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Abstract

While many languages are in danger of extinction worldwide, multilingualism is being

adopted for communication among different language groups, and is playing a unique role

in preserving language and cultural diversities. How multilingualism is developed and main-

tained therefore becomes an important interdisciplinary research subject for understanding

complex social changes of modern-day societies. In this paper, a mixed population of multi-

lingual speakers and bilingual speakers in particular is considered, with multilingual defined

broadly as zero, limited, or full uses of multiple languages or dialects, and an evolutionary

dynamic model for its development and evolution is proposed. The model consists of two

different parts, formulated as two different evolutionary games, respectively. The first part

accounts for the selection of languages based on the competition for population and social

or economic preferences. The second part relates to circumstances when the selection of

languages is altered, for better or worse, by forces other than competition such as public pol-

icies, education, or family influences. By combining competition with intervention, the paper

shows how multilingualism may evolve under these two different sources of influences. It

shows in particular that by choosing appropriate interventional strategies, the stable co-exis-

tence of languages, especially in multilingual forms, is possible, and extinction can be pre-

vented. This is in contrast with major predictions from previous studies that the co-existence

of languages is unstable in general, and one language will eventually dominate while all oth-

ers will become extinct.

Introduction

As the world becomes increasingly globalized, more people become multilingual across the

continents. It is reported that now more than half of the world’s population speak at least two

languages [1]. While many languages are in danger of extinction, multilingualism is being

adopted as a common way of communication among different language groups, and is playing

a unique role in preserving language and cultural diversities [2]. Therefore, how multilingual-

ism is developed and maintained becomes an important research subject in linguistics, social

studies, and beyond [3]. The promotion and protection of multilingualism has also been a hot

topic long discussed in public [4].
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Languages compete and spread among their speakers, as genes are inherited and passed

down to biological populations, where some are selected while others become extinct [5].

Genes may be carried over in mixed forms. So are languages by multilingual speakers. Genes

flow in and out of a population and are subject to constant mutations among their variants.

Speakers also migrate and can as well be converted from speaking one language to another. In

this paper, a mixed population of multilingual speakers and bilingual speakers in particular is

considered, with multilingual defined broadly as zero, limited, or full uses of multiple lan-

guages or dialects, and an evolutionary dynamic model for its evolution is proposed, similar to

that for genetic evolution [6].

Unlike genetic evolution though, the uses of languages are not only dependent of competi-

tion, but also subject to various societal interventions, common in social or cultural evolution.

The proposed model consists of two different parts accordingly, formulated as two different

evolutionary games, respectively. The first part accounts for the selection of languages based

on the competition for population and social or economic preferences. It assumes that the

speakers are able to adjust their ways of using single or multiple languages, although in reality,

it may take time and extra learning efforts. The second part relates to circumstances when the

selection of languages is altered, for better or worse, by forces other than competition such as

public policies, education, or family influences. Under these circumstances, the number of

speakers of one language may be increased or decreased due to the impact of certain public

policies or the migration of the speakers in or out of the population, etc.

Here are a few examples where both language competition and societal intervention may

play a role for the development and maintaining of multilingualism: In twenty-five European

countries surveyed, 56 percent of the population speak at least two languages, and 28 percent

speak at least three languages [1]. In the United States, over 20 percent of the US population

are bilingual [7], and as high as 70 percent of immigrant families speak a language other than

English at home [8, 9]. In China, almost all different provinces have their own local Chinese

dialects, yet by 2015, over 73 percent of the population have learned Mandarin Chinese, a once

northern Chinese dialect later promoted as the official Chinese by the government [10]. How-

ever, Cantonese is better preserved in Canton than all other Chinese dialects, as the locals have

kept many newspapers, radio broadcastings, movies and TV series in Cantonese [11]. Hebrew,

an extinct ancient language, revived in 19th century and later became one of the official lan-

guages of Israel, with 9 million speakers worldwide today [12].

Much work has been done on modeling language competition, although not specifically for

the evolution of multilingualism. A well known model was proposed by Abrams and Strogatz

in 2003 for the study of language death [13]. The model was later extended to more general

and complex cases by several other groups [14–17]. The models along this line focus mainly

on language competition for population and social or economic preferences. In general, the

models predict that one language will eventually dominate the population while all others

become extinct, and the co-existence of languages is unstable and hard to sustain [13, 16, 17].

While successfully applied to some language populations, these models have not explicitly dis-

tinguished language competition from possible societal interventions that may reverse the

course of language changes. By combining language competition with possible societal inter-

ventions, this paper shows how multilingualism may evolve under these two different sources

of influences. It shows in particular that by choosing appropriate interventional strategies, the

stable co-existence of languages, especially in multilingual forms, is possible, and extinction

can be prevented, as seen in many multilingual communities.

The paper has three core sections titled Evolutionary Models, Dynamic Analysis, and

Dynamic Simulation. The evolutionary models for populations with competition or interven-

tion are discussed in Evolutionary Models. In Dynamic Analysis, the dynamic behaviors of
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populations under different conditions are analyzed. The stability conditions of equilibrium

states are also justified for different interventional strategies. In Dynamic Simulation, a two-

dimensional dynamic simulation scheme based on the proposed evolutionary model is

described. Two sets of simulation results are presented showing potential geographical impacts

on the evolution of multilingual populations. To keep it simple and easy to follow, the paper is

focused more on bilingual populations, with models for general multilingual populations pro-

vided as an appendix in the end. To make the paper more accessible, all formal definitions, the-

orems, and especially proofs are also organized into the appendix sections. Nonetheless, these

appendices are considered to be necessary contents as well for supporting the results and con-

clusions presented in the paper.

Evolutionary models

To keep the description simple and easy to follow, consider a bilingual population, the simplest

yet most common form of multilingualism. Assume it is large and well mixed, i.e., every indi-

vidual speaker can interact with all others in the population. If an individual speaker uses two

languages A and B with frequencies xA and xB, respectively, this individual is called an (xA, xB)-

speaker, where 0� xA, xB� 1, and xA + xB = 1. Thus, a (1, 0)-speaker is an A speaker, a (0, 1)-

speaker is a B speaker, and an (xA, xB)-speaker with xA, xB 6¼ 0 is a speaker of both A and B,

with frequency xA for A and xB for B.

Likewise, if language A and B are used with frequencies yA and yB in average in the whole

population, this population is called a (yA, yB)-population, where 0� yA, yB� 1, and yA + yB =

1. Thus, a (1, 0)-population is an A population, a (0, 1)-population is a B population, and a

(yA, yB)-population with yA, yB 6¼ 0 is a bilingual population of A and B, with average frequency

yA for A and yB for B. Here, if the population size is n and speaker i uses A and B with frequen-

cies xðiÞA and xðiÞB , respectively, then yA ¼ Six
ðiÞ
A =n and yB ¼ Six

ðiÞ
B =n.

Evolution with competition

Let PA(yA) and PB(yB) be the payoff functions for A and B speakers in a (yA, yB)-population,

respectively, defined in terms of population percentages and social or economic preferences,

with PA increasing in yA and PB in yB, meaning that the larger the population percentage of

a language, the more benefit the language provides. Then, the payoff function for a general

(xA, xB)-speaker in a (yA, yB)-population can be defined in terms of the average use of A and B
by this speaker:

pððxA; xBÞ; ðyA; yBÞÞ ¼ xAPAðyAÞ þ xBPBðyBÞ: ð1Þ

For example, the payoff of a (0.5, 0.5)-speaker, i.e., a half-A and half-B speaker, in a (0.5, 0.5)-

population, i.e., a half-A and half-B population, should be 0.5PA(0.5) + 0.5PB(0.5).

Considering (xA, xB) as the strategy of an individual and (yA, yB) the strategy of the popula-

tion, an evolutionary game (Appendix A) can be defined, where every individual tries to maxi-

mize his/her payoff. The latter can be achieved when an optimal strategy ðx�A; x
�
BÞ is found for

every individual. The strategy for the whole population then becomes ðx�A; x
�
BÞ as well, and a

Nash equilibrium is reached. A Nash equilibrium of this game is thus a strategy ðx�A; x
�
BÞ such

that

pððx�A; x
�
BÞ; ðx

�
A; x

�
BÞÞ � pððxA; xBÞ; ðx�A; x

�
BÞÞ

for all ðxA; xBÞ:
ð2Þ
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Assume for a (yA, yB)-population that yA and yB vary over time as they reach their equilib-

rium. Then, a system of replicator equations (Appendix A) can also be defined for the popula-

tion:

(
_yA ¼ yAyBðPAðyAÞ � PBðyBÞÞ

_yB ¼ yByAðPBðyBÞ � PAðyAÞÞ
ð3Þ

meaning that the changing rate of average frequency yA (or yB) of language A (or B) depends

on the payoff PA (or PB) compared with the payoff PB (or PA): if it is higher, yA (or yB)

increases; otherwise, it decreases. Based on evolutionary game theory, a Nash equilibrium of

the evolutionary game as conditioned in (2) is always a fixed point of the system of replicator

equations given in (3) [18–20] (Appendix A).

