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Abstract 

Background:  Post-translational modification plays an important role in the occurrence and development of various 
tumors. However, few researches were focusing on the SUMOylation regulatory genes as tumor biomarkers to predict 
the survival for specific patients. Here, we constructed and validated a two-gene signature to predict the overall sur-
vival (OS) of non-small cell lung cancer (NSCLC) patients.

Methods:  The datasets analyzed in this study were downloaded from TCGA and GEO databases. The least absolute 
shrinkage and selection operator (LASSO) Cox regression was used to construct the two-gene signature. Gene set 
enrichment analysis (GSEA) and Gene Ontology (GO) was used to identify hub pathways associated with risk genes. 
The CCK-8 assay, cell cycle analysis, and transwell assay was used to validate the function of risk genes in NSCLC cell 
lines.

Results:  Firstly, most of the SUMOylation regulatory genes were highly expressed in various tumors through the R 
package ‘limma’ in the TCGA database. Secondly, our study found that the two gene signature constructed by LASSO 
regression analysis, as an independent prognostic factor, could predict the OS in both the TCGA training cohort and 
GEO validation cohorts (GSE68465, GSE37745, and GSE30219). Furthermore, functional enrichment analysis suggests 
that high-risk patients defined by the risk score system were associated with the malignant phenomenon, such as 
DNA replication, cell cycle regulation, p53 signaling pathway. Finally, the results of the CCK-8 assay, cell cycle analysis, 
and transwell assay demonstrated that the two risk genes, SAE1 and UBA2, could promote proliferation and migration 
in non-small cell lung cancer cells.

Conclusions:  The two-gene signature constructed in our study could predict the OS and may provide valuable clini-
cal guidance for the treatment of NSCLC patients.
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Background
Lung cancer is considered the leading cause of can-
cer mortality, worldwide, with an approximate 1.8 mil-
lion deaths in 2020 [1]. Due to recent advances in early 
detection and treatment, the survival rate of lung can-
cer continues to increase worldwide. However, there are 
still patients who are in an advanced or locally advanced 
stages at their initially diagnosis, especially those who 
lives in the less economically developed areas [2], and 
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for these patients the 5-year overall survival (OS) rate 
remains very low [3]. Therefore, the identification of bio-
markers and risk factors that will help to develop new 
drugs able to improve OS is still an important and valu-
able task.

Protein post-translational modifications (PTMs) are 
chemical modifications achieved by the covalent addi-
tion of functional proteins, proteolytic cleavage of regu-
latory subunits, or degradation of entire proteins. These 
modifications include phosphorylation, glycosylation, 
ubiquitination, SUMOylation, acetylation, and methyla-
tion, which are involved in almost all aspects of normal 
cell biology and pathogenesis [4–8]. Recently studies 
showed that proteins modified by the SUMO family 
are commonly dysregulated in various tumors and are 
involved in several biological processes, such as cell cycle 
[9], proliferation [10], and metastasis [11, 12]. It has been 
suggested that the SUMOylation modification plays an 
important role in the occurrence and development of the 
disease, and may contribute to the development of new 
drug targets to improve the clinical treatment of NSCLC 
in the future.

In this study, we used a cohort extracted from The 
Cancer Genome Atlas (TCGA)-lung adenocarcinoma 
(LUAD) dataset as the training set and included the rel-
evant E1, E2, E3, and deSUMOylation enzymes involved 
in the SUMO modification process to construct a risk 
model. A set of risk assessment models was constructed 
through the least absolute shrinkage and selection opera-
tor (LASSO) Cox analysis. After survival analysis, it was 
found that our risk assessment model could predict the 
OS of LUAD patients, which was verified using GEO 
datasets. Next, to evaluate the applicability of the model, 
we further expanded the sample type and verified the 
validity of the model in the NSCLC patients of GEO 
datasets. We found that our risk prediction model could 
also distinguish OS of NSCLC patients. Finally, the role 
of risk genes, SAE1 and UBA2, was verified in NSCLC 
cell lines in cell proliferation, effects on the cell cycle, and 
migration. We believe that the risk model constructed 
in this study would be valuable in selecting patients at a 
high risk of relapse or to provide clinical guidance for the 
treatment of patients with NSCLC.

