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Understanding the complex neuromuscular strategies underlying behavioral adaptation in healthy individuals and motor recovery
after brain damage is essential for gaining fundamental knowledge on the motor control system. Relying on the concept of muscle
synergy, which indicates the number of coordinated muscles needed to accomplish specific movements, we investigated behavioral
adaptation in nine healthy participants who were introduced to a familiar environment and unfamiliar environment. We then
compared the resulting computed muscle synergies with those observed in 10 moderate-stroke survivors throughout an 11-week
motor recovery period. Our results revealed that computed muscle synergy characteristics changed after healthy participants
were introduced to the unfamiliar environment, compared with those initially observed in the familiar environment, and
exhibited an increased neural response to unpredictable inputs. The altered neural activities dramatically adjusted through
behavior training to suit the unfamiliar environment requirements. Interestingly, we observed similar neuromuscular behaviors
in patients with moderate stroke during the follow-up period of their motor recovery. This similarity suggests that the
underlying neuromuscular strategies for adapting to an unfamiliar environment are comparable to those used for the recovery
of motor function after stroke. Both mechanisms can be considered as a recall of neural pathways derived from preexisting
muscle synergies, already encoded by the brain’s internal model. Our results provide further insight on the fundamental
principles of motor control and thus can guide the future development of poststroke therapies.

1. Introduction

Behavioral adaptation to unpredictable environmental
changes is one of the most powerful capabilities for perform-
ing activities of daily living (ADL). For example, we can walk
not only on flat asphalt but also on gravel and we can easily
move from the living room to the kitchen no matter how
the furniture is arranged or even how frequently it is rear-
ranged. Moreover, behavioral adaptation has been found to
be essential for enhancing the quality of communication
between people [1]. Thus, without adaptability to our sur-
roundings, we would be unable to complete even simple
ADL. Clarifying the computational mechanisms that underlie

behavioral adaptation is necessary for understanding the
fundamental principles of the motor control system and
developing treatment for related disorders.

There have been many attempts to explain behavioral
adaptation in humans, by analyzing neuronal activity [2–7]
and biological control architectures [8–11] and by proposing
learning mechanisms based on biological systems [12–16].
However, the computational mechanism that governs behav-
ioral adaptation remains unsolved.

From the viewpoint of behavioral adaptation, the redun-
dancy of the musculoskeletal system plays a leading role in
adjusting our behavior to the environment, as Bernstein
pointed out half a century ago [17]. For instance, even the
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relatively simple motion of the shoulder joint is achieved by
the complex combination of at least nine muscles [18].
Investigating how the central nervous system (CNS) groups
and recruits muscles depending on the task and knowledge
of the surrounding environment may provide a fundamental
clue behind neuromuscular adaptability.

To explain the plausible biological computational mech-
anism for choosing the appropriate combination of muscles
to control point-to-point movements, several researchers
have proposed the notion of muscle synergy [19–23]. Mus-
cle synergy, defined as the relative weight of muscle activa-
tions driven by common excitation primitives, provides a
simple control algorithm, yet allowing for complex motor
behavior [7].

Some motor characteristics of human behavior could be
deciphered when behaviors were analyzed based on muscle
synergy [24, 25]. In our previous study [26], we introduced
two indices, based on muscle synergies, and experimentally
showed that they represent the efficiency by which basic
movement skills (e.g., upright balance skills) are adapted to
the environment. The purpose of the current study was to
determine whether neuromuscular control strategies are
comparable between healthy individuals during their adapta-
tion to an unfamiliar environment and stroke survivors dur-
ing their recovery. Note that we do not compare here how the
muscle synergy pattern is shaped in each case but how the
increasing or decreasing of muscle synergy dimensionality
is similar between adaptation/recovery. This similarity could
be related to the model adopted by the CNS to represent how
much it knows about the environment. We considered that
this would provide crucial insight and better understanding
for developing poststroke rehabilitation systems, better tai-
lored to the treatment of specific motor deficits. To facilitate
this study, we have focused on investigating the muscle syn-
ergy adaptability of a well-understood single-joint motor
task, such as shoulder flexion, which was introduced to the
poststroke patients and shoulder adduction introduced to
the healthy participants [27]. The reason for presenting two
different types of movements to each type of participants is
due to the nature level of the participants. Shoulder flexion
task was introduced to the patients due to their constrained
range of joint motion. For healthy participants, on the other
hand, shoulder adduction was introduced due to limitation
of the need of using robotic manipulandum capable to pro-
duce hard enough task to stimulate their muscle synergy
adaptation. Despite focusing on this task, we believe in the
generalization of synergy features [28].