Evolution with intervention

Now consider the situation where some societal influences other than simple competition

intervene in the use of languages. Assume that the societal influences or interventions are

implemented to counter the arbitrary increase or decrease of either language in a bilingual

population. Let �PAðyAÞ and �PBðyBÞ be the payoff functions for A and B speakers in a (yA, yB)-

population, respectively, defined in terms of societal influences and interventions, with �PA

decreasing in yA and �PB in yB, meaning that the smaller the population percentage of a lan-

guage, the more incentive or less penalty the speakers of the language receive. Here, incentive

means more benefit from the society such as more work opportunities or public supports, etc.,

and penalty means less advantage in the society such as less access to public education or dis-

couragement from the public, etc. Then, the payoff function for a general (xA, xB)-speaker in a

(yA, yB)-population can be defined in terms of the average use of A and B by this speaker:

�pððxA; xBÞ; ðyA; yBÞÞ ¼ xA
�PAðyAÞ þ xB

�PBðyBÞ: ð4Þ

It follows that another evolutionary game can be defined, with the Nash equilibrium being

a strategy ðx�A; x
�
BÞ such that

�pððx�A; x
�
BÞ; ðx

�
A; x

�
BÞÞ � �pððxA; xBÞ; ðx�A; x

�
BÞÞ

for all ðxA; xBÞ;
ð5Þ

and also a corresponding system of replicator equations:

(
_yA ¼ yAyBð

�PAðyAÞ �
�PBðyBÞÞ

_yB ¼ yByAð
�PBðyBÞ �

�PAðyAÞÞ:
ð6Þ

Note that the game with competition in (2) has three possible equilibrium strategies. They

can be obtained as the fixed points of the system of replicator equations in (3):

ðaÞ y�A ¼ 1; y�B ¼ 0

ðbÞ y�A ¼ 0; y�B ¼ 1

ðcÞ y�A; y
�
B 6¼ 0; PAðy�AÞ ¼ PBðy�BÞ

ð7Þ

It is not so hard to prove that the strategies in (a) and (b) are evolutionarily stable while the

one in (c) is not (see Appendix C). This means that under competition, one of the languages is

expected to die eventually while the other takes over the whole population. The co-existence of

the two languages is not sustainable.
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On the other hand, the game with intervention in (5) also has three possible equilibrium

strategies. They can be obtained as the fixed points of the system of replicator equations in (6):

ðaÞ y�A ¼ 1; y�B ¼ 0

ðbÞ y�A ¼ 0; y�B ¼ 1

ðcÞ y�A; y
�
B 6¼ 0; �PAðy�AÞ ¼ �PBðy�BÞ

ð8Þ

However in this case, it can be proved that the strategy in (c) is evolutionarily stable while the

ones in (a) and (b) are not (see Appendix C). This means that with intervention, it is possible

to keep the population of either language not too large or too small. A bilingual population can

be maintained.

Evolution with competition and intervention

Now the two types of games described above can be combined to obtain a complete model for

the evolution of a bilingual population. A simple combination can be obtained by merging the

systems in (3) and (6) into the following system:

(
_yA ¼ yAyB½lðPAðyAÞ � PBðyBÞÞ þ ð1 � lÞð

�PAðyAÞ �
�PBðyBÞÞ�

_yB ¼ yByA½lðPBðyBÞ � PAðyAÞÞ þ ð1 � lÞð
�PBðyBÞ �

�PAðyAÞÞ�;
ð9Þ

where λ 2 [0, 1] is a scalar. If λ = 1, the system is reduced to the one in (3) with competition

only. If λ = 0, it is reduced to the one in (6) with intervention only. If λ 2 (0, 1), the system is in

some sense a convex combination of competition and intervention, with more weight on com-

petition when λ> 0.5 while more on intervention when λ< 0.5. For convenience, however, a

simpler system, with an equal weight given to competition and intervention, will be considered

in the following discussion:

(
_yA ¼ yAyBðPAðyAÞ � PBðyBÞ þ

�PAðyAÞ �
�PBðyBÞÞ

_yB ¼ yByAðPBðyBÞ � PAðyAÞ þ
�PBðyBÞ �

�PAðyAÞÞ:
ð10Þ

In any case, with a combined system, the impacts from language competition and influences of

societal intervention are both included for the uses of the languages. The first part of the sys-

tem, based on language competition, pushes the population to monolingual, while the second

part, counted for societal interventions, prevents the population from losing either language.

The combination of the two is then expected to provide a more comprehensive account on the

changes of the languages and the evolution of the bilingualism.

Note that the system in (10) can be reformulated in a more compact form:

(
_yA ¼ yAyBð

~PAðyAÞ �
~PBðyBÞÞ

_yB ¼ yByAð
~PBðyBÞ �

~PAðyAÞÞ;

ð11Þ

where

~PAðyAÞ ¼ PAðyAÞ þ
�PAðyAÞ; ð12Þ

~PBðyBÞ ¼ PBðyBÞ þ
�PBðyBÞ: ð13Þ

It is then a system of replicator equations with payoff functions ~PA and ~PB, and corresponds to
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an evolutionary game, with the Nash equilibrium being a strategy ðx�A; x
�
BÞ such that

~pððx�A; x
�
BÞ; ðx

�
A; x

�
BÞÞ � ~pððxA; xBÞ; ðx�A; x

�
BÞÞ

for all ðxA; xBÞ;
ð14Þ

where ~p is the payoff function for the game, and for an (xA, xB)-speaker in a (yA, yB)-popula-

tion

~pððxA; xBÞ; ðyA; yBÞÞ

¼ pððxA; xBÞ; ðyA; yBÞÞ þ �pððxA; xBÞ; ðyA; yBÞÞ:
ð15Þ

In general, PA and PB can be any increasing functions and �PA and �PB be any decreasing

functions. However, based on previous studies, they can be defined as the following:

PAðyAÞ ¼ cya� 1
A sA; PBðyBÞ ¼ cya� 1

B sB; 1 < a � 2; ð16Þ

�PAðyAÞ ¼ �cy�a � 1
A �sA;

�PBðyBÞ ¼ �cy�a � 1
B �sB; 0 � �a < 1; ð17Þ

where c and �c are scaling constants, α, �a, sA, sB, �sA, �sB are all parameters, 0 � sA; sB;�sA;�sB � 1.

The parameters α, �a determine the order of dependency of the payoffs on the population per-

centages. Since 1< α� 2, the payoffs from PA and PB increase with increasing population

percentages. On the other hand, since 0 � �a < 1, the payoffs from �PA and �PB decrease with

increasing population percentages. The parameters sA, sB are used to define the payoffs from

competition. They are indicators of social or economic impacts on the payoffs. The larger

these values, the more benefit for the corresponding language groups. The parameters �sA;�sB

are used to define the payoffs from interventions. They are rates for language reversing due to

interventions. The larger these values, the faster the reversing rates.

The definitions of the functions in (16) and (17) are actually based on previous work on lan-

guage competition and, in particular, the work by Abrams and Strogatz 2003 [13]. In fact, with

these functions, the systems in (3) and (6) are both equivalent to an Abrams-Strogatz system

as shown below, differing only in the ranges of the α values and the parameters c, sA, sB versus

�c, �sA, �sB:

(
_yA ¼ yBPðyA; sAÞ � yAPðyB; sBÞ

_yB ¼ yAPðyB; sBÞ � yBPðyA; sAÞ
ð18Þ

where P is a function, P(y, s) = cyα s for some constant c. Abrams and Strogatz 2003 surveyed a

large number of regions in UK and South America for language competition and estimated

the α value around 1.31 ± 0.25 [13]. In general, the system can be adopted for modeling lan-

guage competition for 1< α� 2 as well as language reversing for 0� α< 1, as discussed

above.

Dynamic analysis

Continue the assumption of bilingual populations and consider their possible dynamic behav-

iors based on the models described in previous sections. Assume that the payoffs PA; PB;
�PA;

�PB

are defined by the functions in (16) and (17).

Dynamics with competition

For competition only, an evolutionary game and a corresponding system of replicator equa-

tions are given in (2) and (3). With PA and PB given in (16), the game in (2) is actually a so-
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called potential game [18, 20] (Appendix B), i.e., there is a potential function f such that

@f ðyA; yBÞ=@yA ¼ PAðyAÞ; @f ðyA; yBÞ=@yB ¼ PBðyBÞ: ð19Þ

Indeed, f(yA, yB) = (P(yA, sA) + P(yB, sB))/α, where P(y, s) = cyα s, 1< α� 2. Therefore, an equi-

librium strategy for the game must be a KKT point of the following potential maximization

problem:

maxyA;yB
f ðyA; yBÞ; yA þ yB ¼ 1; yA; yB � 0: ð20Þ

Further, if the equilibrium strategy is evolutionarily stable, it must be a strict local maximizer

of the potential maximization problem, and vice versa [18, 20] (Appendix B).

For a given strategy (yA, yB), the Hessian H of f is given as follows.

HðyA; yBÞ ¼
P0AðyAÞ 0

0 P0BðyBÞ

 !

ð21Þ

According to the theory on constrained optimization [21, 22], as a KKT point of the potential

maximization problem in (20), if an equilibrium strategy for the game in (2) is a local maxi-

mizer, the Hessian projected on the null space of the active constraints at this strategy is

necessarily negative semidefinite; conversely, if the projected Hessian is negative definite, the

equilibrium strategy must be a strict local maximizer of the potential maximization problem

[21, 22]. Thus, the evolutionary stability of the equilibrium strategy can be justified by the neg-

ative definiteness of the projected Hessian at the strategy (Appendix B).