Materials and methods
Datasets
The processed mRNA expression profiles and clinical 
data of LUAD samples (n = 477) was download from the 
TCGA database (https://​portal.​gdc.​cancer.​gov) through R 
packages “TCGAbiolinks” [13]. The processed expression 
matrix and clinical data of validation cohorts (GSE68465, 
GSE37745, and GSE30219) were acquired from the web-
site of GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). 

Log2 (FPKM + 1) transformed normalized values were 
used for analysis. As all data analyzed in this study were 
openly acquired from TCGA and GEO databases, ethics 
approval was not obtained and the need for informed con-
sent was waived.

Data processing
To use the model derived from the TCGA training cohort 
in the validation cohorts of GEO, we corrected the 
expression profile data of TCGA and GEO using the R 
package “limma” and “sva” for verification. The data used 
in this study contain corresponding survival information, 
and samples with survival less than 30 days or incomplete 
clinical information were removed. Due to the tissue 
expression specificity of SUMO-4, there were some cases 
(42 of 595) with missing gene expression data, and for 
these genes we used median expression values to replace 
the missing data.

Selection of SUMOylation regulatory genes
As a post-translational modification, the process of 
SUMOylation is similar to that of ubiquitination, and 
requires E1-activating enzymes (SAE1 and UBA2), an 
E2-conjugating enzyme (UBE2I), and E3 ligases (PIAS1, 
PIAS2, PIAS3, PIAS4, RanBP2, and CBX4). SUMO-
specific peptidase enzymes (SENP1, SENP2, SENP3, 
SENP5, SENP6, and SENP7) could catalyze the deSU-
MOylation, and we also included SUMOs genes in this 
study. Furthermore, SUMO may covalently modify the 
PML protein [14], and the modified PML is localized in 
a nucleosome called polyprotein, which becomes nuclear 
bodies (PML-NBs) [15]. PML-NBs can be used as a scaf-
fold and is modified by SUMO to further recruit other 
proteins, to regulate protein activity and function [14, 
16–18]. Therefore, PML was also included in this study 
along with SUMOs, E1, E2, E3 and, SENPs.

Construction of a risk scoring system
The LASSO Cox analysis is a widely used dimensionality 
reduction analysis method [19]. By regressing and penal-
izing all variables, the coefficients of relatively unimpor-
tant variables became zero and were excluded from the 
model. Subsequently, the independent variables shown 
to has a greater impact on the dependent variable were 
used to calculate the corresponding regression coeffi-
cient, which is an optimal approach to construct a sig-
nature if there are numerous correlated covariates. The 
LASSO Cox regression analysis was used in the training 
set to construct a risk scoring system (RSS) by a linear 
combination of the risk genes defined by their calculated 
regression coefficients. Furthermore, the prognostic pre-
diction efficiency of this RSS was further validated in the 
GEO cohorts.

https://portal.gdc.cancer.gov
https://www.ncbi.nlm.nih.gov/geo/
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Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was applied in 
the TCGA training cohort to explore the critical path-
ways closely associated with high-risk groups divided 
by risk genes through the R package “ClusterProfiler” 
[20]. A P-value < 0.05 was considered statistically 
significant.

Oncomine database
The expression of SUMOylation regulatory genes across 
cancer types was analyzed in Oncomine which is a public 
access online database (https://​www.​oncom​ine.​org) [21].

Cell lines and cell culture
The A549 and H838 cell lines were cultured in RPMI-
1640 medium (Corning, Inc.) supplemented with 10% 
fetal bovine serum (FBS, Corning, Inc.), 100 U/mL pen-
icillin, and 100 μg/mL streptomycin at 37 °C in an incu-
bator with 5% CO2. Both cell lines were purchased from 
The Cell Bank of Type Culture Collection of the Chi-
nese Academy of Sciences.