We hypothesized that, in poststroke patients with
motor dysfunctions, the brain responds as if experiencing
an unknown environment due to the interruption of
established neural pathways, similar to what occurs when
healthy individuals experience an unfamiliar environment.
We also argue that the use of muscle synergy analysis for
clarifying the pathology of poststroke patients with unilat-
eral motor impairment could provide greater diagnostic
accuracy and may help to design more effective poststroke
rehabilitation programs than using common clinical tests,
which cannot illustrate progress at a neural level during
rehabilitation [29–32].

In this study, we compared the behaviors of poststroke
patients during an eleven-week recovery phase with those
of healthy participants during performance of movements
in familiar and unfamiliar environments/tasks. We also ana-
lyzed changes in muscle synergy in both scenarios.

2. Materials and Methods

2.1. Experimental Setup and Protocol

2.1.1. Healthy Participants: Experimental Setup

(1) Participants. Nine healthy adults (age: 38 1 ± 7 8 years
(mean ± standard deviation (SD))) participated in this exper-
iment. All participants were right handed and reported no
neurological or upper limb muscular impairments. The
experimental protocol was approved by the RIKEN ethics
committee. Written informed consent was obtained from
all participants.

(2) Robotic Manipulandum. Participants were asked to con-
trol the gripper position of a robotic manipulandum (Force
Dimension, Nyon, Switzerland) by using their right arm
(see Figure 1(a)). The manipulandum contains a bilateral
control system, allowing participants to experience the
computer-generated virtual space through the forces gener-
ated. The robot manipulandum was used to constrain motion
and generate an “unfamiliar” environment to healthy partic-
ipants, by introducing random stiffness “resistance” to the
arm movement, in various levels; three types of resistance
were used: 4, 7, and 10N. During the experiment, partici-
pants were seated on an adjustable chair with the right hand
holding the knob of the manipulandum from the side. A
monitor display showing the virtual space was placed in front
of the participant to provide feedback for the performance on
the assigned tasks.

(3) Electromyography (EMG). Six surface EMG electrodes
were placed on the participant’s right shoulder to record
the activity of primary muscles. Due to the nature of the
assigned task, comprising right hand horizontal shoulder
adduction, the following muscles were recorded: pectoralis
major (PM), deltoid anterior (AD), infraspinatus (IS), teres
major (TM), latissimus dorsi (LD), and biceps brachii (BI).
EMG electrodes were positioned in accordance with the
guidelines of Surface EMG for the Non-Invasive Assessment
of Muscles—European Community project [33]. EMG
signals were sampled at 1 kHz, high-pass filtered with a cutoff
frequency of 30Hz, root-mean-square rectified, and
smoothed using a moving average with a window length of
10 samples. The EMG from each muscle was normalized to
its peak value from the experimental set. EMG data were syn-
chronized with the manipulandum data through the use of a
common clock and trigger.

2.1.2. Healthy Participants: Experiment Protocol. The partici-
pants were asked to perform tasks in three different
environments:
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(1) Standard Environment. We asked each participant to
grasp the knob of the manipulandum and perform 10
trials of horizontal shoulder adduction from a
predefined starting position (see Figure 1(b)). To
ensure that the experimental constraints were sim-
ilar across individuals, we instructed participants
not to use their elbow, to maintain a constant con-
traction of their shoulder muscles, and to complete
each trial in 1 s. In this environment, the manipu-
landum did not produce any significant resistance
on the participant’s arm. The starting and ending
points of the movement were denoted by the
manipulandum knob position and displayed on
the screen in front of the participants. Particularly
for this environment, participants were asked to
perform 20 practice trials for familiarizing them-
selves with the environment before the start of
data collection

(2) Modified Environment. To introduce an unfamiliar
environment to the participants, we modified the
manipulandum responses, compared to those used
in the standard environment. In this environment,
the manipulandum randomly applied resistance
varying from 4 ~ 10N on the participant’s arm, oppo-
site to the movement’s direction (see Figure 1(b)).
The resistances were applied randomly. Thus, par-
ticipants could not predict the resistance, thereby
reducing the possibility of adaptation at this stage.
We asked each participant to repeat the horizontal
shoulder adduction task 20 times