The game in (2) has three possible equilibrium strategies corresponding to three fixed

points of (3), as given in (7). It is easy to see that strategies (a) and (b) are evolutionarily stable

(Appendix C). In either case, one language dies while the other takes over the whole popula-

tion. If sA> sB, the chance for (a) will be greater than (b), and if sB> sA, the chance for (b)

will be greater than (a). For (c), it is easy to verify that the projected Hessian at this strategy is

always positive definite (Appendix C). It follows that the strategy can never be a local maxi-

mizer of the potential maximization problem in (20), and can never be evolutionarily stable.

The above behaviors of the game can be further demonstrated in Fig 1, where PA and PB are

plotted against yA, and the changing directions of yA are pointed with arrows. The graph in Fig

1(a) shows the behavior of a population with α = 2, when PA and PB are simple linear func-

tions. The curves of PA and PB are displayed over yA 2 [0, 1] with sA = 0.75 and sB = 0.25,

when language A dominants B. There is an equilibrium strategy y�A in (0, 1) such that

PAðy�AÞ ¼ PBðy�BÞ, with y�A ¼ 0:25 and y�B ¼ 0:75. It is unstable as yA decreases to 0 if it starts

from below y�A while increases to 1 if it starts from above y�A. Note that y�A is relatively small.

Therefore, yA increases to 1 even if yA starts small.

The graph in Fig 1(b) shows the behavior of a population with α = 3/2, when PA and PB are

square root functions. The curves of PA and PB are displayed over yA 2 [0, 1] with sA = 0.25

and sB = 0.75, when language B dominants A. There is an equilibrium strategy y�A in (0, 1) such

that PAðy�AÞ ¼ PBðy�BÞ, with y�A ¼ 0:9 and y�B ¼ 0:1. It is unstable as yA decreases to 0 if it starts

from below y�A while increases to 1 if it starts from above y�A. Note that y�A in this case is very

large. Therefore, yA decreases to 0 even if yA starts large.

Dynamics with intervention

For intervention only, an evolutionary game and a corresponding system of replicator equa-

tions are given in (5) and (6). With �PA and �PB given in (17), the game in (5) is also a potential
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game, i.e., there is a potential function �f such that

@�f ðyA; yBÞ=@yA ¼
�PAðyAÞ; @

�f ðyA; yBÞ=@yB ¼
�PBðyBÞ: ð22Þ

Indeed, for �a ¼ 0, �f ðyA; yBÞ ¼ �c log ðyAÞ�sA þ �c log ðyBÞ�sB, and for 0 < �a < 1,

�f ðyA; yBÞ ¼ ð
�PðyA;�sAÞ þ

�PðyB;�sBÞÞ=�a, where �Pðy;�sÞ ¼ �cy�a�s. Therefore, an equilibrium strat-

egy for the game must be a KKT point of the following potential maximization problem:

maxyA;yB
�f ðyA; yBÞ; yA þ yB ¼ 1; yA; yB � 0: ð23Þ

Further, if the equilibrium strategy is evolutionarily stable, it must be a strict local maximizer

of the potential maximization problem, and vice versa [18, 20] (Appendix B).

For a given strategy (yA, yB), the Hessian �H of �f is,

�HðyA; yBÞ ¼

�P 0AðyAÞ 0

0 �P 0BðyBÞ

0

@

1

A ð24Þ

Again, as a KKT point of the potential maximization problem in (23), if an equilibrium strat-

egy for the game in (5) is a local maximizer, the Hessian projected on the null space of the

active constraints at this strategy is necessarily negative semidefinite; conversely, if the pro-

jected Hessian is negative definite, the equilibrium strategy must be a strict local maximizer of

the potential maximization problem [21, 22]. Thus, the evolutionary stability of the equilib-

rium strategy can be justified by the negative definiteness of the projected Hessian at the strat-

egy (Appendix B).

The game in (5) has three possible equilibrium strategies corresponding to three fixed

points of (6), as given in (8). It is easy to see that strategies (a) and (b) are unstable (Appendix

C). For (c), it is easy to verify that the projected Hessian at this strategy is always negative defi-

nite (Appendix C). It follows that this strategy must be a strict local maximizer of the potential

maximization problem in (23), and must be evolutionarily stable.

The above behaviors of the game can be further demonstrated in Fig 2, where �PA and �PB are

plotted against yA, and the changing directions of yA are pointed with arrows. The graphs in

Fig 2(a) shows the behavior of a population with �a ¼ 0, when �PA and �PB are reciprocal func-

tions. The curves of �PA and �PB are displayed over yA 2 [0, 1] with �sA ¼ 0:75 and �sB ¼ 0:25,

Fig 1. Dynamic behaviors with competition. Payoff functions PA and PB are plotted against yA and the changing

directions of yA are pointed with arrows. In (a), α = 2, sA = 0.75, sB = 0.25, y�A ¼ 0:25, and y�B ¼ 0:75. In (b), α = 3/2, sA
= 0.25, sB = 0.75, y�A ¼ 0:9, and y�B ¼ 0:1.

https://doi.org/10.1371/journal.pone.0241980.g001
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when language A is more promoted than B. There is an equilibrium strategy y�A in (0, 1) such

that �PAðy�AÞ ¼ �PBðy�BÞ, with y�A ¼ 0:75 and y�B ¼ 0:25. It is stable as yA increases to y�A if it starts

from below y�A while decreases to y�A if it starts from above y�A.

The graph in Fig 2(b) shows the behavior of a population with �a ¼ 1=2, when �PA and �PB

are inverse square root functions. The curves of �PA and �PB are displayed over yA 2 [0, 1] with

�sA ¼ 0:25 and �sB ¼ 0:75, when language B is more promoted than A. There is an equilibrium

strategy y�A in (0, 1) such that �PAðy�AÞ ¼ �PBðy�BÞ, with y�A ¼ 0:1 and y�B ¼ 0:9. It is stable as yA

increases to y�A if it starts from below y�A while decreases to y�A if it starts from above y�A.

Dynamics with competition and intervention

Now consider the dynamic behaviors of a bilingual population under the influences of both

inter-language competition and external interventions, as modeled by the system in (10) and

the corresponding game in (14). The payoff functions ~PA and ~PB are simply combinations of

those for competition and intervention as given in (12) and (13). With these two payoff func-

tions, the game in (14) is again a potential game, and therefore, there must be a function ~f
such that

@~f ðyA; yBÞ=@yA ¼
~PAðyAÞ; @

~f ðyA; yBÞ=@yB ¼
~PBðyBÞ: ð25Þ

Indeed, ~f ðyA; yBÞ ¼ f ðyA; yBÞ þ
�f ðyA; yBÞ, with f and �f defined in previous sections. It follows

that an equilibrium strategy for the game must be a KKT point of the potential maximization

problem:

maxyA;yB
~f ðyA; yBÞ; yA þ yB ¼ 1; yA; yB � 0: ð26Þ

Further, if the equilibrium strategy is evolutionarily stable, it must be a strict local maximizer

of the potential maximization problem, and vice versa [18, 20] (Appendix B).

For a given strategy (yA, yB), the Hessian ~H of ~f is

~HðyA; yBÞ ¼

P0AðyAÞ 0

0 P0BðyBÞ

 !

þ

�P 0AðyAÞ 0

0 �P 0BðyBÞ

0

@

1

A:
ð27Þ

Fig 2. Dynamic behaviors with intervention. Payoff functions �PA and �PB are plotted against yA and the changing

directions of yA are pointed with arrows. In (a), �a ¼ 0, �sA ¼ 0:75, �sB ¼ 0:25, y�A ¼ 0:75, and y�B ¼ 0:25. In (b),

�a ¼ 1=2, �sA ¼ 0:25, �sB ¼ 0:75, y�A ¼ 0:1, and y�B ¼ 0:9.

https://doi.org/10.1371/journal.pone.0241980.g002
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Again, as discussed in the previous two sections, if an equilibrium strategy for the game in (14)

is a local maximizer of the potential maximization problem in (26), the Hessian projected on

the null space of the active constraints at this strategy is necessarily negative semidefinite; con-

versely, if the projected Hessian is negative definite, the equilibrium strategy must be a strict

local maximizer of the potential maximization problem [21, 22]. Thus, the evolutionary stabil-

ity of the equilibrium strategy can be justified by the negative definiteness of the projected Hes-

sian at the strategy (Appendix B).