Plasmids transfection
SAE1 and UBA2 plasmids were purchased from Vigen-
ebio (Shandong, China). The transfection reagent, 
Lipofectamine 3000 (Invitrogen, USA) was used to per-
form the plasmids transfection according to the manu-
facturer’s instructions. After 60 h of transfection, cells 
were collected for detecting the transfection efficiency 
through western blot.

Western blot analysis
In brief, after transfection with indicated plasmids for 
60 h, cells were collected and lysis in RIPA contain-
ing protease inhibitor (EMD Millipore, USA). Follow-
ing quantitation through BCA assay, proteins were 
separated by a 10% SDS-PAGE gel. Subsequently, the 
membrane was blocked for 1 h at room temperature 
and incubated with relevant primary SAE1 (cat. no. 
ab185552; 1:10000; Abcam), UBA2 (cat. no. ab185955; 
1:1000; Abcam), and SUMO1 (cat. no. 4930; 1:1000; 
Cell Signaling Technology). Protein were incubated 
with horseradish peroxidase (HRP)-conjugated anti-
rabbit IgG (cat. no. 7074; 1:2000; Cell Signaling Tech-
nology) and detected by enhanced chemiluminescence 
assay.

Cell proliferation assay
Cell proliferation was determined using a CCK-8 assay 
(Biosharp life science, Anhui, China). After transfec-
tion of SAE1 and UBA2 plasmids, cells were seed into 
96-well plates (1.5 × 103 cells/well) and 10 μL CCK-8 

solution was added into each well at the indicated time, 
incubated for 90 min. The optical density (OD) of the 
lysate was measured at 450 nm using a microplate spec-
trophotometer. Each experimental group was repeated 
a total of five times.

Transwell assay
Cell migration ability was measured by Transwell assay. 
After transfection of SAE1 and UBA2 plasmids simul-
taneously, approximately 5 × 104 A549 and H838 cells 
were resuspended with serum-free medium and seeded 
into the upper chambers. Subsequently, 900 μL medium 
supplemented with 20% FBS was added to the lower 
chamber. After a 24-h co-culture, the cells in the upper 
chamber were removed and the membrane was fixed in 
4% paraformaldehyde for 15 min. Finally, the membrane 
was stained with 0.1% crystal violet and migrated cells 
were counted under an inverted microscope.

Cell cycle analysis
After transfection with SAE1 and UBA2 plasmids, A549 
and H838 cells were collected and fixed at − 20 °C by 70% 
ethanol overnight. Following centrifugation at 500×g 
for 5 min at room temperature, cells were washed three 
times with PBS. Then 1 mL DNA staining solution Pro-
pidium iodide (PI) was added into the tube and the cell 
suspension was incubated for 30 min at room tempera-
ture and protected from light. A flow cytometer was used 
to examine the cell cycle distribution and FlowJo v10.4 
software was used for analysis.

Statistical analysis
The Wilcox test was used to evaluate the differential 
expression of the 20 SUMOylation regulatory genes. Sur-
vival curves were plotted by the R package “Survival” and 
“Survminer”. A nomogram was constructed using the R 
package “rms”. Univariate and multivariate Cox regres-
sion analyses were used to identify potential clinico-
pathological characteristics as independent prognostic 
factors. R software (version 3.5.1) was used to carry out 
the statistics and GraphPad Prism 8 software was used to 
perform unpaired Student’s t-tests to analyze differences 
between two groups. A P-value < 0.05 was considered to 
be a significant difference.