(3) Adaptation Environment. Here, we examined the
participants’ adaptability to the unfamiliar environ-
ment through training. We determined this environ-
ment as unfamiliar, because even healthy participants
could not master the movement in a single trial [34].
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A display to show the 
workspace (gray) and 
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position (white)
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Figure 1: Experimental setup and protocol for healthy participants (more details are in [37]). (a) Participant posture, manipulandum, display
positions, and workspace (30 cm long). The white circle in the display illustrates the position of the manipulandum knob in the space. The
knob position was displayed to the participant to simplify tracking in the assigned task (the display moved horizontally with the knob
from the starting point to the ending point of the workspace). (b) Top view illustrating the relevant muscles in the upper torso and right
arm in the two tasks for the healthy group—left: the task in the standard environment; right: the task in the modified and adaptation
environment. Standard environment: move the knob from the starting point to the ending point 10 times (no resistance applied). Modified
environment: move the knob from the starting point to the ending point 20 times (no resistance and various resistances applied
randomly). Adaptation environment: move the knob from the starting point to the ending point 15 times for two sessions separated by
resting time (7-N resistance applied by the manipulandum at all trials). PM: pectoralis major; AD: deltoid anterior: IS, infraspinatus; TM:
teres major; LD: latissimus dorsi; BI: biceps brachii. (c) Side view illustrating the task for the poststroke group. Five muscles were recorded
in both the intact and the affected shoulder. Muscles that were shared with healthy participants are the PM, AD, IS, and BI. While BR,
brachioradialis, was newly introduced to accommodate the task.
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At this stage, we asked participants to perform 30
trials of horizontal shoulder adduction. The partici-
pants were given a rest period of 120 s after the first
15 trials to minimize muscle fatigue. In this environ-
ment, a resistance of 7N was applied continuously
for all trials (although we have done a pilot of resis-
tance varying from 4, 7, to 10N, the 7N resistance
is the one which we could see little change on the
initial computed muscle synergy. The 4N resistance
showed no muscle synergy changes, and in the 10N
resistance, it was hard for the participant to adapt
due to muscle fatigue)

2.1.3. Poststroke Patients: Experimental Setup

(1) Participants. Ten poststroke patients (age: 66 5 ± 11 6
years (mean ± SD)) participated in this experiment (see
Table 1). All patients were recruited 1.5~2 months after
stroke onset and were diagnosed with moderate unilateral
motor impairment according to the stroke impairment
assessment set (SIAS) (score, 2-4 out of 5) [35, 36]. The
experiment protocol for stroke patients was approved by
the ethics committee of the National Center for Geriatrics
and Gerontology, Aichi, Japan.

(2) Electromyography. Surface EMG was recorded from mus-
cles of the patient’s affected and intact shoulders, while per-
forming a shoulder flexion task, as described below. Five
primary muscles were recorded in each shoulder: PM, AD,
IS, BI, and brachioradialis (BR).

(3) Experiment Protocol. Due to the nature of the patients’
impairment and their constrained range of joint motion, we
asked the patients to do a simple bimanual shoulder flexion
task. This was to compare muscle synergy in the intact and
affected arms of the same patient, instead of just comparing
it with that in the arm of a healthy individual. A set of 10
to 15 trials for each session was conducted by each patient,
to avoid fatigue (see Figure 1(c)).

2.2. Muscle Synergy Computation. Muscle synergy has been
described as a systematization method by which some

muscles are activated in synchrony to complete a task
[22, 37]. It defines how muscles are synchronized using
the following fixed matrix:

M =WC,
M ∈ Rm×t ,
W ∈ Rm×n,
C ∈ Rn×t

1

Here, M refers to the time sequence signals activating
m muscles and t is the length of the time sequence. W is
the fixed matrix defining the synchronization of m mus-
cles. n represents the number of synergies and should
be smaller than m. W is normalized as

W = W 1 W 2 W 3 ⋯W n ,

W i = 1,
2

where W i denotes the vector of size, expressed as

W i ∈ Rm 3

We refer to W as the synergy space. C refers to the
control signal activating m muscles. Note that n time
sequence signals in C are changed to m signals in M
using matrix W in equation (1). Therefore, the dimen-
sionality for controlling m muscles is reduced from m
to n using this system. The conceptual image of this sig-
nal transformation is shown in Figure 2(a).