For convenience, set c ¼ �c ¼ 1 for the following analysis. Let ðy�A; y
�
BÞ, y

�
A; y

�
B 6¼ 0, be an

equilibrium strategy for the evolutionary game in (14). Then, ~PAðy�AÞ ¼ ~PBðy�BÞ, i.e.,

PAðy�AÞ þ �PAðy�AÞ ¼ PBðy�BÞ þ �PBðy�BÞ: ð28Þ

If c ¼ �c ¼ 1, then

ðy�AÞ
a� 1sA þ ðy�AÞ

�a � 1
�sA ¼ ðy�BÞ

a� 1sB þ ðy�BÞ
�a � 1

�sB: ð29Þ

This is a necessary and sufficient condition for ðy�A; y
�
BÞ, y

�
A; y

�
B 6¼ 0, to be an equilibrium strat-

egy for the evolutionary game in (14). For a specific population, for example, for α = 3/2 and

�a ¼ 0, it can be simplified to

ðy�AÞ
1=2sA þ ðy�AÞ

� 1
�sA ¼ ðy�BÞ

1=2sB þ ðy�BÞ
� 1

�sB; ð30Þ

and for α = 3/2 and �a ¼ 1=2, to

ðy�AÞ
1=2sA þ ðy�AÞ

� 1=2
�sA ¼ ðy�BÞ

1=2sB þ ðy�BÞ
� 1=2

�sB: ð31Þ

Note that at ðy�A; y
�
BÞ, y

�
A; y

�
B 6¼ 0, the potential maximization problem in (26) has only one

active constraint yA + yB = 1, and the Hessian projected on the null space of this constraint will

be

Ĥðy�A; y
�
BÞ ¼ ðP

0
Aðy

�
A; y

�
BÞ þ P0Bðy

�
A; y

�
BÞÞ

þð�P 0Aðy
�
A; y

�
BÞ þ

�P 0Bðy
�
A; y

�
BÞÞ

ð32Þ

If c ¼ �c ¼ 1, Ĥðy�A; y
�
BÞ < 0 if and only if

ð1 � �aÞ½ðy�AÞ
�a � 2

�sA þ ðy�BÞ
�a � 2

�sB�

> ða � 1Þ½ðy�AÞ
a� 2sA þ ðy�BÞ

a� 2sB�:
ð33Þ

This is a sufficient condition for an equilibrium strategy ðy�A; y
�
BÞ, y

�
A; y

�
B 6¼ 0, to be evolution-

arily stable. For a specific population, for example, for α = 3/2 and �a ¼ 0, the condition can be

simplified to:

ðy�AÞ
� 2

�sA þ ðy�BÞ
� 2

�sB > ½ðy�AÞ
� 1=2sA þ ðy�BÞ

� 1=2sB�=2; ð34Þ

and for α = 3/2 and �a ¼ 1=2, to

ðy�AÞ
� 3=2

�sA þ ðy�BÞ
� 3=2

�sB > ðy�AÞ
� 1=2sA þ ðy�BÞ

� 1=2sB: ð35Þ

An equilibrium strategy ðy�A; y
�
BÞ, y

�
A; y

�
B 6¼ 0, corresponds to a bilingual population with

both language A and B co-existing. In previous sections, competition-only and intervention-

only populations have been discussed. For the case with competition-only, such a strategy is

never stable, and therefore, the two languages can never co-exist, even in bilingual forms. For

the case with intervention-only, such a strategy is always stable, and the two languages can co-

exist. By combining the two, it is hoped that such an equilibrium strategy still exists and is also
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stable. Indeed, such an equilibrium can be achieved by choosing appropriate interventional

strategies:

Strategy 1: If 1 � �a � a � 1, i.e., aþ �a � 2, the stability condition in (33) can be satisfied

easily by choosing appropriate reversing rates �sA and �sB: Since �a � 2 < a � 2, ðy�AÞ
�a � 2

>

ðy�AÞ
a� 2

and ðy�BÞ
�a � 2

> ðy�BÞ
a� 2

, and therefore, the stability condition in (33) is satisfied if �sA and

�sB are sufficiently large, say �sA ¼ tsA and �sB ¼ tsB, where 1� t�min{1/sA, 1/sB}. With such a

choice of �sA and �sB, one can prove that ðy�A; y
�
BÞ is also unique (see Appendix D for verification

and Fig 3(a) for demonstration).

Strategy 2: If 1 � �a ¼ a � 1, i.e., aþ �a ¼ 2, also set �sA ¼ tsB and �sB ¼ tsA for any 1� t�
min{1/sA, 1/sB}. Then, ðy�A; y

�
BÞ, y

�
A; y

�
B 6¼ 0, is an equilibrium strategy for all three type of games,

the competition-only game, the intervention-only game, and the combination of the two, i.e.,

the game with both competition and intervention. Mathematically, ~PAðy�AÞ ¼ ~PBðy�BÞ if and

only if PAðy�AÞ ¼ PBðy�BÞ and �PAðy�AÞ ¼ �PBðy�BÞ. In addition, the stability condition in (33) is sat-

isfied for ðy�A; y
�
BÞ. One can then prove that ðy�A; y

�
BÞ is evolutionarily stable and also unique (see

Appendix D for verification and Fig 3(b) for demonstration).

Strategy 3: In general, given a desired equilibrium strategy ðy�A; y
�
BÞ, y

�
A; y

�
B 6¼ 0, not neces-

sarily optimal for either the competition-only or intervention-only game, it can be made a true

equilibrium strategy for the combined game by choosing appropriate interventional strategies:

For 1 � �a � a � 1, set

�sA ¼ ðy�AÞ
1� �a
ðy�BÞ

a� 1sB; �sB ¼ ðy�BÞ
1� �a
ðy�AÞ

a� 1sA: ð36Þ

Then, �PAðy�AÞ ¼ PBðy�BÞ and �PBðy�BÞ ¼ PAðy�AÞ. It follows that ~PAðy�AÞ ¼ ~PBðy�BÞ, and ðy�A; y
�
BÞ

becomes an equilibrium strategy for the game. In addition, let y�A ¼ 1=ð1þ ðsA=sBÞ
1=ða� 1Þ

Þ,

and assume that ðy�A; y
�
BÞ is selected such that y�A � maxfy�A; y

�
Bg or y�A � minfy�A; y

�
Bg. Then,

the condition in (33) is satisfied at ðy�A; y
�
BÞ, and the strategy is also evolutionarily stable (see

Appendix D for verification and Fig 4 for demonstration).

Note that in the last case, when ða � 1Þ=ð1 � �aÞ is close to 1, the functions ~PA and ~PB are

likely to have more than one intersections over the interval (0, 1) for yA, as demonstrated in

the examples in Fig 4. This implies that there may be more than one equilibrium strategies,

among which is the desired one. In this case, the interval (0, 1) is divided by the y�A values of

these strategies, and the y�A value of the selected strategy is converged only within a small

Fig 3. Dynamic behaviors with competition and intervention. Payoff functions ~PA and ~PB are plotted against yA and

the changing directions of yA are pointed with arrows. In (a), α = 3/2 and �a ¼ 0, �sA ¼ sA ¼ 0:75 and �sB ¼ sB ¼ 0:25,

and y�A ¼ 0:8315 and y�B ¼ 0:1685. In (b), α = 3/2 and �a ¼ 1=2, �sA ¼ sB ¼ 0:25 and �sB ¼ sA ¼ 0:75, and y�A ¼ 0:1 and

y�B ¼ 0:9.

https://doi.org/10.1371/journal.pone.0241980.g003
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subinterval around it. When ða � 1Þ=ð1 � �aÞ is much smaller than 1, however, the functions

~PA and ~PB are more separated, and usually there is only a single intersection, corresponding to

a unique equilibrium strategy.

The dynamic behaviors of the combined game in (14) can be demonstrated through exam-

ples shown in Figs 3 and 4. The graph in Fig 3(a) shows the behavior of a population with α =

3/2 and �a ¼ 0. The curves of ~PA and ~PB are displayed over yA 2 [0, 1] with �sA ¼ sA ¼ 0:75 and

�sB ¼ sB ¼ 0:25, when language A has social or economic advantages over B. If without inter-

vention, the game would have an equilibrium strategy ðy�A; y
�
BÞ with y�A ¼ 0:1 and y�B ¼ 0:9,

but it is unstable. However, with intervention, the equilibrium strategy becomes ðy�A; y
�
BÞ with

y�A ¼ 0:8315 and y�B ¼ 0:1685. It is stable as yA increases to y�A if it starts from below y�A while

decreases to y�A if it starts from above y�A.

The graphs in Fig 3(b) shows the behavior of a population with α = 3/2 and �a ¼ 1=2. The

curves of ~PA and ~PB are displayed over yA 2 [0, 1] with �sA ¼ sB ¼ 0:25 and �sB ¼ sA ¼ 0:75. If

without intervention, the game would have an equilibrium strategy ðy�A; y
�
BÞ with y�A ¼ 0:1 and

y�B ¼ 0:9, but it is unstable. However, with intervention, the equilibrium strategy remains to be

ðy�A; y
�
BÞ with y�A ¼ 0:1 and y�B ¼ 0:9, but becomes stable as yA increases to y�A if it starts from

below y�A while decreases to y�A if it starts from above y�A.

Fig 4 shows examples for how to obtain desired equilibrium strategies by choosing appro-

priate interventional strategies. The graph in Fig 4(a) is an example with α = 3/2 and �a ¼ 0.

The curves of ~PA and ~PB are displayed over yA 2 [0, 1] with sA = 0.6 and sB = 0.4, when lan-

guage A has social or economic advantages over B. By setting �sA ¼ ðy�AÞðy
�
BÞ

1=2sB ¼ 0:1431 and

�sB ¼ ðy�BÞðy
�
AÞ

1=2sA ¼ 0:1073, a desired equilibrium strategy ðy�A; y
�
BÞ with y�A ¼ 0:8 and y�B ¼

0:2 is obtained. It is stable as yA increases to y�A if it starts from below y�A while decreases to y�A if

it starts from above y�A.