Results
Clinical relevance of SUMOylation regulatory genes 
across cancer types
To better understand the roles of SUMOylation regula-
tory genes in the development of tumors, we evaluated 
the expression of those genes in various tumor tissues 
compared to that of corresponding normal tissues via the 
Oncomine database. As shown in Fig. 1A, SUMOylation 

https://www.oncomine.org
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Fig. 1  The expression of SUMOylation regulatory genes across cancer types. A Summary expression of the 20 SUMOylation regulatory genes 
in various tumors versus corresponding normal tissue from the Oncomine database. B Summary of the correlation between expression of 
SUMOylation regulatory genes and patient survival. Red represents worse survival associated with a higher expression of SUMOylation regulatory 
genes, and blue represents the better survival. C Box plot of the expression of SUMOylation regulatory genes in TCGA-LUAD. (D) The expression 
heatmap of SUMOylation regulatory genes in TCGA-LUAD. *P < 0.05, **P < 0.01, and ***P < 0.001
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regulatory genes were highly expressed in multi-tumor 
tissues. Next, we explored the correlation between the 
expression of SUMOylation regulatory genes and patient 
survival across cancer types. As shown in Fig.  1B, a 
higher expression of most genes was associated with 
worse survival, indicating that SUMOylation may have 
some effects on tumor development. Finally, we exam-
ined the expression of twenty genes in LUAD. Compared 
to normal tissue samples, SAE1, UBA2, UBE2I, PIAS1, 
PIAS3, PIAS4, CBX4, SUMO1, SUMO2, SUMO4, SENP1, 

SENP3, SENP5, and SENP6 were significantly up-regu-
lated in LUAD tissue samples (Fig. 1C, D).

Construction and validation of the risk scoring system
To construct the risk scoring system, we used the LASSO 
Cox regression in the training cohort. Furthermore, we 
corrected for the expression of SUMOylation regulatory 
genes in TCGA-LUAD training cohort and GEO valida-
tion cohorts via R software to better examine the risk 
scoring system. Intersection of the gene expression in 

Fig. 2  Development and validation of the prognostic model based on SUMOylation regulatory genes. A, B The cv-fit and coefficient profiles of the 
SUMOylation related genes calculated by LASSO regression analysis. C, D Heatmap of the expression and clinicopathological characteristics of SAE1 
and UBA2 in high-risk and low-risk groups in the TCGA training cohort and GEO validation cohort. E, F Survival curve of risk genes in TCGA and GEO 
cohorts, respectively
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training cohort and validation cohort were subjected to 
further analysis. As shown in Fig. 2A and Supplemental 
Fig. 1A, a gene signature including two genes, SAE1 and 
UBA2, was established after the LASSO Cox regression. 
Subsequently, we constructed a risk score by linear com-
bination of each sample (risk score = 0.009044*SAE1 + 0.
004356*UBA2) (Fig. 2B). Using the median value of risk 
score of all samples as the cutoff, the TCGA-LUAD train-
ing cohort could be classified into two groups: high- and 
low-risk groups. Next, we explored the expression levels 
of the two risk genes in high- and low-risk groups. The 
results showed that the two genes, SAE1 and UBA2, were 
both highly expressed in the high-risk group (Fig.  2C). 
The event and risk score distribution of the training 
cohort was shown in Supplemental Fig.  1B, D. Moreo-
ver, patients in the low-risk group had an obviously 
longer OS than those in the high-risk group (P = 0.012) 
(Fig. 2E). To examine the robustness of the two-gene risk 
signature, the GSE68465 dataset was used to validate 
using the constructed risk score system. Similar to the 
results in the TCGA training cohort, compared with the 
low-risk group, the expression of SAE1 and UBA2 was 
significantly higher in the high-risk group (Fig. 2D). The 
event and risk score distribution of the validation cohort 
is displayed in Supplemental Fig. 1C, E. Meanwhile, the 
survival curve indicated that the OS of patients in the 
low-risk group was significantly higher than that in the 
high-risk group (P = 0.0019) (Fig. 2F).

