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Abstract: Corrosion is a challenging problem for marine concrete infrastructure projects. In this
study, an intelligent OH−-regulated microcapsule is designed to prevent reinforcement corrosion,
taking ethylcellulose (EC) as shell material and calcium oxide (CaO) as core material. X-ray computed
tomography (XCT) is used to trace and contrast the corrosion profiles of the concrete reinforcement
bar with and without the microcapsule. The results show that the OH−-regulated microcapsule
exhibits effective corrosion protection by delaying corrosion initiation and cracking. An SEM study
revealed that the microcapsule could be broken as Cl− invades the concrete. However, intelligent
OH− regulation was realized by releasing CaO.
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1. Introduction

Reinforced concrete has been widely applied in civil engineering projects due to its complementary
advantages [1]. However, reinforcement corrosion has become a major threat to the durability
of reinforced concrete, particularly marine splash zones, where it is subjected to cyclic wetting and
drying with chloride permeation [1,2]. Normally, in the highly alkaline environment of the concrete,
the reinforcement bar is protected from corrosion by a thermodynamically stable film. Nevertheless,
a high corrosion risk may occur when the alkalinity is locally compromised, such as when chloride
permeation or carbonation occurs [3,4]. Such processes will shorten the service life of concrete
infrastructure, arousing the attention of researchers in construction engineering [1,5–7].

Traditionally, corrosion inhibitors, such as nitrites or sodium monofluorophosphate, have been
frequently used to improve resistance to chloride invasion [8–11]. The addition of inhibitors to the
concrete could strengthen the passive film on the reinforcing bar, and reduce oxygen and chloride
invasion on the surface due to the oxidization of nitrite ions [8,9] or the precipitation of ferric
phosphate (FePO4) [8,11]. This would delay the corrosion process. However, some drawbacks exist
due to difficulties in the direct incorporation of these corrosion inhibitors. These inhibitors can be less
durable due to the diffused outflow of nitrite ions [12], or they can participate in reactions during the
hydration process of the cement, which could adversely impact the microstructure of the hydration
products [13,14]. To address this problem, Dong proposed and designed a protective barrier for
corrosion inhibitors using an enmicrocapsulation technique that avoids unexpected depletion and
reaction during early hydration [15,16].

Additionally, numerous researchers have pointed out that the initiation of corrosion in reinforced
concrete is primarily affected by the threshold value of the Cl−/OH− ratio [17–26], indicating that
corrosion initiation could be repressed by increasing the OH− concentration in concrete materials.
The fundamental theories regarding this hypothesis consist of the following: firstly, a dynamic
equilibrium exists between the breakdown of the passive film due to chloride ingression and the
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maintenance of the passive status of the reinforcing bar because of the high content level of OH−.
In addition, the breakdown of the passive film initiates when an increased amount of Cl− reaches and
simultaneously leaches OH− from the surface of the reinforcing bar [17]. Secondly, C3A is considered
one of the main ingredients affecting the chloride binding capacity of cement, but a decrease in the
alkaline content would compromise the chloride binding capacity of C3A, causing an increase in free
chlorides [18,23]. And thirdly, chloride-induced corrosion is an electrochemical process (the breakdown
of passive film is regarded as the active zone, while the surrounding passive film is considered the
cathodic zone), and the increase in OH− content could inhibit the cathodic reaction, thereby decreasing
the corrosion rate [8,11,13,14]. From this aspect, OH− can be regarded as a corrosion inhibitor [8,11].
Whereas, OH− could not be supplied without limit because of the decrease in OH− content and
calcium leaching under wet-dry cycles in the splash zone [27], though calcium hydroxide is a hydration
product of cement that acts as a pH buffer. Furthermore, the hydrolysis of free ferrous ions causes
local acidity in the active zone, aggravating the decrease of the OH− content in the concrete due
to acid–base neutralization.

Although numerous papers have mentioned corrosion inhibition due to high alkalinity [8,11,13,14],
fewer investigations have discussed the supplementation of OH− as a corrosion inhibitor in concrete.