The graph in Fig 4(b) is an example with α = 3/2 and �a ¼ 1=2. The curves of ~PA and ~PB are

displayed over yA 2 [0, 1] with sA = 0.4 and sB = 0.6, when language B has social or economic

advantages over A. By setting �sA ¼ ðy�AÞ
1=2
ðy�BÞ

1=2sB ¼ 0:18 and �sB ¼ ðy�BÞ
1=2
ðy�AÞ

1=2sA ¼ 0:12,

a desired equilibrium strategy ðy�A; y
�
BÞ with y�A ¼ 0:1 and y�B ¼ 0:9 is obtained. It is stable as

yA increases to y�A if it starts from below y�A while decreases to y�A if it starts from above y�A.

Note that in this example, there are three equilibrium strategies in (0, 1), as marked by

Fig 4. Dynamic behaviors with competition and intervention. Payoff functions ~PA and ~PB are plotted against yA and

the changing directions of yA are pointed with arrows. In (a), α = 3/2 and �a ¼ 0, sA = 0.6 and sB = 0.4, y�A ¼ 0:8 and

y�B ¼ 0:2, and �sA ¼ ðy�AÞðy
�
BÞ

1=2sB ¼ 0:1431 and �sB ¼ ðy�BÞðy
�
AÞ

1=2sA ¼ 0:1073. In (b), α = 3/2 and �a ¼ 1=2, sA = 0.4 and

sB = 0.6, y�A ¼ 0:1 and y�B ¼ 0:9, and �sA ¼ ðy�AÞ
1=2
ðy�BÞ

1=2sB ¼ 0:18 and �sB ¼ ðy�BÞ
1=2
ðy�AÞ

1=2sA ¼ 0:12.

https://doi.org/10.1371/journal.pone.0241980.g004
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half circles. The desired strategy is one of them. This happens when ða � 1Þ=ð1 � �aÞ is close

or equal to 1.

Dynamic simulation

Computer simulation can always be used to validate theories when physical experiments are

not accessible, and to reveal additional insights into system behaviors which may otherwise be

hard to see. This section describes further dynamic behaviors of bilingual populations through

computer simulation with the combined model given in (10) and (14). To carry out the simu-

lation, the population is assumed to be distributed in a two-dimentional space, and the changes

of the bilingual level of the population will then be tracked across time and space.

More specifically, to carry out the simulation, a 2D torus-shaped lattice of n × n cells is con-

structed first, with each cell assumed to be occupied by an individual speaker. A random indi-

vidual can then be selected repeatedly from the lattice, and a game is played for the individual

against the population of the lattice. Let (xA, xB) be the current strategy for the individual, and

(yA, yB) the strategy for the population. Let pA ¼
~PAðyAÞ and pB ¼

~PBðyBÞ be the payoffs for A
and B speakers, respectively. Then, the payoff for the individual, p ¼ xA

~PAðyAÞ þ xB
~PBðyBÞ, is

computed. If pA> π, xA is increased by setting xA = yA if xA< yA. On the other hand, if pA< π,

xA is reduced by setting xA = yA if xA> yA.

Initially, all individuals are assigned with a random strategy. The game is played n × n times

for the population to complete a generation. The game is repeated for 100 generations to make

sure the population reaches its equilibrium. In general, the game can be played in a neighbor-

hood of each selected individual. Let the neighborhood be an m × m sub-lattice, with the

selected individual located at the center. Then, the game can be carried out for each selected

individual only against the population in its neighborhood of this size, with the population

strategy (yA, yB) computed from the population in the neighborhood. Such a game may in fact

be more realistic, as people usually interact only with a small group of others around them.

Recall that the population is assumed to be large and well mixed in the game models dis-

cussed in previous sections. This means that every individual should be able to interact with all

others in the population. With such an assumption, the dynamic behaviors and especially the

equilibrium states of the population can be computed by directly solving a corresponding sys-

tem of replicator equations. The 2D simulation described here can be considered as a discrete

solution of the system of replicator equations if the individual in each cell of the lattice is

allowed to interact with the individuals in all other cells. However, the 2D simulation is more

flexible, allowing restrictions on interactions. It can therefore be used to see how a population

behaves when each individual interacts only with a selected group of other individuals, which

a continuous model would not be able to reveal.

Fig 5 shows the results from two sets of simulations in two columns of graphs, respectively.

The results in the first column are for a population with α = 2 and �a ¼ 0, and �sA ¼ sB ¼ 0:75

and �sB ¼ sA ¼ 0:25. Those in the second column are for a population with α = 3/2 and

�a ¼ 1=2, and �sA ¼ sB ¼ 0:4 and �sB ¼ sA ¼ 0:6. In both cases, the population is distributed on

a 75 × 75 lattice. For each case, the game is played three times with neighborhood size equal to

75 × 75, 25 × 25, and 5 × 5, respectively. The final distribution of the individual frequency x�A
in the population is displayed for each play in the corresponding order.

In the first column of graphs, the one on the top shows the result from the game with the

neighborhood size equal to 75 × 75, when each individual interacts with all others in the whole

population. The equilibrium frequency y�A of the population in this case is approximately equal

to 0.75, which agrees with the direct prediction from the continuous model described in previ-

ous sections. In addition, the distribution of the individual frequency x�A in the population is
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very homogeneous, with x�A � 0:75 across the board, suggesting that language A and B co-

exist in the population in an evenly distributed bilingual form. The second graph in this col-

umn shows the result from the game with the neighborhood size equal to 25 × 25, when the

interactions among individual speakers are restricted. The equilibrium frequency y�A of the

population remains about the same, approximately equal to 0.75. However, the individual fre-

quency x�A becomes less constant. Some regions have higher individual frequencies than others,

and local groups are formed with varying individual frequencies, as shown in the graph. The

graph in the bottom of this column shows the result from the game with the neighborhood

size further reduced to 5 × 5. While the population frequency y�A is not significantly changed,

the individual frequency x�A shows even bigger variations, with even smaller local spots formed

with higher or lower individual frequencies than average.

Fig 5. Dynamic simulation results. The distributions of the A speaking frequencies in the 2D lattice at equilibrium are

displayed in graphs from top to bottom, with corresponding neighborhood sizes equal to 75 × 75, 25 × 25, and 5 × 5.

Each of the graphs is a 75 × 75 2D lattice. The x-axis and y-axis of the graph represent the 75 units of the lattice in the

horizontal and vertical directions, respectively. In column (a), α = 2 and �a ¼ 0, �sA ¼ sB ¼ 0:75 and �sB ¼ sA ¼ 0:25,

and y�A � 0:75 and y�B � 0:25. In column (b), α = 3/2 and �a ¼ 1=2, �sA ¼ sB ¼ 0:4 and �sB ¼ sA ¼ 0:6, and y�A � 0:4

and y�B � 0:6.

https://doi.org/10.1371/journal.pone.0241980.g005
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The graphs in the second column show similar results. Again, when the neighborhood size

is set to 75 × 75, the equilibrium frequency y�A of the population reaches approximately 0.4,

which agrees with the direct prediction from the continuous model described in previous sec-

tions. The distribution of the individual frequency x�A in the population is homogeneous, with

x�A � 0:4 across the board, as shown in the graph on the top. However, when the neighborhood

size is reduced to 25 × 25, the individual frequency x�A becomes less constant, although y�A
remains about the same. Some regions have higher individual frequencies than others, and

local groups are formed with varying individual frequencies, as shown in the second graph.

When the neighborhood size is further reduced to 5 × 5, the individual frequency x�A varies in

greater degrees in the population. Even smaller local spots are formed with higher or lower

individual frequencies than average. The dynamic behaviors shown from these simulations

agree with our intuition or experience in language development: Indeed, when communica-

tions are restricted to local groups, language variations will remain.

Discussion

The competition-only model as described in the Evolution with Competition section predicts

that between two competing languages, if based only on competition, one would eventually

die while the other takes over the whole population, and the co-existing state is unstable. This

result is not so surprising, for it has already been discussed in previous studies, although from

different perspectives. On the other hand, the intervention-only model as described in the Evo-

lution with Intervention section shows that if controlled only by interventions, it is possible to

prevent either language population from becoming too large or too small, and keep the popu-

lation in a stable co-existing state. By combining the two, the model with both competition

and intervention as described in the Evolution with Competition and Intervention section

gives a more complete description on the evolution of multilingual populations when it is

under the influences of both language competition and societal intervention. It predicts that

languages may co-exist stably in multilingual forms if appropriate interventional strategies are

employed. In addition, the interventional measures may not only be able to prevent language

extinction but also direct populations to desired equilibrium states.

These predictions are based on the assumptions that the payoff functions PA and PB are

increasing functions and �PA and �PB are decreasing functions, meaning that in some sense,

competition favors large populations, while intervention subsidies small populations. For this

reason, the functions in (16) and (17) are adopted for defining PA, PB, �PA, and �PB. Besides, PA

and PB in (16) can be considered as a general set of functions that includes the one used in the

Abrams-Strogatz model with α = 1.31 ± 0.25, which is well tested against real language data

[13]. The functions for �PA and �PB in (17) are also related to some applications in genetic selec-

tion, where they are used to model genetic mutations with �a ¼ 0 [6, 19]. However, the �sA and

�sB values for genetic mutation are certainly in a much smaller scale than those for language

conversion.