Development of a nomogram for predicting overall 
survival in LUAD
Next, we carried out univariate and multivariate Cox 
regression analysis to verify whether the risk score sys-
tem could act as an independent prognostic factor for 
predicting OS. The results showed that the pathological 
stage, T stage (primary tumor), N stage (regional lymph 
node), and the risk score was significantly associated with 
OS in univariate analysis (Fig. 3A) while only the patho-
logical stage and risk score were still significantly asso-
ciated with OS in multivariate Cox regression analysis 
(Fig.  3B). Subsequently, we further examined whether 
the risk score was an independent factor to predict OS 
in the GEO validation cohort. As shown in Fig.  3C, D 
(Supplemental Fig.  2A, B), similar with results for the 
TCGA training cohort, the univariate and multivariate 
Cox regression analysis in the GEO validation cohort 
confirmed that the constructed risk score also could be 
an independent prognostic factor, while in multivariate 
Cox regression analysis the risk score was weakly statis-
tically significant (P = 0.057). In order to accurately pre-
dict the prognosis of LUAD patients, we then construct 
a nomogram incorporating those factors that are related 

to survival in the Cox regression analysis. The C-index 
value for the nomogram was 0.733 (CI, 0.681-0.787) 
(Fig. 3E). Subsequently, the 1-, and 3-year OS were used 
to evaluate the predictive accuracy of the nomogram 
(Fig.  3F-H, Supplemental Fig.  2C-E). Finally, to evalu-
ate the clinical utility of the nomogram, we applied the 
decision curve analysis (DCA) to estimate the benefits of 
the different models (Fig. 3I). Furthermore, the AUC also 
was used to validate the clinical utility of the nomogram 
in the GSE30219 dataset. The results showed that the 
AUC value of the prognostic model for 5-year survival of 
patients was 0.687 (Supplemental Fig. 2F).

Verification of OS prediction of risk scoring system 
in NSCLC
To verify the clinical application of this risk scoring sys-
tem, we further validated the model using two NSCLC 
cohorts from the GEO database: GSE37745 (n = 196) and 
GSE30219 (n = 307). In each cohort, patients were clas-
sified into high- and low-risk groups based on the cutoff 
obtained from the TCGA training cohort. The gener-
ated heatmap showed that the expression of SAE1 and 
UBA2 was highly expressed in the high-risk group com-
pared with the low-risk group (Fig. 4A, B). Next, the risk 
score and event distribution in the two GEO validation 
cohorts were compared, as shown in Supplemental Fig. 3. 
Finally, we obtained similar results as in the TCGA train-
ing cohort in terms of survival, patients in the high-risk 
group had a significantly shorter OS in both GSE37745 
(Fig.  4C) and GSE30219 (Fig.  4D) datasets, which indi-
cated that the model could be applied to NSCLC patients. 
Taken together, the results suggested that the prognosis 
model we constructed in this study could also predict the 
OS of NSCLC patients.

Gene ontology and gene set enrichment analysis
Based on the prognostic function of risk genes, we fur-
ther investigated the Gene Ontology (GO) between risk 
groups using the R package “ClusterProfiler”. Enrichment 
results showed that the high-risk group was mainly asso-
ciated with altered cell cycle, DNA replication, and chro-
mosome segregation, effects which are mostly related 
to tumorigenesis (Fig.  5A-C). Subsequently, GSEA was 
then performed to compare the risk groups. The results 
showed that the malignant hallmarks of cancer, includ-
ing DNA replication (NES = 2.66, P = 0.0012), cell cycle 
changes (NES = 2.787, P = 0.0011), the p53 signaling 
pathway (NES = 1.922, P =  0.0011), mismatch repair 
(NES = 2.319, P = 0.0013), the proteasome (NES = 2.515, 
P = 0.0012), and nucleotide excision repair (NES = 2.272, 
P =  0.0012) were significantly correlated with the high-
risk group (Fig. 5D-I), which suggested that the high-risk 
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Fig. 3  Construction and validation of the prognostic model. A, B Forest plot of univariate and multivariate Cox analysis in TCGA training cohort. 
C, D Forest plot of univariate and multivariate Cox analysis in the GSE68465 validation cohort. E Nomogram model for predicting the probability 
of 1-, and 3-year OS in the TCGA cohort. F-H Calibrations plots of the nomogram predicting 1-, and 3-year OS in the TCGA cohort. I Decision curve 
analysis of the nomogram in TCGA cohort compared with other models
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score may contribute to the development of tumor, cause 
that GSEA phenomenon were closely associated with 
tumor malignancy.