In this study, a new style of OH− regulation, in combination with enmicrocapsulation, is proposed
to achieve high-efficient corrosion protection for the reinforcement bar in concrete. The functional
schematic is presented in Figure 1b. For comparison, chloride-induced corrosion in a non-functionalized
matrix is also illustrated in Figure 1a. For this kind of microcapsule, a pH-sensitive ethylcellulose (EC)
was selected for the shell material, which will keep stable at high pH levels, but break down with
a decrease in the pH value [28,29]. Calcium oxide (CaO) was used as the core material, which will be
released when the shell material breaks down. Hydroxyl ions will be generated due to the following
chemical reaction, see Equation (1):

CaO + H2O→Ca2+ + 2OH− (1)

The EC/CaO microcapsule satisfies the requirements of chloride-induced corrosion in concrete
materials and is able to regulate OH− in concrete materials. In order to simulate coastal conditions,
in particular the splash zone, cyclic wet-dry tests were performed. Previous researchers have verified
that EC-film microcapsules encapsulating traditional corrosion inhibitors could be triggered and release
core agents under the wet-day cycles [15,16]. In addition, X-ray computed tomography (XCT) was
used to periodically trace the samples and contrast the corrosion profiles of the concrete reinforcement
bar with and without microcapsules. The efficiency of corrosion protection was then quantitatively
analyzed [30].
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Figure 1. The schematic of OH−-regulated intelligent microcapsules for the corrosion protection of the 
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The core and shell materials of the EC/CaO microcapsule are shown in Tables 1 and 2, 
respectively. The microcapsules were primarily manufactured using the cold extrusion-
spheronization and spray-drying film-forming technique. 

CaO, microcrystalline cellulose (MCC), hydroxypropyl methylcellulose (HPMC), and 
polysorbate 80 were prepared to be used as the core materials with a ratio of 57:39:2:2. The materials 
were dissolved in 60% (w/v) ethanol at a ratio of 2:3. After uniform mixing, the core material was 
then formed into the core particles using the cold extrusion-spheronization method with high-speed 
centrifugation. Microcrystalline cellulose was used as the framework for the microcapsule core, while 
hydroxypropyl methylcellulose and polysorbate 80 were used as binders. 

Ethanol and methylbenzene were mixed at a ratio of 1:4 to be used as the EC solution [31]. The 
solvent of the shell materials was evaporated during the spray-drying process so that the EC 
remained on the particle surface of the microcapsule cores, thus forming the microcapsule shells. Bits 
of talcum powder were incorporated to prevent adhesion between the microcapsules. The EC/CaO 
microcapsules were successfully fabricated after natural drying. 

A laser particle size analyzer (BaiTe Instruments, BT-9300ST, Liaoning, China) was used to 
investigate the size distribution of the EC/CaO microcapsules. The morphology of the microcapsules 
was observed using an optical microscope (CAIKON, XTL-3000C, Shanghai, China) after mixing with 
mortar. 

Figure 1. The schematic of OH−-regulated intelligent microcapsules for the corrosion protection of the
reinforcing bar in reinforced concrete: (a) without microcapsules and (b) with microcapsules.

2. Materials and Methods

2.1. Microcapsule Fabrication

The core and shell materials of the EC/CaO microcapsule are shown in Tables 1 and 2, respectively.
The microcapsules were primarily manufactured using the cold extrusion-spheronization and
spray-drying film-forming technique.

CaO, microcrystalline cellulose (MCC), hydroxypropyl methylcellulose (HPMC), and polysorbate
80 were prepared to be used as the core materials with a ratio of 57:39:2:2. The materials were dissolved
in 60% (w/v) ethanol at a ratio of 2:3. After uniform mixing, the core material was then formed into
the core particles using the cold extrusion-spheronization method with high-speed centrifugation.
Microcrystalline cellulose was used as the framework for the microcapsule core, while hydroxypropyl
methylcellulose and polysorbate 80 were used as binders.

Ethanol and methylbenzene were mixed at a ratio of 1:4 to be used as the EC solution [31].
The solvent of the shell materials was evaporated during the spray-drying process so that the EC
remained on the particle surface of the microcapsule cores, thus forming the microcapsule shells. Bits
of talcum powder were incorporated to prevent adhesion between the microcapsules. The EC/CaO
microcapsules were successfully fabricated after natural drying.

A laser particle size analyzer (BaiTe Instruments, BT-9300ST, Liaoning, China) was used
to investigate the size distribution of the EC/CaO microcapsules. The morphology of the microcapsules
was observed using an optical microscope (CAIKON, XTL-3000C, Shanghai, China) after mixing
with mortar.
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Table 1. Raw materials and ratios used for microcapsule fabrication.

