyte‐specific overexpression of Tug1 ameliorates mito‐
chondrial dysfunction in db/db diabetic kidney (Long et al., 2016). 
High‐glucose‐induced PGC‐1α downregulation and ROS accumula‐
tion in mesangial cells can be reversed by PGC‐1α overexpression 
(Zhang et al., 2018). These findings suggest that PGC‐1α may have 
beneficial effects in glomeruli, although PGC‐1α is the most abun‐
dant in kidney tubules.

6  | ROLE OF PGC‐1α  IN AGING

Increasing evidence implicates the association of PGC‐1α and antiag‐
ing in various organs (Figure 5).

6.1 | PGC‐1α in telomere shortening

Telomeres are gradually shortened by continued cell division. They fi‐
nally enter a dysfunctional state, leading to cellular growth arrest and 
senescence. Telomerase reverse transcriptase (TERT) deficiency in mice 
results in the dysfunction and shortening of telomeres with DNA dam‐
age (Sahin et al., 2011). PGC‐1α expression is decreased in TERT‐knock‐
out mice (Kang et al., 2018; Sahin et al., 2011). PGC‐1α deletion induces 
telomere malfunction, DNA damage, cellular senescence, and increased 
p53 levels. Conversely, the ectopic expression of PGC‐1α coactivates 
TERT transcription and reverses telomere malfunction and DNA dam‐
age (Xiong, Patrushev, Forouzandeh, Hilenski, & Alexander, 2015).

Mechanistically, PGC‐1α directly increases TERT expression 
(Xiong et al., 2015). There are multiple conserved PGC‐1α‐coacti‐
vated DNA‐binding elements of transcriptional factors within the 
rat, mouse, and human TERT promoter regions. Alpha lipoic acid, a 
nondispensable mitochondrial cofactor, upregulates PGC‐1α‐depen‐
dent TERT and Nrf‐2‐mediated antioxidant/electrophile‐responsive 
element signaling cascades, counteracting high‐fat diet (HFD)‐in‐
duced age‐dependent arteriopathy.

F I G U R E  3   PGC‐1α expression in the 
kidneys of aged or diabetic C57BL/6J 
mice. (a) Kidney sections from 7‐month‐
old and 27‐month‐old mice were 
examined. (b) Kidney sections from 
20‐week‐old db/m or db/db mice were 
examined. (c) Diabetes was induced by 
the intraperitoneal injection of 50 mg/
kg STZ for 5 days, and kidney sections 
were examined. (a–c) Paraffin‐embedded 
kidney sections were subjected to 
immunofluorescence staining using an 
anti‐PGC‐1α antibody (1:100; ab54481; 
Abcam) and anti‐rabbit Alexa Fluor 588 
(1:1,000; A11036; Invitrogen). Nuclei were 
stained with DAPI (Hwang et al., 2012). 
Images were taken using a Zeiss ApoTome 
Axiovert 200 M microscope (Carl Zeiss 
Microscopy GmbH). Scale bar indicates 
50 μm. Representative images are shown
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Telomere dysfunction can activate p53, which in turn binds to 
and represses PGC‐1α promoters, leading to mitochondrial impair‐
ment in the liver and heart in age‐related dilated cardiomyopathy, 
defects in hepatic gluconeogenesis, and reduced hematopoietic 
stem cell capacity to reconstitute (Sahin et al., 2011).

6.2 | PGC‐1α in the heart, muscle, and brain

The heart requires a constant flux of ATP to maintain contractile func‐
tion. Increasing evidence has shown that energetic defects contribute 

to the development of heart failure (Ren, Pulakat, Whaley‐Connell, & 
Sowers, 2010; Rowe, Jiang, & Arany, 2010). The mitochondrial mass 
comprises one‐third of the adult heart. PGC‐1α has recently emerged 
as a powerful regulator of mitochondrial biology in the heart (Rowe et 
al., 2010). Mitochondrial dysfunction is observed in human cardiomyo‐
pathy and most animal models of heart failure (Ide et al., 2001; Rowe 
et al., 2010; Weiss, Gerstenblith, & Bottomley, 2005). PGC‐1α is de‐
creased in various in vivo models of heart failure, including transverse 
aortic constriction (TAC) in mice (Arany et al., 2006; Huss et al., 2007) 
and congestive heart failure in rats (Garnier et al., 2003), suggesting 