Risk genes promote proliferation and migration in NSCLC 
cell lines
Through the above analysis, we identified potential roles 
of risk genes in the development of NSCLC. In order to 
validate the conclusion, we further explore the effects of 
the two risk genes, SAE1 and UBA2, in vitro. Firstly, cell 
proliferation was tested using the CCK-8 assay. As shown 
in Fig.  6A and Fig.  6B, over-expression of SAE1 and 
UBA2 could promote the proliferation of A549 and H838 
cells. Subsequently, cell cycle staining was performed to 
evaluate the cell cycle distribution in both cell lines. As 
shown in Fig. 6C and Fig. 6D, after transfection of SAE1 
and UBA2 plasmids, the cell cycle transited from G1 to S 
phase in both A549 and H838 cells, indicating cell prolif-
eration was accelerated by the two risk genes. Finally, we 
evaluated the impact of SAE1 and UBA2 on the potential 

migration of NSCLC cells using Transwell migration 
assays. Results shown that over-expression of SAE1 and 
UBA2 could significantly enhance the migration of the 
NSCLC cells (Fig. 6E and Fig. 6F).

Discussion
Small ubiquitin-related modifiers 1, 2, 3, and 4 (SUMO-
1, − 2, − 3, and − 4) are members of the ubiquitin-like 
protein family having a molecular weight of 10 kDa [22]. 
Similar to ubiquitin, the SUMO family can target dif-
ferent proteins with multiple biological functions [23]. 
Ubiquitin mainly regulates the degradation of its target 
protein, while SUMO proteins may couple multiple pro-
teins to perform biological function [24–26].

In the present study, we attempted to develop and 
validate a novel risk score for predicting the OS in 
LUAD patients based on the expression of SUMOyla-
tion regulatory genes. Firstly, to explore the effects of 
regulatory genes in the occurrence and development 
of tumors, we verified the differential expression of 20 

Fig. 4  The prognostic model predicts the overall survival of NSCLC patients. A, B Heatmap of the expression and clinicopathological characteristics 
of SAE1 and UBA2 in GSE37745 and GSE30219 datasets, ***P < 0.001. C, D Survival curves of SAE1 and UBA2 in the GSE37745 (P = 0.034) and 
GSE30219 (P < 0.0001) cohorts, respectively
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SUMOylation regulatory genes in the Oncomine and 
TCGA databases. The results showed that compared 
with the corresponding normal tissues, most of the 20 
genes were highly expressed in various tumors, sug-
gesting that they may have some effects on the occur-
rence and development of tumors. Subsequently, we 

constructed a two-gene signature including SAE1 and 
UBA2 using Lasso Cox regression analysis to predict 
the OS in LUAD patients. A significant distinction was 
observed between low- and high-risk patients in both 
the training cohort (TCGA-LUAD) and the validation 
cohort (GSE68465). Interestingly, we expanded the 

Fig. 5  The association between high-risk group patients and cancer-related pathway. A-C the top enriched biological processes, cellular 
components, and molecular functions analysis of high- versus low-risk groups. D-I The cancer-related pathways enriched in high-risk group patients
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scope of application in the validation cohorts and found 
that this risk score system could also distinguish the OS 
of patients in NSCLC cohorts (GSE37745, GSE30219), 
indicating the broad application of this gene signature 
in prognosis prediction. Moreover, we incorporated 
age, sex, stage, TNM, and the risk score into univari-
able and multivariable Cox regression analyses. The 
results showed that the risk score was a prognostic fac-
tor in both the training cohort and validation cohorts, 
though it remained a weak significance in the mul-
tivariate Cox analysis of the GEO validation dataset 
(GSE68465, P = 0.057). As E1 activating enzymes, SAE1 
and UBA2 are involved in various of tumors [11, 27]. 
It has been reported that SAE1 can mediate the pro-
gression of human glioma by activating the AKT sign-
aling pathway through SUMOylation [28]. SAE1 is also 
closely related to the development of hepatocellular 