Content Ingredients Mass (g) Product

Core Calcium hydroxide 57 Analytical reagent
MCC 39 Chemically pure

HPMC 2 Chemically pure
Polysorbate 80 2 Chemically pure

Solvent Deionized water 150

Table 2. Preparatory materials for the capsule shell.

Content Ingredients Mass ratio Product

Shell Ethylcellulose 10 Chemically pure
Solvent Methylbenzene 80 Analytical reagent

Ethanol 20 Analytical reagent

2.2. Specimen Preparation

Two types of samples were prepared for testing, one control sample without microcapsules (Sample A)
and three testing samples with different percentages of CaO/EC microcapsules (0.5 wt%, 3 wt%, and 5 wt%
of the cement corresponding with Samples B, C, and D, respectively), considering not only effects
of the microparticles on the porosity, as well as mechanical properties of samples, but also the possible
anti-corrosion efficiency of the samples [32]. Additionally, the water/cement/sand (W/C/S) ratio in all the
samples was 2:5:5, as listed in Table 3. Figure 2a shows the size of a sample, which was 10 mm × 10 mm ×
10 mm. A 2.5 mm diameter reinforcing bar was embedded 8 mm deep in the sample. Figure 2b shows the
analysis zone of each reinforcing bar used for the investigations. In this study, a Q235 reinforcing bar was
used that follows the Chinese standard GB/T3274-2007, with the elemental compositions listed in Table 4.
The chemical composition of the cement is given in Table 5. After 24 h curing in a curing chamber (95 ± 5%
RH, 20 ± 2 ◦C), these samples were de-molded, sealed with a hose and AB glue (A: acrylate monomers;
B: curing agents), and then cured for 28 days under the same conditions.
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Figure 2. Basic information of the sample: (a) photograph of the sealed sample and the profile schematic
and (b) the selected analysis zone for further X-ray computed tomography (XCT) analysis.

Table 3. Microcapsule content in different samples.

Sample Microcapsule Dosage (wt.%) W/C/S

A – 0 2:5:5
B CaO 0.5 2:5:5
C CaO 3 2:5:5
D CaO 5 2:5:5

Table 4. Elemental composition of the Q235 reinforcement.

Fe C Mn Si P S Cr

Content (wt%) 97.64 0.195 1.56 0.57 0.023 0.004 0.008
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Table 5. Mineral composition (wt%) of the cement.

SiO2 Al2O3 Fe2O3 CaO MgO C3S C2S C3A C4AF

18.96 6.05 3.42 63.22 1.21 65.35 5.06 10.23 10.40

2.3. Accelerated Corrosion

A wet-dry cyclic test was performed to accelerate corrosion of the samples. The samples were
immersed in a 3.5 wt% NaCl solution for three hours, and then placed in an electric oven with a relative
humidity of 50% at 50 ◦C and dried for another three hours. An accelerated corrosion test with 3 h wet
and 3 h dry cycles was repeated, and an entire wet-dry cycle contained 12 total wet-dry cycles (72 h).

2.4. XCT Testing

The XCT technique was used to periodically trace the accelerated corrosion process. The initial
state of the samples was monitored using XCT measurements before the first wet-dry cyclic test.
After each 72 h wet-dry cycle, XCT testing was carried out. The experiment (wet-dry cyclic acceleration
and the XCT method) was repeated until external cracks appeared.

The internal instruments of the XCT (Micro XCT-400; XRadia Inc, CA, USA) primarily consist
of a microfocus X-ray emitter, a 360-degree imaging rotation stage, and an image intensifier
detector with a charge-coupled device (CCD) camera, and these comprise an image processing
unit. XCT measurement is illustrated in Figure 3, and the relative principles of XCT measurements
have been illustrated in previous reports [30,33–35]. The X-ray attenuation power in each voxel is
expressed as the gray value in the XCT image, which represents the X-ray photon absorption degree
of the material. Basic information regarding XCT measurements is listed in Table 6.
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Table 6. Basic information of the XCT measurements.