F I G U R E  5   Antiaging effect of PGC‐1α 
activation on the muscle, heart, brain, and 
telomeres

F I G U R E  4   Regulation of PGC‐1α. 
TGF‐β, tumor necrosis factor‐like weak 
inducer of apoptosis (TWEAK), and 
Notch can repress PGC‐1α promoter 
activity by the SMAD3, Rel A, NF‐kB, 
and Hes1 pathways, respectively. On 
the other hand, exercise and calorie 
restriction activate PGC‐1α, while the 
activation of P53 and ERK can suppress 
PGC‐1α activation. mTOR‐induced YY1 
increases PGC‐1α promoter activity. ERK, 
extracellular signal‐regulated kinase; 
NICD, Notch intracellular domain; MEK, 
mitogen‐activated protein kinase; TPL‐2, 
tumor progression locus 2; YY1, yin‐yang 
1
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that decreased PGC‐1α is a common feature of cardiac diseases. Aging 
is involved in cardiac dysfunction in mice. PGC‐1α knockout accelerates 
cardiac failure through hemodynamic challenge in TAC in mice (Arany 
et al., 2006). Isolated working hearts from PGC‐1α‐knockout mice 
show decreased FAO and reduced cardiac power (Lehman et al., 2008). 
Mechanistically, ERRα‐knockout mice show a very similar phenotype to 
PGC‐1α‐knockout mice, with chamber dilatation and reduced left ven‐
tricular fractional shortening after TAC (Huss et al., 2007), underscoring 
the central role of ERRα in PGC‐1α biology. Decreased PGC‐1α expres‐
sion has also been observed in the hearts of the elderly. Although the 
aging process is not exacerbated, young mice with PGC‐1α knockdown 
partially mimic age‐related impairments in mitochondrial gene expres‐
sion. On the other hand, the moderate overexpression of PGC‐1α pre‐
vents numerous age‐related remodeling changes in the heart as well as 
the expression of various genes involved in mitochondrial biogenesis, 
dynamics, metabolism, calcium handling, and contractility (Whitehead, 
Gill, Brink, & Handschin, 2018). Since heart‐specific PGC‐1α overex‐
pression exhibits dilated myopathy in mice (Lehman et al., 2000), this 
plausible adverse effect in the heart should be considered when devel‐
oping therapeutic agents targeting PGC‐1α.

Failing vasculature is another major factor leading to the devel‐
opment of cardiovascular diseases during aging. PGC‐1α deletion 
accelerates vascular senescence (Wenz, 2011). PGC‐1α expres‐
sion is decreased in human atherosclerosis (McCarthy et al., 2013). 
PGC‐1α‐deficient mice develop vascular senescence, which mainly 
occurs in vascular smooth muscle cells (Kroller‐Schon et al., 2013; 
Xiong, Salazar, Patrushev, & Alexander, 2011). Endothelial dysfunc‐
tion is an early feature of chronic cardiovascular diseases (Meigs, Hu, 
Rifai, & Manson, 2004). The overexpression of PGC‐1α in endothe‐
lial cells reduces ROS levels and rescues ROS‐mediated mitochon‐
drial toxicity and cellular apoptosis (Valle, Alvarez‐Barrientos, Arza, 
Lamas, & Monsalve, 2005; Won et al., 2010). The overexpression 
of PGC‐1α in endothelial cells induces the expression of MnSOD. 
PGC‐1α transcriptional activity at the MnSOD promoter requires a 
functional FOXO site (Olmos et al., 2009).

A loss of muscle mass, known as sarcopenia, is another serious 
health problem in the elderly. Skeletal muscle with aging exhibits 
mitochondrial electron transport chain defects, the accumulation 
of oxidative stress markers, and mutations in somatic mitochondrial 
DNA (mtDNA). The causative role of decreased PGC‐1α expression 
in age‐associated insulin resistance in muscle has been established. 
First, the expression of PGC‐1α along with COX activity, an index 
of mitochondrial content, in the soleus muscle gradually decreases 
from 6 to 24 months in rats (Sczelecki et al., 2014). Second, an inte‐
grated analysis of omics data from muscle‐specific PGC‐1α‐knock‐
out mice and WT controls aged up to 2  years demonstrated that 
approximately 35% of genes regulated by PGC‐1α may play a role in 
the molecular pathway of muscle aging (Sczelecki et al., 2014). The 
same study suggested that the loss of PGC‐1α may be insufficient to 
accelerate insulin resistance but may promote glucose intolerance 
combined with advanced age. Third, the overexpression of PGC‐1α 
in skeletal muscle results in the molecular features of muscle sim‐
ilar to those from young mice, with mild but significant effects on 