carcinoma, and is helpful for its diagnosis and prog-
nosis [29]. In addition, UBA2 has been reported to 
promote the progression of colon cancer, liver cancer, 
breast cancer, and other tumors [30–32]. In terms of 
the potential mechanisms, GSEA enrichment results 
showed that the malignant hallmarks of cancer, includ-
ing disturbances in DNA replication, the cell cycle, the 
p53 signaling pathway, mismatch repair, proteasome, 
and nucleotide excision repair, had significant cor-
relations with the high-risk group. Li et  al. found that 
SUMOylation-related regulatory molecules could be 
used as diagnostic markers for glioma and participates 
in its carcinogenesis. Functional enrichment analysis 
found that it is closely related to the cell cycle and DNA 
replication [33]. In our study, the findings of the func-
tional enrichment analysis of SUMOylation regulatory 
molecules in NSCLC were essentially the same as those 

Fig. 6  SAE1 and UBA2 promote the proliferation and migration in NSCLC cells. A, B The CCK-8 assay of A549 and H838 cells transfected with SAE1, 
UBA2, or negative control plasmids. C, D Cell cycle analysis by flow cytometry of A549 and H838 cells transfected with SAE1, UBA2, or negative 
control plasmids. E, F Transwell migration assay results from A549 and H838 cells co-transfected with SAE1 and UBA2, or negative control plasmids. 
*P < 0.05, **P < 0.01, and ***P < 0.001
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reported previously. In addition, Liu et al. reported that 
the SENP1 was a risk factor of NSCLC and could con-
tribute to chemoradiotherapy resistance [34], indicat-
ing that SUMOylation regulatory genes may have an 
important role in various tumors. Besides, Ginkgolic 
acid, as a botanical drug, could inhibit the interaction 
of E1 enzymes and SUMO protein, which has been 
found its anti-tumor effects in ovarian cancer [35], 
endometrial cancer [36], gastric cancer [37], liver can-
cer [38], and lung cancer [39]. Consistent with the pre-
vious studies, our results of in  vitro experiments also 
confirmed that targeting the E1-SUMO intermediate 
may have a potential anti-tumor effect.

In addition, Wu et  al. analyzed the role of SUMOyla-
tion regulatory molecules in pan-cancer types and found 
that SUMOylation regulatory molecules presented exten-
sive genetic variation and expression changes and may 
provide valuable reference for clinical diagnosis and 
treatment. Their research demonstrates that SENP1, 
SENP7, SAE1, and TRIM27 could be used as risk genes to 
predict OS in LUAD [40]. In our study, we also found that 
SAE1 could be considered as a risk gene. Different from 
previously published studies, the UBA2 risk gene identi-
fied in our study may have the same importance as SAE1 
in the OS prediction. Furthermore, our risk model has a 
wider range of applications, as it can also predict the OS 
in NSCLC.

Despite the interesting findings in our study, there are 
still some limitations. Firstly, to make the model have cer-
tain applicability, only the common clinical information 
in TCGA training cohorts and GEO validation cohorts 
was included in this study. Thus, the lifestyle, mutation 
features, or other information were not included. Sec-
ondly, compared with the tumor stage, the nomogram 
we constructed had a certain discriminatory advantage, 
but this advantage was not as marked in the DCA curve 
analysis. Finally, SUMOylation is closely associated with 
immune function. In the future, we will further evalu-
ate the relationship between our risk gene signature and 
immune cell infiltration in NSCLC disease.

In conclusion, we constructed and validated a two-
gene signature, which could be used to predict of the OS 
of NSCLC. This signature may act as a new reference for 
clinical treatment and is valuable for screening out high-
risk patients who require intensive follow-up and person-
alized intervention.
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