Parameter Value

X-ray source excitation voltage 70 kV
X-ray source excitation current 114 µA

Magnification 0.39×
Slice pixel number 1024 × 1024

Slice number 1000
Voxel size 15.0173 × 15.0173 × 15.0173 µm3

2.5. Linear Polarization Testing

After the initial 3 h wetting of each 72 h wet-dry cycles, the linear polarizations of three parallel
samples without and with the microcapules were tested at a steady open circuit potential (OCP) by
using an electrochemical workstation (AMETEK, Parstat, MC, USA). Polarization measurements tests
were executed to investigate the anti-corrosion properties in the potential range of ±20 mV versus OCP
with a 0.1666-mV·s−1 potential scanning rate. The polarization data in the potential range of ±10 mV
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versus OCP was fitted by using Cview software, and linear polarization resistance (Rp) was then obtained.
In addition, the corrosion current density (icorr) could be gained through the following Equation (2):

icorr = B/Rp (2)

where B is a constant 26 mV for the bare steel in active condition and 52 mV for bare steel in the passive
state [36]. It should be noted that polarization measurements would stop after the cracking of all the
control samples occurred and the cracks expanded outside.

2.6. ESEM Testing of the Microcapsules and the Corroded Samples

An environmental scanning electron microscopy (ESEM; Quanta FEG 250, FEI, Hillsboro, OR,
USA) system was used to observe the morphology of the EC/CaO microcapsules before and after
hydration. An equipped texture element analysis microscopy (TEAM) apparatus (EDAX, Mahwah, NJ,
USA) was used to characterize the chemical composition of the sample. After the final XCT testing
was completed, the samples were sliced and examined using ESEM and TEAM.

3. Results

3.1. Basic Investigation of the Microcapsules

The morphology of a CaO/EC microcapsule is presented in Figure 4a. The microcapsules had
a rough surface that enhanced the bond between the microcapsule and mortar. Figure 4b shows that
the sizes of the microcapsules primarily were in the range of 400–600 µm, with a mean diameter of
407 µm [37]. Figure 5a shows that the microcapsules retained their spherical shape after they were
mixed with the mortar. The microcapsules maintained an intact morphology and a desirable bonding
ability with the mortar matrix. Figure 5b shows that two microcapsules adhered to the mortar where
they maintained their spherical shape after 28 days of hydrating and hardening of the mortar.
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Figure 4. Basic investigations of the CaO/ethylcellulose (EC) microcapsules: (a) morphology of the
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microcapsule obtained from environmental scanning electron microscopy (ESEM) measurements and
(b) particle size distribution of the microcapsules.
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Figure 5. Morphology of the CaO/EC microcapsules: (a) optical microscope observation after mixing
with the mortar and (b) fracture surface of the mortar matrix found using the ESEM measurements
after cement hydration and hardening for 28 days.

3.2. Evaluation of the Efficiency of the Intelligent OH−-Regulated Microcapsules

The corrosion morphology of the sample obtained using the XCT measurement is shown in Figure 6.
The original slice, shown in Figure 6a, was processed with image segmentation to distinguish different
materials, including the reinforcing bar, corrosion products, the cement matrix, and cracks (Figure 6b).
Thus, two-dimensional (2D) and three-dimensional (3D) information (the corrosion morphology of the
reinforcing bar, development of corrosion products, and information on cracks) in the different samples
could be vividly characterized.
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Figure 6. Images obtained from the XCT measurements and material characterization: (a) original slice
and (b) reconstructed morphology to distinguish different substances (mortar, reinforcing bar with and
without corrosion products).

Based on the XCT images, the corrosion process is visualized in Figure 7. The 2D morphological
changes of the maximum corroded section in the control sample (Sample A) are exhibited in Figure 7a.
Therefore, the corrosion initiation and cracking time can be determined. Prior to the first wet-dry cycle
test (the initial state), the overall surface of the reinforcing bar was smooth and without rust. After 72 h
of the wet-dry cycles, corrosion initiated on the surface of the reinforcing bar, and corrosion products
appeared around the bar. After 288 h of continuous cycles of the wet-dry test, the expansive stress
finally resulted in the cracking of the mortar matrix due to the accumulation of the corrosion product.
A small amount of the corrosion products penetrated into the cracks (crack a1) in the mortar matrix.
After 648 h of accelerated corrosion, as the cracks (cracks a1 and a2) developed, the corrosion process
accelerated. The corrosion process is depicted in Figure 7b in corresponding 3D images.
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Figure 7. XCT results of different samples: (a) 2D images of the maximum corroded section and (b) 3D
pattern of the corresponding reinforcing bars (the red dash line represents the corresponding maximum
corroded section in Figure 7a).