the median lifespan in female mice and the maximal lifespan in male 
mice, suggesting muscle remodeling in younger muscle (Garcia et al., 
2018). Finally, exercise upregulates PGC‐1α transcription and activ‐
ity (Kupr & Handschin, 2015) through various pathways, including 
cytosolic Ca+. Thus, the beneficial effect of exercise may depend on 
PGC‐1α. Skeletal muscle‐specific PGC‐1α overexpression in mice has 
shown controversial results. It beneficially induces the conversion 
of type IIb muscle fiber to type I muscle fiber, rendering resistance 
to fatigue through oxidative metabolism (Lin, Wu, et al., 2002). On 
the other hand, it does not exhibit a protective effect in the HFD‐in‐
duced insulin‐resistant mouse model (Choi et al., 2008).

Alzheimer's disease (AD), Parkinson's disease (PD), and 
Huntington's disease are age‐dependent degenerative diseases 
of the central nervous system. PGC‐1α expression is decreased 
in patients with PD (Su et al., 2015; Zheng et al., 2010) and AD 
(Qin et al., 2009). PGC‐1α is decreased in various in vivo mod‐
els of neurodegenerative diseases, including Tg2576 mice (an 
experimental AD model, Qin et al., 2009) and mutant human α‐
synuclein transgenic mice (an experimental PD model, Su et al., 
2015). PGC‐1α‐knockout mice mirror some aspects of premature 
brain aging, including ultrastructural alterations in the ER and mi‐
tochondria (Ciron et al., 2015). PGC‐1α overexpression restores 
mitochondrial morphology, oxidative stress detoxification, and 
basal respiration, consistent with the observed neuroprotection 
against α‐synuclein toxicity (Ciron et al., 2015). The reconstitu‐
tion of exogenous PGC‐1α expression attenuates hyperglyce‐
mia‐induced amyloidogenic Aβ peptide accumulation (Qin et al., 
2009). These data suggest that PGC‐1α may be a therapeutic 
target against neurodegenerative diseases, including brain aging. 
Mechanistically, decreased PGC‐1α expression might promote 
Aβ amyloidogenesis through FoxO3α‐mediated responses in AD 
(Qin et al., 2009; Tsunemi & La Spada, 2012). Methylation lev‐
els are negatively correlated with PGC‐1α mRNA levels (Barres 
et al., 2009; Teyssier, Ma, Emter, Kralli, & Stallcup, 2005). A pre‐
vious analysis of human brain samples indicated that PD is as‐
sociated with increased methylation of the PGC‐1α promoter 
and the reduced expression of PGC‐1α. The unfolded protein 
response mediates the recruitment of DNA methyltransferases 
such as DNMT3A to the nucleus to catalyze the methylation of 
the PGC‐1α promoter (Su et al., 2015).

PGC‐1α may play a critical role in the regulation of peroxisomal 
biogenesis (Bagattin et al., 2010) through an unknown mechanism, 
as stated above. Peroxisomal biogenesis is involved in the aging pro‐
cess in yeast and C. elegans (Cipolla & Lodhi, 2017; Lefevre, Kumar, & 
van der Klei, 2015; Weir et al., 2017). However, further studies with 
mammalian models are warranted to investigate the interactions be‐
tween PGC‐1α and peroxisomal biogenesis in aging.

6.3 | PGC‐1α in kidney aging

PGC‐1α expression is also decreased in the kidneys of aged mice 
(Lim et al., 2012). Our results show that PGC‐1α expression is 
decreased in 29‐month‐old mice compared to 7‐month‐old mice 
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(Figure 3). The precise role of PGC‐1α against kidney aging is 
unclear.

Fenofibrate, a PPARα agonist, activates SIRT1 and AMPK, resulting 
in the increased expression of PGC‐1α and ERRα and the amelioration of 
mitochondrial dysfunction in aged kidneys. Fenofibrate improves kidney 
function, proteinuria, glomerulosclerosis, tubular interstitial fibrosis, in‐
flammation, and apoptosis in age‐related kidney injury (Kim et al., 2016).