We can estimate W and C from recorded EMG data
using nonnegative matrix factorization (NMF) [38]. The syn-
ergy dimension (SyD) of the neural signal n is one of the
important parameters in determining the characteristics of
muscle synergy. An appropriate n must be chosen according
to the behavior, to estimateW and C. Thus, we chose n using
the following steps (see also the flowchart in Figure 2(b)):

(i) Acquisition of EMG data for m muscles and gen-
eration of time sequence data for muscle activa-
tions (M) by filtering the raw EMG data

(ii) Temporary definition of n as nt and estimation of
Wnt and Cnt using NMF

(iii) Computation of the estimation error E as

E =M −WntCnt 4

(iv) Computation of the size of E, i.e., the variance
accounted for (VAF), such that

VAF = 1 − E 2
F

M 2
F
, 5

Table 1: Patients’ demographics table.

Patient no. Sex/age SIAS Stroke type

P1 M/49 3 Cerebral infarction

P2 M/58 4 Cerebral infarction

P3 M/75 2 Cerebral infarction

P4 M/63 2 Brainstem infarction

P5 M/70 4 Cerebral infarction

P6 F/64 3 Acute subdural hematoma

P7 M/85 4 Cerebral infarction

P8 F/51 3 Cerebral infarction

P9 F/76 2 Cerebral infarction

P10 M/74 3 Cerebral infarction

P: patient; M: male; F: female; SIAS: stroke impairment assessment set.
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where F denotes the Frobenius norm. If VAF was smaller
than a predefined threshold, we changed nt to (nt + 1) and
computed Wnt and Cnt again by NMF. VAF increases as nt
increases. The threshold is decided based on the behavior,
but, in general, we used approximately 90% as a threshold,
to indicate a good fit to the original data [38]. By such a
threshold, we guarantee that each recorded muscle curve
would be well reconstructed

The computation is continued by increasing nt to (nt + 1)
until VAF becomes larger than the threshold. We used the
value of nt + I as the dimension of the neural signal, thereby
completing our selection of n and estimation of W and C.

2.3. Behavior Analysis Using Muscle Synergy. Both W and C
represent interesting features of human motor behavior, as
reported by Safavynia et al. [38]. Bizzi et al. [39] showed that
W is not specific to individuals but is specific to behavior.
Cheung et al. [40] analyzed muscle synergies in stroke survi-
vors and showed that, at the beginning of recovery, some
dimensions in synergy space W of the affected arm were
merged, in comparison with those of the intact arm.

To analyze behavior by muscle synergy, we asked partic-
ipants to repeat the assigned task several times (20-30 in
healthy participants, 10-15 in stroke patients) and then com-
puted n, W, and C for each trial, considering the time
between the starting/ending of the movement (approxi-
mately 1.5 s). By comparing these parameters between trials,
we derived the features of the behaviors. In our previous

study [26], we introduced indices of similarW and C at each
trial and showed that they represent the ability of automatic
posture response in healthy participants. Here, we used the
same method for computing n,W, and C, to identify changes
in behavior during adaptation to an unknown environment.
In the case of adaptation analysis, n represents the level of
adaptation to the environment.

3. Results

3.1. Healthy Participants. All healthy participants completed
the assigned tasks successfully.

3.1.1. Dimensions of Synergy Space

(1) Standard Environment. Figure 3(a) shows the dimension-
ality of the resulting muscle synergies in participants per-
forming the task in the standard environment. All
participants needed two-dimensional muscle synergies to
complete the task (i.e., the VAF SyD.2 was the minimum
number of synergies that exceeded the assigned >90% thresh-
old). The functional role of each synergy is illustrated in
Figure 3(b): Synergy #1 (w1) seems to mainly be involved
in activating the prime mover muscles (PM and AD), which
are primarily responsible for shoulder adduction. In contrast,
Synergy #2 (w2) seems to involve the manipulation of neu-
tralizer muscles (BI, LD, IS, and TM), which assist the
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Figure 2: (a) A conceptual-mathematical model for identifying muscle synergies. (b) A flowchart that illustrates the process to estimate
n, W, and C.
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internal rotation of the shoulder joint and are essential to
complete the desired shoulder adduction.

(2) Modified Environment. Figure 4(a) shows the dimension-
ality of the resulting muscle synergies during task perfor-
mance in the modified environment. When resistance was
randomly applied, one-dimensional muscle synergy, on aver-
age, was observed in all participants for completing the task,
instead of the original two-dimensional synergies. The iden-
tified synergy in this environment seemed to involve both the
prime mover and neutralizer muscles (see Figure 4(b)),
which could, in turn, have led to the reduction in the range
of shoulder joint internal rotation, making the movement
uncomfortable (participants reported of being tired after a
few movements).