In the samples with the microcapsule (Samples B and C), the corrosion initiation time was delayed
to 144 h (Figure 7a), which is 72 h later than that of the control sample. After 1,008 h wet-dry cycles,
the corrosion process of Samples B and C developed much more slowly than that of Sample A, and no
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obvious cracks were observed in the 2D images of Samples B and C. The corresponding 3D corrosion
morphology of the reinforcing bar is also exhibited in Figure 7b.

To further access the protection efficacy of the intelligent OH−-regulated microcapsule, the XCT
images were quantitatively analyzed using a method that has been verified using the gravimetric
method derived in previous research [29,33]. The area of the reinforcing bar in different slices is
represented as Equation (3):

Ai = nA × ZA (3)

where Ai is the area of the reinforcing bar in different slices (i represents the different XCT testing times,
i = 0 h, 72 h, 144 h, and so on), nA is the number of the pixels of the reinforcing bar in each slice, and ZA

represents the real area of one voxel (15.0173 × 15.0173 µm2).
The changes in the cross-sectional area, Ai, of the reinforcing bar along the height of the steel bar

at different testing times are shown in Figure 8.
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The area loss of the corroded reinforcing bar can be calculated as Equation (4):

∆A = A0 − Ai (4)

where ∆A is the area loss of the corroded reinforcing bar in each slice, A0 is the area of the reinforcing
bar in each slice at 0 h (the cross-sectional area of the reinforcing bar at 0 h in Figure 8), and Ai is the
area of the reinforcing bar of each slice at different XCT testing times during the acceleration test.

The area loss of the reinforcing bar for each section was calculated through Equations (3) and (4).
The maximum corroded cross-section for each sample was then obtained, and these are shown in Figure 9.
With the progress of wet-dry cycles, these curves fluctuated in the height direction. This means that
some pitting corrosion occurred and expanded during the corrosion process. The maximum area
loss of the reinforcing bar for Sample A was approximately 0.7 mm2 at 648 h, as shown in Figure 8A.
In a range of heights from 2500–4000 µm, dramatic loss occurred in the cross-sectional area due
to corrosion. In Samples B and C at 1008 h, the cross-sectional area loss of the maximum corroded
section was only 0.20 mm2 and 0.25 mm2, respectively (Figure 8B,C). During the entire experiment,
in the control sample, the corrosion developed more locally. While in the samples with microcapsules,
the corrosion occurred relatively uniformly along the height of the reinforcing bars. These results were
in agreement with the 3D visualized results in Figure 7.
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The total areas of the reinforcing bar were then multiplied by the voxel height (15.0173 µm)
to obtain the volume of the reinforcing bar, Vi. The volumetric loss of the corroded reinforcing bar, ∆V,
was obtained using the following Equation (5):

∆V = V0 − Vi (5)

where V0 is the volume of the reinforcing bar at 0 h and Vi is the volume of the reinforcing bar at
different times during the acceleration test.

The obtained volume and volumetric loss of the reinforcing bar for the samples are listed in Table 7.
The time-dependent volumetric loss of the corroded reinforcing bar is plotted in Figure 10, which
shows that the corrosion process in the samples with microcapsules developed much slower than that
in the control sample. These results correspond with the results shown in Figures 7 and 8. In Samples
B and C, no crack was observed during the entire 1008 h of the accelerated corrosion experiment, while
Sample A reached the same volumetric loss at 288 h and cracks were obvious (Figure 10b).

Table 7. Volume and volumetric loss of the reinforcing bar with different wet-dry cyclic times for the
four samples.