Given that paired‐box gene 8 (PAX8) is localized in epithelial cells 
in all segments of kidney tubules in adult kidneys (Tong et al., 2009), 
nephron‐specific inducible PGC‐1α‐knockout (NiPKO) mice can be 
generated by crossing transgenic Pax8rtTA‐(tetO‐cre)‐LC1 mice 
with mice harboring floxed PGC‐1α alleles (PGC‐1α fl/fl). NiPKO mice 
exhibit a mild loss of sodium in urine, which is exacerbated in aged 
and HFD‐fed mice, suggesting the beneficial role of tubular PGC‐1α 
in sodium homeostasis under basal conditions, aging, and metabolic 
stress. In addition, NiPKO mice develop exacerbated kidney steato‐
sis on a HFD (Svensson, Schnyder, Cardel, & Handschin, 2016).

7  | EFFEC T OF ANTIAGING DRUGS ON 
PGC‐1α  AC TIVATION

ZLN005, a small molecule discovered by luciferase assays, upregu‐
lates PGC‐1α transcription (Zhang, Shao, et al., 2013; Zhang, Zhou, 
et al., 2013). ZLN005 increases the mRNA expression of PGC‐1α in 
skeletal muscle myotubes. ZLN005 regulates PGC‐1α transcription 
through muscle cell‐specific transcription factors such as MEF2 and 
improves insulin resistance and dyslipidemia in db/db diabetic mice 
(Zhang, Shao, et al., 2013; Zhang, Zhou, et al., 2013). Additionally, 
ZLN005 exhibits neuroprotective and retinoprotective effects 
in mice (Satish, Philipose, Rosales, & Saint‐Geniez, 2018; Xu et al., 
2018). However, the cardioprotective effect of ZLN005 is depend‐
ent on SIRT1 but not PGC‐1α activation (Li et al., 2016). Further re‐
search is needed to elucidate the pharmacologic target of ZLN005.

CR modulates metabolic pathways, leading to the activa‐
tion of PGC‐1α (Figure 2b), SIRT1, and AMPK and the inhibition 

of mammalian target of rapamycin (mTOR) (Martin‐Montalvo et 
al., 2013). Thus, agents that modulate not only PGC‐1α but also 
AMPK, SIRT1, and the mTOR pathway can be considered CR mi‐
metics (Handschin, 2016). In this respect, resveratrol (Baur et al., 
2006), SRT1720 (Minor et al., 2011), metformin (Martin‐Montalvo 
et al., 2013), rapamycin (Anisimov et al., 2010; Fischer et al., 2015; 
Harrison et al., 2009; Hurez et al., 2015; Miller et al., 2014; Ramos 
et al., 2012; Wu et al., 2013), the NAD precursor (Fang et al., 2016; 
Zhang et al., 2016), and d‐glucosamine (Weimer et al., 2014) have 
been suggested as CR mimetics that can extend the lifespan in mice, 
as summarized in Table 3.

7.1 | Resveratrol

Resveratrol is a naturally occurring polyphenol with anti‐inflam‐
matory, antioxidative, antidiabetic, and neuroprotective effects 
(Pezzuto, 2018). The resveratrol‐activated SIRT1 pathway is associ‐
ated with deacetylating activity, thereby resulting in alterations in 
various downstream regulators, such as PGC‐1α (Pannu & Bhatnagar, 
2019). Increased SIRT1 activity triggered by elevated NAD levels in‐
creases the transcriptional activity of PGC‐1α (Rodgers et al., 2005). 
However, resveratrol does not bind to the native peptide of SIRT1 
or full‐length protein substrates. Irrespective of the direct target 
of resveratrol, SIRT1 remains one of the most extensively studied 
targets associated with the antiaging effect of resveratrol (Pezzuto, 
2018).

7.2 | SRT1720

SRT1720, an analog of resveratrol, is an allosteric activator of SIRT1. 
SRT1720 has a low Km and is 1,000 times more potent than resvera‐
trol. SRT1720 promotes the deacetylation of hepatic PGC‐1α (Minor 
et al., 2011; Ungvari et al., 2009), exerts protective effects against 
UUO‐induced tubulointerstitial fibrosis (Ren et al., 2017), and blocks 
Klotho deficiency‐induced aging in arterial endothelial and smooth 
muscle cells (Gao et al., 2016).