Note that this paper has not discussed in detail how the language is acquired, learned, and

used, which may in fact relate directly to what language strategies really mean and how they

can be changed. There are some obvious questions related to this issue. For example, what

does it mean that an individual uses language A with 40% frequency? Is only reading language

A without speaking counted as using language A? What happens if an individual can never

learn a second language? How long does it take for an individual to change his/her language

use from one frequency to another? These are legitimate concerns, but may require more lin-

guistic characterizations on language learning and communication, and will hopefully be

addressed in future work.
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The work in this paper is to develop a general framework for modeling and simulating evo-

lutionary dynamics of multilingual populations. Work remains to be done to analyze some

real language groups, while several issues are yet to be resolved: First, some terms used in the

proposed models need to be further discussed for exact implications such as “social or eco-

nomic preferences”, which determine the parameters sA and sB, and “public policies”, “educa-

tional influences”, and “family influences”, which the parameters �sA and �sB depend on. Second,

even if exact meanings of these terms are given, the corresponding parameters including α and

�a are not easy to estimate. They may vary with varying populations and varying time periods.

The language data is also difficult to collect across a meaningful period of time. Third, the fac-

tors that affect language evolution can be more than what a few parameters can cover. While

the parameters used in the proposed models are key to determining general dynamic behaviors

of multilingual populations, more parameters may be introduced, and additional mechanisms

such as the reward and punishment schemes discussed in [23, 24] may be employed.

Computer simulation is a tool to extend the power of theoretical models. It can be used to

not only validate the theory but also implement and test additional hypothesis such as the

influences from the geographical or demographical structure of the population on multilingual

evolution. The simulation done in this study is motivated by previous work on simulation of

evolutionary dynamics such as Nowak and May 1992, Durrett and Levin 1997, and more

recently, Chen, et al. 2008, Wang, et al. 2012, and Wang, et al. 2016 [25–29]. However, the sim-

ulation algorithms can be different for different models and even for the same model. Central

to a simulation algorithm is the rule to update the current strategy. Different updating rules

may result in very different outcomes. In this work, language competition is considered to be

moderate. Therefore, if pA> π, i.e., speaking A benefits more, then xA will stay unchanged if it

is already bigger than the average frequency yA. It will increase to yA only when it is less than

yA. The rule could be more aggressive such that xA will increase by a certain amount even if it

is bigger than yA. The results would look different from what have been presented.

Research on language evolution has been pursued extensively in recent years including

modeling and simulation. Work has focused on two different but related aspects of language

evolution. One is on how a given language develops and evolves with respect to the “genetic

changes” of its linguistic elements such as lexicon, syntax, semantics, pronunciations, etc [30–

35]. The other is on how a mixed population of multilingual speakers changes dynamically in

terms of the percentage of speakers of each language in the whole population [13–17, 36–40].

The work described in this paper belongs to the second category. Work on language death by

Abrams and Strogatz 2003 has been followed and extended by several research groups [13–15,

17]. Other approaches have also been proposed, using Lofka-Volterra equations to characterize

the evolutionary nature of language dynamics [36, 38], introducing reaction-diffusion models

to include geographical influences on language competition [37, 39], and directly simulating

the language dynamics with an agent-based or cellular automata models [16, 40]. The model

proposed in this work shares some features of these previous approaches, but is focused more

on the evolution of multilingualism and in other words, the co-existence of multiple languages

in multilingual forms. It is intended to account for possible outside controls or interventions

as well as inter-language competitions. Evolutionary games are defined with languages as

competing strategies, and corresponding replicator equations are formed to characterize the

dynamic behaviors of multilingual populations. The games are also recognized as a special

class of potential games and therefore connected to a special class of potential maximization

problems, which makes it possible to analyze and even control the equilibrium and stability

conditions of given language populations.

To keep the description simple and easy to follow, the proposed models are introduced

with and analyzed on bilingual populations only, but they are not limited to bilingual
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populations. They can actually be extended straightforwardly to general multilingual popula-

tions, as given in Appendix E. In order to make the paper more accessible, efforts have been

made to keep the discussions from being too technical, with more formal definitions, theo-

rems, and especially proofs all provided as appendices in the end of the paper. Nonetheless,

these appendices are considered to be necessary contents as well for supporting the results and

conclusions presented in the paper.

Appendix A: Evolutionary games [18, 19]

Let x, y 2 S be the strategies of an individual and a given population, respectively, where S = {x
2 Rn: Si xi = 1, xi� 0, i = 1, . . ., n}. Let π(x, y) = Si xi pi(y) be the payoff function for the indi-

vidual, where pi is the payoff function for the ith pure strategist.

Definition 1 (Evolutionary Game). A Nash equilibrium for the evolutionary game with the
payoff function π is a strategy x� such that

pðx�; x�Þ � pðx; x�Þ; for all x 2 S: ð37Þ

Definition 2 (Evolutionary Stability). An equilibrium strategy x� is said to be evolutionarily sta-
ble if there is a positive number �� < 1 such that

pðx�; �xþ ð1 � �Þx�Þ > pðx; �xþ ð1 � �Þx�Þ; ð38Þ

for all x 6¼ x� and � � ��,

Definition 3 (Replicator Equation). The following system of equations is called a system of
replicator equations:

_xi ¼ xiðpiðxÞ � pðx; xÞÞ; i ¼ 1; . . . ; n: ð39Þ

where π(x, x) = Si xi pi(x).

Theorem 1. The equilibrium strategy of an evolutionary game is a fixed point of the system of
replicator equations. It is an asymptotically stable fixed point if it is an evolutionarily stable equi-
librium strategy.

Theorem 2. An equilibrium strategy x� is evolutionarily stable if and only if there is a small
neighborhood N of x� such that π(x�, x) > π(x, x) for all x 2 N \ S, x 6¼ x�.

Appendix B: Potential games [18, 20]

Definition 4 (Potential Game). A game defined by a payoff function π(x, y) = Si xi pi(y) is called
a potential game if there is a function f such that @f(y)/@yi = pi(y) for all i = 1, . . ., n.

Definition 5 (Potential Maximization Problem). The following optimization problem is
called a potential maximization problem:

maxy f ðyÞ; y 2 S; ð40Þ

where S = {y 2 Rn: Si yi = 1, yi� 0, i = 1, . . ., n} and @f(y)/@yi = pi(y) for all i = 1, . . ., n.

Theorem 3. Let x� be a strategy for a given potential game. Then, x� is an equilibrium strat-
egy for the game if and only if it is a KKT point of the corresponding potential maximization
problem.

Theorem 4. Let x� be an equilibrium strategy for a given potential game. Then, x� is evolu-
tionarily stable if and only if it is a strict local maximizer of the corresponding potential maximi-
zation problem.
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Appendix C: Equilibrium strategies and stabilities

Cases for competition only

Consider the game in (2) with the payoff functions PA and PB being increasing functions as

defined in (16). Let ðy�A; y
�
BÞ be an equilibrium strategy in one of the three cases given in (7).

Theorem 5. The equilibrium strategy ðy�A; y
�
BÞ is evolutionarily stable for case (a) and (b), but

unstable for case (c).
Proof. For case (a), ðy�A; y

�
BÞ ¼ ð1;0Þ and PAðy�AÞ> PBðy�BÞ. Let (yA, yB) be any strategy not equal

to ðy�A; y
�
BÞ. Define ðy�A; y

�
BÞ ¼ �ðyA; yBÞ þ ð1 � �Þðy�A; y

�
BÞ. Then, pððy�A; y

�
BÞ; ðy

�
A; y

�
BÞÞ ¼ PAðy�AÞ.

But pððyA; yBÞ; ðy�A; y
�
BÞÞ ¼ yAPAðy�AÞ þ yBPBðy�BÞ ¼ PAðy�AÞ þ yBðPBðy�BÞ � PAðy�AÞÞ, which is less

than PAðy�AÞ for � sufficiently small. It follows that ðy�A; y
�
BÞmust be evolutionarily stable.

For case (b), ðy�A; y
�
BÞ ¼ ð0; 1Þ and PAðy�AÞ < PBðy�BÞ. Let (yA, yB) be any strategy not equal to

ðy�A; y
�
BÞ. Define ðy�A; y

�
BÞ ¼ �ðyA; yBÞ þ ð1 � �Þðy�A; y

�
BÞ. Then, pððy�A; y

�
BÞ; ðy

�
A; y

�
BÞÞ ¼ PBðy�BÞ. But

pððyA; yBÞ; ðy�A; y
�
BÞÞ ¼ yAPAðy�AÞ þ yBPBðy�BÞ ¼ yAðPAðy�AÞ � PBðy�BÞÞ þ PBðy�BÞ, which is less

than PBðy�BÞ for � sufficiently small. It follows that ðy�A; y
�
BÞmust be evolutionarily stable.