Time
i (h)

Sample A Sample B Sample C Sample D
Vi/mm3 ∆V/mm3 Vi/mm3 ∆V/mm3 Vi/mm3 ∆V/mm3 Vi/mm3 ∆V/mm3

0 26.163 0.000 27.129 0.000 27.186 0.000 26.765 0.000
72 26.085 0.078 27.113 0.016 27.184 0.003 26.728 0.037
144 25.947 0.216 27.099 0.030 27.161 0.025 26.667 0.098
216 25.735 0.428 27.086 0.043 27.138 0.048 26.513 0.233
288 25.537 0.626 27.060 0.069 27.101 0.085 26.452 0.293
360 25.377 0.786 27.029 0.099 27.055 0.131 26.443 0.312
432 25.099 1.064 26.962 0.167 27.019 0.168 26.428 0.337
504 24.972 1.191 26.913 0.216 26.976 0.210 26.399 0.367
576 24.431 1.731 26.876 0.253 26.934 0.252 26.275 0.490
648 23.972 2.191 26.814 0.315 26.880 0.306 26.193 0.573
720 26.762 0.366 26.825 0.362 26.047 0.718
792 26.694 0.435 26.743 0.443 25.816 0.949
864 26.628 0.501 26.626 0.560 25.552 1.213
932 26.544 0.585 26.471 0.715 25.185 1.581

1008 26.454 0.675 26.364 0.823 24.598 2.167
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Figure 10. A quantitative analysis of the time-dependent corrosion of the four samples: (a) volumetric
loss of the reinforcing bar with different wet-dry cyclic times and (b) maximum corroded section
of different samples corresponding to the points in Figure 10a (with a similar volumetric loss around
0.626 mm3).

Additionally, Figure 11 presents the Rp and icorr of different kinds of samples through the wet-dry
cycles. From the linear polarization results, all samples with OH−-regulated microcapsules showed
higher linear polarization resistance (Rp) than that of the control samples. The Rp of samples fluctuated
during a specific period, mainly due to the OH− regulation, which contributed to a decrease in the
[Cl−]/[OH−] value and then alleviated the corrosion development. In contrast, without the help
of OH−-regulated microcapsules, corrosion initiation and propagation of the control samples occurred
more easily. The adverse trend of icorr was shown in Figure 11b. These electrochemical results were
basically in accordance with the results from the XCT measurements.
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Figure 11. (a) Linear polarization resistance (Rp) and (b) corrosion current density (icorr) of the four
kinds of samples over wet-dry cyclic times.

4. Discussion

During cement hydration, the pore solution was highly alkalized (pH > 12.5) and was principally
comprised of sodium and potassium hydroxides [1,3]. It has been shown that the EC shell can resist high
pH. Thus, the CaO/EC microcapsules are very stable in a highly alkaline environment [28,29], and they
maintain their spherical shapes during mixing and hydration of the mortar (Figure 5). The SEM
image shows that, after the wet-dry cycles, EC shells are damaged (Figure 12a,b), and Cl− penetrated
through the mortar matrix, as Cl element was found in the energy-dispersive X-ray spectroscopy (EDS)
results (Figure 12c,d). Thus, CaO was released and reacted with water. The reaction product, calcium
hydroxide (Ca(OH)2), provided hydroxide ions and directly regulated OH− in the pore solution.
The XCT image in Figure 12e shows less corrosion in zone 1, where a microcapsule is found on
the upper left of the bar surface. In contrast, the region of zone 2 shows significant rusting on the
bottom-right of the bar surface, where there is an absence of microcapsules.

Figure 7b,c show the corrosion process in the samples with the microcapsules. These samples
had a lower volumetric loss throughout the experimental process compared to the control sample
(Figure 10). The corrosion in the control sample developed more locally. In the samples with
microcapsules, the corrosion was distributed in a relatively uniform manner on the reinforcing bars
(Figures 7 and 8). Thus, corrosion caused stress concentrations that led to cracks in the mortar matrix
in the control sample. At the end of the experiment, after 1008 h of wet-dry cycles, Samples B and C
had 0.675 mm3 and 0.823 mm3 of steel volumetric loss, respectively, but still no cracks could be found
on them, while Sample A cracked with a volumetric loss of only 0.626 mm3 (Figure 10 and Table 6).
These results suggest that the intelligent OH−-regulated microcapsule provided excellent protection
against reinforcement corrosion.