Medication Lifespan PGC−1α activation Organs References

D‐Glucosamine Increased Not shown Liver Weimer et al. (2014)

Metformin Increased Increased (indirect) Liver Martin‐Montalvo et al. 
(2013)

NAD precursor Increased Increased Brain, 
muscle

Fang et al. (2016), 
Zhang et al. (2016)

Rapamycin Increased Not shown Heart, 
muscle, 
spleen

Anisimov et al. (2010), 
Fischer et al. (2015), 
Harrison et al. (2009), 
Hurez et al. (2015), 
Miller et al. (2014), 
Ramos et al. (2012), 
Wu et al. (2013)

Resveratrol Increased Increased Liver Baur et al. (2006)

SRT1720 Increased Increased Liver Minor et al. (2011)

TA B L E  3   Effects of antiaging drugs on 
PGC‐1α activation
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7.3 | Metformin

Metformin, an oral antidiabetic agent, can extend the lifespan in 
mice (Martin‐Montalvo et al., 2013). Hyperglycemia and hyperin‐
sulinemia promote senescence. The antiaging effect of metformin 
is due to reduced insulin levels and a subsequent reduction in IGF‐1 
signaling and glucose levels (Anisimov et al., 2011). Metformin can 
also inhibit mTOR signaling, reduce ROS, activate AMPK, and re‐
duce DNA damage (Barzilai, Crandall, Kritchevsky, & Espeland, 
2016). AMPK phosphorylates PGC‐1α, which controls glucose 
uptake, FAO, and mitochondrial biogenesis (Kim & Park, 2016). 
Metformin attenuates tubulointerstitial fibrosis and epithelial–
mesenchymal transition in kidney injury (Lee et al., 2018; Thakur 
et al., 2015).

7.4 | Rapamycin

Rapamycin, a macrolide immunosuppressant, acts primarily by inhib‐
iting mTOR. Rapamycin extends the lifespan in mice (Anisimov et al., 
2010; Fischer et al., 2015; Harrison et al., 2009; Hurez et al., 2015; 
Miller et al., 2014; Ramos et al., 2012; Wu et al., 2013). The suppres‐
sion of mTOR is one of the key outputs of AMPK. Rapamycin may 
therefore phenocopy some effects of AMPK. Rapamycin ameliorates 
kidney fibrosis by blocking mTOR signaling in interstitial macrophages 
and myofibroblasts (Chen et al., 2012). However, mTOR can activate 
yin‐yang 1, a transcription factor that increases PGC‐1α promoter ac‐
tivity (Cunningham et al., 2007; Wang, Huang, et al., 2017).

7.5 | Fenofibrate

Fenofibrate, a fibric acid derivative, is a drug of choice against hy‐
pertriglyceridemia and mixed dyslipidemia. It has lipid‐modifying 
effects through the activation of PPARα. Additionally, fenofibrate 
protects against age‐related changes in the kidney (Kim et al., 2016). 
PGC‐1α and PPARα may be involved in the kidney aging process 
(Chung et al., 2018).

7.6 | NAD precursor

NAD plays a central role in energy metabolism (Bai et al., 2011). It also 
appears to play a role in healthy aging (Gomes et al., 2013). NAD is 
an important cofactor involved in physiological processes, including 
metabolism and DNA repair. NAD levels are decreased with age. A de‐
terioration in NAD metabolism promotes several aging‐associated dis‐
eases (Yaku, Okabe, & Nakagawa, 2018; Yoshino, Baur, & Imai, 2018). 
High levels of NAD improve the lifespan in ataxia telangiectasia‐mu‐
tated (a master regulator of DNA damage)‐knockout mice (Fang et al., 
2016). The salvage pathway in which NAD is synthesized from NAM 
is important for producing and maintaining intracellular NAD levels in 
mammals. NAM is imported as a dietary nutrient from various foods. It 
is a by‐product of NAD‐consuming enzymes such as SIRT1, poly (ADP‐
ribose) polymerases, and NAD glycohydrolase (Revollo, Grimm, & Imai, 