For case (c), y�A 6¼ 0 and y�B 6¼ 0. The only active constraint of the problem in (20) at this

strategy is yA + yB = 1. The null space of the constraint at this strategy can be represented

by a basis matrix z = (1, −1)T. Then, the projected Hessian on this space at ðy�A; y
�
BÞ is

zTHðy�A; y
�
BÞz ¼ P0Aðy

�
AÞ þ P0Bðy

�
BÞ, which is always positive definite. Therefore, by the second

order necessary conditions for constraint optimization, ðy�A; y
�
BÞ can never be a local maximizer

of the problem in (20), and therefore, can never be evolutionarily stable.

Cases for intervention only

Consider the game in (5) with the payoff functions �PA and �PB being decreasing functions as

defined in (17). Let ðy�A; y
�
BÞ be an equilibrium strategy in one of the three cases given in (8).

Theorem 6. The equilibrium strategy ðy�A; y
�
BÞ is evolutionarily unstable for case (a) and (b),

but stable for case (c).
Proof. For case (a), ðy�A; y

�
BÞ ¼ ð1;0Þ and �PAðy�AÞ< �PBðy�BÞ. Let (yA, yB) be any strategy not equal

to ðy�A; y
�
BÞ. Define ðy�A; y

�
BÞ ¼ �ðyA; yBÞ þ ð1 � �Þðy�A; y

�
BÞ. Then, �pððy�A; y

�
BÞ; ðy

�
A; y

�
BÞÞ ¼

�PAðy�AÞ.
But �pððyA; yBÞ; ðy�A; y

�
BÞÞ ¼ yA

�PAðy�AÞ þ yB
�PBðy�BÞ ¼ �PAðy�AÞ þ yBð

�PBðy�BÞ � �PAðy�AÞÞ, which is

greater than or equal to �PAðy�AÞ for � sufficiently small. It follows that ðy�A; y
�
BÞmust be evolution-

arily unstable.

For case (b), ðy�A; y
�
BÞ ¼ ð0; 1Þ and �PAðy�AÞ > �PBðy�BÞ. Let (yA, yB) be any strategy not equal to

ðy�A; y
�
BÞ. Define ðy�A; y

�
BÞ ¼ �ðyA; yBÞ þ ð1 � �Þðy�A; y

�
BÞ. Then, �pððy�A; y

�
BÞ; ðy

�
A; y

�
BÞÞ ¼

�PBðy�BÞ. But

�pððyA; yBÞ; ðy�A; y
�
BÞÞ ¼ yA

�PAðy�AÞ þ yB
�PBðy�BÞ ¼ yAð

�PAðy�AÞ � �PBðy�BÞÞ þ �PBðy�BÞ, which is greater

than or equal to �PBðy�BÞ for � sufficiently small. It follows that ðy�A; y
�
BÞmust be evolutionarily

unstable.

For case (c), y�A 6¼ 0 and y�B 6¼ 0. The only active constraint of the problem in (23) at this

strategy is yA + yB = 1. The null space of the constraint at this strategy can be represented

by a basis matrix z = (1, −1)T. Then, the projected Hessian on this space at ðy�A; y
�
BÞ is

zT �Hðy�A; y
�
BÞz ¼ �P 0Aðy

�
AÞ þ

�P 0Bðy
�
BÞ, which is always negative definite. Therefore, by the second

order sufficient conditions for constraint optimization, ðy�A; y
�
BÞmust be a strict local maxi-

mizer of the problem in (23), and must therefore be evolutionarily stable.

Appendix D: Dynamics of interventional strategies

Consider the game in (14) with the payoff functions ~PA and ~PB defined in (15), where PA and

PB are given in (16) and �PA and �PB in (17). Let ðy�A; y
�
BÞ, y

�
A; y

�
B 6¼ 0, be an equilibrium strategy
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or a desired equilibrium strategy for the game. This equilibrium strategy may or may not be

stable and unique depending on the choice of interventional strategies �sA and �sB.

Theorem 7 (Stability and Uniqueness for Strategy 1). Let �sA ¼ tsA and �sB ¼ tsB, 1� t�min

{1/sA, 1/sB}. Let ðy�A; y
�
BÞ, y

�
A; y

�
B 6¼ 0, be the corresponding equilibrium strategy. Assume that

1 � �a � a � 1. Then, ðy�A; y
�
BÞ is evolutionarily stable and also unique.

Proof. Since �a � 2 < � 1 < a � 2, ðy�AÞ
�a � 2

> ðy�AÞ
a� 2

and ðy�BÞ
�a � 2

> ðy�BÞ
a� 2

. Then, the stabil-

ity condition in (33) is satisfied at ðy�A; y
�
BÞ for all t, 1� t�min{1/sA, 1/sB}. Therefore, ðy�A; y

�
BÞ

is evolutionarily stable. Note that the same condition is also satisfied at all strategies (yA, yB).

Let ϕ be the function for the difference between ~PA and ~PB, �ðyA; yBÞ ¼
~PAðyAÞ �

~PBðyBÞ.

Then, �ðy�A; y
�
BÞ ¼ 0. Note that

�
0

yA
ðyA; yBÞ ¼ ða � 1Þ½ðyAÞ

a� 2sA þ ðyBÞ
a� 2sB� � ð�a � 1Þ½ðyAÞ

�a � 2
�sA þ ðyBÞ

�a � 2
�sB�. Then, if the con-

dition in (33) is satisfied at all strategies (yA, yB), �
0

yA
ðyA; yBÞmust be negative, and ϕ(yA, yB) is

monotonically decreasing in yA. It follows that ðy�A; y
�
BÞmust be unique.

Theorem 8 (Stability and Uniqueness for Strategy 2). Assume that 1 � �a ¼ a � 1 ¼ g. Let
�sA ¼ tsB and �sB ¼ tsA, 1� t�min{1/sA, 1/sB}. Let ðy�A; y

�
BÞ, y

�
A; y

�
B 6¼ 0, be the corresponding

equilibrium strategy. Then, ðy�A; y
�
BÞ is unique and also evolutionarily stable.

Proof. Since ðy�A; y
�
BÞ is an equilibrium strategy, ~PAðy�AÞ ¼ ~PBðy�BÞ, i.e.,

ðy�AÞ
gsA þ ðy�AÞ

� gtsB ¼ ðy�BÞ
gsB þ ðy�BÞ

� gtsA: ð41Þ

This equation can be written equivalently to

ðy�AÞ
gsA þ tðy�AÞ

� g
ðy�BÞ

� g
ðy�BÞ

gsB

¼ ðy�BÞ
gsB þ tðy�BÞ

� g
ðy�AÞ

� g
ðy�AÞ

gsA:
ð42Þ

It can then be re-arranged to

ððy�AÞ
gsA � ðy�BÞ

gsBÞð1 � tðy�AÞ
� g
ðy�BÞ

� g
Þ ¼ 0; ð43Þ

which implies that ðy�AÞ
gsA ¼ ðy�BÞ

gsB and hence ðy�AÞ
� gsB ¼ ðy�BÞ

� gsA, i.e., PAðy�AÞ ¼ PBðy�BÞ and

�PAðy�AÞ ¼ �PBðy�BÞ. Reversely, it is also true.

Since there can only be one strategy ðy�A; y
�
BÞ such that PAðy�AÞ ¼ PBðy�BÞ and

�PAðy�AÞ ¼ �PBðy�BÞ, ðy
�
A; y

�
BÞ is unique.

The uniqueness of ðy�A; y
�
BÞ can also be justified by noticing that for any strategy (yA, yB),

�ðyA; yBÞ ¼
~PAðyAÞ �

~PBðyBÞ can be written in the following form,

�ðyA; yBÞ ¼

ðygAsA � ty� gB y� gA ygAsAÞ � ðy
g
BsB � ty� gA y� gB ygBsBÞ;

ð44Þ

which is equivalent to

�ðyA; yBÞ ¼ ðy
g

AsA � ygBsBÞð1 � ty� gA y� gB Þ: ð45Þ

Note that �ðy�A; y
�
BÞ ¼ 0, 1 � ty� gA y� gB < 0, and ygAsA � ygBsB is negative if yA < y�A and positive

if yA > y�A. Therefore, ϕ(yA, yB) is positive if yA < y�A and negative if yA > y�A, and ðy�A; y
�
BÞ is

unique.

For stability, it suffices to show that the stability condition in (33) is satisfied at ðy�A; y
�
BÞ for

�sA ¼ sB and �sB ¼ sA. Note that

ðy�AÞ
�a � 2sB ¼ ðy�AÞ

�a � 2
ðy�BÞ

1� a
ðy�BÞ

a� 1sB: ð46Þ
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Since ðy�BÞ
a� 1sB ¼ ðy�AÞ

a� 1sA,

ðy�AÞ
�a � 2sB ¼ ðy�AÞ

�a � 1
ðy�BÞ

1� a
ðy�AÞ

a� 2sA: ð47Þ

It follows that ðy�AÞ
�a � 2sB > ðy�AÞ

a� 2sA. Similarly,

ðy�BÞ
�a � 2sA ¼ ðy�BÞ

�a � 2
ðy�AÞ

1� a
ðy�AÞ

a� 1sA: ð48Þ

Since ðy�AÞ
a� 1sA ¼ ðy�BÞ

a� 1sB,

ðy�BÞ
�a � 2sA ¼ ðy�BÞ

�a � 1
ðy�AÞ

1� a
ðy�BÞ

a� 2sB: ð49Þ

It follows that ðy�BÞ
�a � 2sA > ðy�BÞ

a� 2sB. The stability condition in (33) is then satisfied and

ðy�A; y
�
BÞ is evolutionarily stable.