When more CaO/EC microcapsules were added, better corrosion protection performance was
theoretically expected, since more CaO/EC microcapsules contribute to [OH−] regulation. Similar results
were reported for the simulated concrete pore solution [29]. However, the control sample (Sample A)
showed obviously severe localized corrosion, while sample with 0.5% microcapsules (Sample B)
showed a relatively uniform corrosion in the height direction. The loss development and the evident
fluctuations of the sample with 3% microcapsules (Sample C) presented more pits, but had relatively
less area loss of the steel bar, like a transition from uniform corrosion to nonuniform corrosion,
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indicating that adding more OH−-regulated microcapsules in the cementitious materials would be
counterproductive. At the same time, Sample D had a higher volumetric loss compared to Samples B
and C and the Rp results in Figure 11 showed a similar trend. It seems that a saturation of the inhibitive
efficiency occurred with the incorporation of more CaO/EC microcapsules. More microcapsules could
provide more adequate regulation of OH− but also increase ionically-conducting paths up to a certain
concentration. The growth trend in volumetric loss for Sample D after cracking is basically the same as
that of control sample (Sample A), indicating that an outflow of OH− may cause an inconspicuous
effect on anti-corrosion of the reinforcing bar.

Materials 2018, 11, x FOR PEER REVIEW  13 of 16 

 

would be counterproductive. At the same time, Sample D had a higher volumetric loss compared to 
Samples B and C and the Rp results in Figure 11 showed a similar trend. It seems that a saturation of 
the inhibitive efficiency occurred with the incorporation of more CaO/EC microcapsules. More 
microcapsules could provide more adequate regulation of OH− but also increase ionically-conducting 
paths up to a certain concentration. The growth trend in volumetric loss for Sample D after cracking 
is basically the same as that of control sample (Sample A), indicating that an outflow of OH− may 
cause an inconspicuous effect on anti-corrosion of the reinforcing bar. 

Figure 12. ESEM results with energy-dispersive X-ray spectroscopy (EDS) analysis after the entire 
accelerated corrosion procedure: (a) ESEM images of the cross-section of Sample D; (b) enlarged 
region of Figure 12a; (c and d) EDS analysis of the surface obtained using texture element analysis 
microscopy (TEAM) with spots 1, 2, 3, and 4 corresponding to the region of the capsule shell, OH−-
regulated core, corrosion products, and reinforcing bar, respectively; and (e) the corresponding XCT 
scanning images. 

  
(a) (b) 

  
(c) (d) 

 
(e) 

0 2 4 6 8

0

400

800

1200

Au Mα

Au Mα

 Spot 2

C
ou

nt
s

Energy (KeV)

0

200

400
600

800

1000

Fe kβ

Fe kα

Fe kβ

Fe kα

Si

Cl kβ

Cl kβ

Cl kα

Si Ca kα

C

Ca kβ

Ca kα
Ca kβ

Cl kα

Fe Lα

Fe Lα

O

O

 Spot 1

C
ou

nt
s

C

0 2 4 6 8

0
500

1000
1500
2000
2500
3000

Fe LαC

O

Ca kβ
Ca kα

Cl
Au Mα Fe kβ

Fe kα

Fe kβ

Fe kα

Au MαC

 Spot 4

Co
un

ts

Energy (KeV)

Fe Lα

0

500

1000

1500  Spot 3

Co
un

ts

Figure 12. ESEM results with energy-dispersive X-ray spectroscopy (EDS) analysis after the entire
accelerated corrosion procedure: (a) ESEM images of the cross-section of Sample D; (b) enlarged region
of Figure 12a; (c,d) EDS analysis of the surface obtained using texture element analysis microscopy
(TEAM) with spots 1, 2, 3, and 4 corresponding to the region of the capsule shell, OH−-regulated core,
corrosion products, and reinforcing bar, respectively; and (e) the corresponding XCT scanning images.
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5. Conclusions

From the above analysis and discussion, the following conclusions can be made:

1. Intelligent OH− regulation as a corrosion inhibitor or pH buffer in combination with pH-sensitive
microcapsules was successfully designed to achieve and prevent chloride-induced corrosion
in concrete reinforcing bars.

2. The X-ray computed tomography (XCT) method was used to trace and contrast the corrosion
profiles of the concrete reinforcement bars with and without the microcapsules. The efficiency
of the microcapsules was verified by XCT testing, which allowed visualization of the corrosion
process (corrosion product, pitting, and cracking) and provided quantitative information.

3. The microcapsules showed highly effective corrosion protection due to intelligent OH− regulation
in the concrete material, which delayed corrosion initiation and cracking of the cover concrete.

4. An excessive addition of microcapsules may compromise the inhibitive efficiency of OH− regulation.
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