2004). It is synthesized from nicotinamide riboside (NR) (Bieganowski 
& Brenner, 2004), which increases the lifespan of aged C57BL/6J mice 
(Zhang et al., 2016). The NAD/SIRT pathway controls mitochondrial 
function through the deacetylation of PGC‐1α and FOXO (Chalkiadaki 
& Guarente, 2012). However, the regulation of PGC‐1α‐dependent 
NAD biosynthesis should be considered (Tran et al., 2016). PGC‐1α 
coordinately upregulates enzymes that synthesize NAD de novo from 
amino acids, whereas a PGC‐1α deficiency attenuates the de novo 
pathway. How PGC‐1α interacts with transcription factor(s) to induce 
the de novo synthesis of NAD is unclear (Tran et al., 2016). Exogenous 
NAM improves kidney NAD levels, fat accumulation, and function in 
postischemic PGC‐1α‐knockout mice (Tran et al., 2016).

7.7 | Other candidates

2‐Deoxy‐d‐glucose inhibits glycolysis and reduces the ingestion, 
uptake, and metabolism of lipids and carbohydrates, resembling CR 
(Ingram & Roth, 2015). 2‐Deoxy‐d‐glucose extends the lifespan of 
C. elegans (Schulz et al., 2007). However, it has toxic effects on car‐
diac tissue (Minor et al., 2010). d‐glucosamine, an inhibitor of glycol‐
ysis, can also extend the lifespan of mice by enhancing mitochondrial 
biogenesis (Weimer et al., 2014).

8  | LIMITATIONS OF PGC‐1α 
OVERE XPRESSION

PGC‐1α is strongly induced in the livers of fasting mice and mice with 
insulin action deficiency, such as streptozotocin‐induced diabetes, ob/
ob, and liver IR‐knockout mice. The overexpression of PGC‐1α in both 
in vitro hepatocyte cultures and in vivo Wistar rats strongly enhances 
gluconeogenic enzymes, including phosphoenolpyruvate carboxykin‐
ase (PEPCK) and glucose‐6‐phosphatase, leading to increased glucose 
levels (Yoon et al., 2001). As summarized in Section 6.2, heart‐ and 
muscle‐specific PGC‐1α overexpression can result in dilated myopa‐
thy (Lehman et al., 2000) and the lack of a protective effect in HFD‐
induced insulin resistance (Choi et al., 2008), respectively. However, 
utilizing the proper endogenous protective molecules summarized in 
Table 1 may overcome the limitations of PGC‐1α overexpression.

9  | PROSPEC TS AND FUTURE DIREC TIONS

We summarized recent studies providing evidence for PGC‐1α as a 
potential therapeutic target against not only AKI and CKD but also 
kidney aging. A decrease in PGC‐1α expression is observed in ani‐
mal models of kidney diseases as well as samples from humans with 
kidney diseases. Accompanying metabolic dysregulation has been 
commonly observed in aged and diseased kidneys. Conversely, the 
overexpression of PGC‐1α by genetic and pharmacological interven‐
tions can attenuate the progression of kidney disease. The correla‐
tion between the PGC‐1α level and the diseased state of the kidney 
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could extend to aging since kidney aging and kidney diseases share 
certain key pathologic features, such as mitochondrial and peroxiso‐
mal dysfunction and dysregulated energy metabolism.

However, there are few studies on the role of PGC‐1α in kidney 
aging compared to those on the role of PGC‐1α in other organs, such 
as the heart, skeletal muscle, and brain. Further studies are thus 
needed to determine whether PGC‐1α could be a novel therapeutic 
target against kidney aging. Studies on substances that could modu‐
late the activity and expression of PGC‐1α should also be performed 
for experimental and clinical applications as a therapeutic strategy.

10  | CONCLUSION

Mitochondria and peroxisome dysfunction play important roles in 
CKD and share many phenotypic similarities with aging. PGC‐1α is 
necessary for recovery from kidney injuries and resistance against 
deleterious metabolic changes. Therefore, PGC‐1α might be a poten‐
tial target against kidney aging. It may promote healthy aging of the 
kidney. This review also warrants further studies on direct PGC‐1α 
activators to identify potential therapeutic strategies against kidney 
aging. It should be noted that both the systemic elevation and hyper‐
physiological activation of PGC‐1α might be associated with adverse 
effects in the liver, heart, and muscle. Thus, therapeutic avenues tar‐
geting PGC‐1α should be specific and tightly controlled.
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