Theorem 9 (Stability for Strategy 3). Let ðy�A; y
�
BÞ, y

�
A; y

�
B 6¼ 0, be a given strategy. Let

�sA ¼ ðy�AÞ
1� �a
ðy�BÞ

a� 1sB and �sB ¼ ðy�BÞ
1� �a
ðy�AÞ

a� 1sA. Assume that 1 � �a � a � 1. Then,

ðy�A; y
�
BÞ is an equilibrium strategy, and is also evolutionarily stable if it is selected such that

y�A > maxfy�A; y
�
Bg or y�A < minfy�A; y

�
Bg, where y�A ¼ 1=ð1þ ðsA=sBÞ

1=ða� 1Þ
Þ.

Proof. Given �sA ¼ ðy�AÞ
1� �a
ðy�BÞ

a� 1sB and �sB ¼ ðy�BÞ
1� �a
ðy�AÞ

a� 1sA, it is easy to verify that

�PAðy�AÞ ¼ PBðy�BÞ and �PBðy�BÞ ¼ PAðy�AÞ, and ~PAðy�AÞ ¼ ~PBðy�BÞ, proving that ðy�A; y
�
BÞ is an equi-

librium strategy.

Define a function ψ for the difference between the left and right hand sides of the stability

condition in (33) without the constant terms ð1 � �aÞ and (α − 1):

cðyA; yBÞ ¼

ðyAÞ
�a � 2

�sA þ ðyBÞ
�a � 2

�sB � ðyAÞ
a� 2sA � ðyBÞ

a� 2sB:
ð50Þ

Let yA ¼ y�A, yB ¼ y�B, and substitute �sA and �sB into the function to obtain:

cðy�A; y
�
BÞ ¼ ðy

�
AÞ
� 1
ðy�BÞ

a� 1sB þ ðy�BÞ
� 1
ðy�AÞ

a� 1sA

� ðy�AÞ
� 1
ðy�AÞ

a� 1sA � ðy�BÞ
� 1
ðy�BÞ

a� 1sB:
ð51Þ

The formula can be further simplified to

cðy�A; y
�
BÞ

¼ ðy�AÞ
� 1
ðy�BÞ

� 1
ðy�A � y�BÞððy

�
AÞ

a� 1sA � ðy�BÞ
a� 1sBÞ

¼ ðy�Ay
�
BÞ
� 1
ðy�A � y�BÞðPAðy�AÞ � PBðy�BÞÞ:

ð52Þ

Note that PAðy�AÞ � PBðy�BÞ ¼ 0 for y�A ¼ 1=ð1þ ðsA=sBÞ
1=ða� 1Þ

Þ. Then, since PA(yA) − PB(yB) is

monotonically increasing in yA, PAðy�AÞ � PBðy�BÞ is positive if y�A > y�A and negative if y�A < y�A.

Then, if ðy�A; y
�
BÞ is selected such that y�A > maxfy�A; y

�
Bg or y�A < minfy�A; y

�
Bg, cðy

�
A; y

�
BÞ > 0.

Since ð1 � �aÞ � ða � 1Þ, it follows that the stability condition in (33) is satisfied at ðy�A; y
�
BÞ and

ðy�A; y
�
BÞ is evolutionarily stable.

Note that for Strategy 3, the equilibrium strategy ðy�A; y
�
BÞ, y

�
A; y

�
B 6¼ 0, may not always be

unique, especially if 1 � �a is close to α − 1. For example, if 1 � �a ¼ a � 1 ¼ g, it is easy to

verify that �PAðy�BÞ ¼ PBðy�AÞ and �PBðy�AÞ ¼ PAðy�BÞ, and ~PAðy�BÞ ¼ ~PBðy�AÞ, which means that

yA ¼ y�B and yB ¼ y�A is also an equilibrium strategy of the game, in addition to the equilibrium

strategy yA ¼ y�A and yB ¼ y�B. It can also be proved evolutionarily stable: For yA ¼ y�B and
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yB ¼ y�A,

cðy�B; y
�
AÞ ¼

ðy�BÞ
�a � 2

�sA þ ðy�AÞ
�a � 2

�sB � ðy�BÞ
a� 2sA � ðy�AÞ

a� 2sB;
ð53Þ

and if �sA ¼ ðy�AÞ
1� �a
ðy�BÞ

a� 1sB and �sB ¼ ðy�BÞ
1� �a
ðy�AÞ

a� 1sA,

cðy�B; y
�
AÞ ¼ ðy

�
BÞ
� 1
ðy�AÞ

1� �a sB þ ðy�AÞ
� 1
ðy�BÞ

1� �asA

� ðy�BÞ
� 1
ðy�BÞ

a� 1sA � ðy�AÞ
� 1
ðy�AÞ

a� 1sB;
ð54Þ

which can be simplified to

cðy�B; y
�
AÞ

¼ ðy�AÞ
� �a
ðy�BÞ

� �a
ðy�B � y�AÞððy

�
AÞ

�a � 1sA � ðy�BÞ
�a � 1sBÞ

¼ ðy�Ay
�
BÞ
� �a
ðy�B � y�AÞð�PAðy�AÞ � �PBðy�BÞÞ:

ð55Þ

Note that �PAðy�AÞ � �PBðy�BÞ ¼ 0 for y�A ¼ 1=ð1þ ðsB=sAÞ
1=ð�a � 1Þ

Þ. Then, since �PAðyAÞ �
�PBðyBÞ is

monotonically decreasing in yA, PAðy�AÞ � PBðy�BÞ is negative if y�A > y�A and positive if y�A < y�A.

Then, if ðy�A; y
�
BÞ is selected such that y�A > maxfy�A; y

�
Bg or y�A < minfy�A; y

�
Bg, cðy

�
B; y

�
AÞ > 0.

Since ð1 � �aÞ � ða � 1Þ, it follows that the stability condition in (33) is satisfied at ðy�B; y
�
AÞ and

ðy�B; y
�
AÞ is also evolutionarily stable.

Appendix E: General models for multilingualism

Assume that there is a multilingual population of m languages. Let x = (x1, . . ., xm)T be the

strategy vector for an individual speaker, where xi is the frequency of the individual to speak

language i, Si xi = 1. Let y = (y1, . . ., ym)T be the strategy vector for the population, with yi

being the average frequency of the population to speak language i, Si yi = 1. Thus, an x-speaker

is an individual speaking language i with frequency xi, and a y-population is a population

speaking language i with average frequency yi.

Assume that the evolution of the given population is influenced only by competition on

population and social or economic preferences. Let Pi(yi) be the payoff function for the indi-

vidual who speaks only i when the average frequency of speaking i in the population is given

by yi. Assume that Pi, i = 1, . . ., m, are monotonically increasing functions. Then, the payoff

function π for an x-speaker in y-population can be defined by the average payoff, π(x, y) = Si

xi Pi(yi), with which an evolutionary game can be formulated. A Nash equilibrium of this game

is a strategy x� such that π(x�, x�)� π(x, x�) for any strategy x. A corresponding system of

replicator equations can be defined as

_yi ¼ SjyiyjðPiðyiÞ � PjðyjÞÞ; i ¼ 1; . . . ;m ð56Þ

Similarly, assume that the evolution of the given population is influenced only by possible

societal interventions. Let �PiðyiÞ be the payoff function for the individual who speaks only i
when the average frequency of speaking i in the population is given by yi. Assume that �Pi, i = 1,

. . ., m, are monotonically decreasing functions. Then, the payoff function �p for an x-speaker

in y-population can be defined by the average payoff, �pðx; yÞ ¼ Sixi
�PiðyiÞ, with which an evo-

lutionary game can be formulated. A Nash equilibrium of this game is a strategy x� such that

�pðx�; x�Þ � �pðx; x�Þ for any strategy x. A corresponding system of replicator equations can be
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defined as

_yi ¼ Sjyiyjð
�PiðyiÞ �

�PjðyjÞÞ; i ¼ 1; . . . ;m ð57Þ

Let ~PiðyiÞ ¼ lPiðyiÞ þ ð1 � lÞ
�PiðyiÞ, i = 1, . . ., m, and correspondingly,

~pðx; yÞ ¼ lpðx; yÞ þ ð1 � lÞ�pðx; yÞ, where λ 2 [0, 1]. Then, a general evolutionary game can

be formulated for the population with the influences of both language competition and societal

intervention. A Nash equilibrium of the game is a strategy x� such that ~pðx�; x�Þ � ~pðx; x�Þ for

any strategy x. A corresponding system of replicator equations can be defined as

_yi ¼ Sjyiyjð
~PiðyiÞ �

~PjðyjÞÞ; i ¼ 1; . . . ;m: ð58Þ

The payoff functions Pi and �Pi can be defined more specifically such as PiðyiÞ ¼ cya� 1
i si, 1< α

� 2 and �PiðyiÞ ¼ �cy�a � 1
i �si, 0 � �a < 1, where c and �c are scaling constants, si are indicators

for social or economic preferences, and �si are language reversing rates due to interventions,

0 � si;�si � 1.
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