(3) Adaptation Environment. Figure 5(a) shows the dimen-
sionality of the resulting muscle synergies in participants
while performing the last 15 trials of the task in the modified
environment (resistance was applied continuously). After
behavioral adaptation to the unfamiliar environment, all par-
ticipants returned to using two-dimensional muscle syner-
gies to complete the task. The resulting synergies were

similar in function to those observed in the standard environ-
ment, i.e., w1 and w2, which appeared to activate the prime
mover and neutralizer muscles, respectively (see Figure 5(b)).

Figure 6(a) shows the gradual transformation from one-
dimensional muscle synergy to two-dimensional muscle syn-
ergies over the 30 trials. The one-dimensional synergy
(SyD.1) gradually decreased to below the threshold. After
behavioral adaptation, the two-dimensional synergies
(SyD.2) recovered to control the movement (SyD 2 > 90).

3.1.2. Energy Consumption. To understand the mechanism of
muscle synergy formation during adaptation by the CNS, we
included the energy consumption calculations [41]. To inves-
tigate the changes in system energy consumption required to
complete the task in the adaptation environment [42, 43], we
measured the average total muscle activations over the trials
(see Figure 6(b)). We found that, after approximately 10 tri-
als, lower muscle activation was needed to complete the task,
indicating that joint movements and muscle activations are
gradually improved by task repetition through environmen-
tal interaction, thus minimizing energy consumption by the
movement, by finding more efficient motor solutions, i.e.,
correct muscle synergy recruitments, to complete the task.

60

70

80

90

100

0 1 2 3 4 5 6

V
A

F 
(%

)

Number of synergies

(a)

0

1

PM AD BI LD IS TM

w1

Muscles

0

1

PM AD BI LD IS TM

w2

Muscles

(b)

Figure 3: Synergy space at the standard (familiar) environment. (a) The variance accounted for (VAF) (%) all possible identified synergies
from the recorded electromyograph while performing the task in the standard environment (mean ± SD, 9 participants). The dashed
vertical line identifies the estimated number of utilized synergies that exceeded the threshold (90%; represented by the horizontal dashed
line). (b) Muscle synergy vectors (W) for two-dimensional muscle synergies (SyD.2; mean ± SD, 9 participants). The orders of w1 and w2
were sorted based on their activation time (C). PM: pectoralis major; AD: deltoid anterior; BI: biceps brachii; LD: latissimus dorsi; IS:
infraspinatus; TM: teres major.
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3.2. Poststroke Patients.All poststroke patients completed the
assigned tasks successfully.

3.2.1. Muscle Synergy Dimensionality for the Stroke-Affected
and Intact Arms. Figure 7 shows the dimensionality of the
resulting muscle synergies of the affected and intact arms of
the 10 patients (mean ± SD). On average, one-dimensional
synergy was used to produce motion in the affected arm,
while two-dimensional synergies were used to produce
motion in the intact arm.

Regarding the functionality of the resulting synergies on
the intact arm, similar to the healthy participants, w1 was
involved in activating the prime mover muscles, while w2
was involved in activating the neutralizer muscles. The one-
dimensional synergy in the affected arm, however, seemed
to activate all recorded muscles in synchrony, revealing an
abnormal synergy [44].

Figure 8 illustrates the adaptation process of the one-
dimensional synergy (SyD.1) in all patients over the 11-
week period in which they engaged in a regular rehabilitation
program. Although the synergy remained one-dimensional,
there were notable changes in the level of VAF, which resem-
bled the formation of two synergies. Interestingly, these

results indicate the gradual improvement in muscle recruit-
ment in patients. Instead, evaluation by SIAS was unable to
demonstrate this improvement along the test period for most
patients (SIAS index still unchanged).

4. Discussion

The results of this study suggest that the CNS utilizes sim-
ilar neuromuscular strategies both in the case of healthy
individuals, when they adapt to an unfamiliar environ-
ment, and in that of poststroke patients, when they
recover their motor function. Despite the energy ineffi-
ciency of movements produced by low-dimensional muscle
synergies, the CNS seems to opt for this module at the ini-
tial stages of facing a new situation (or when the internal
model is unable to predict appropriately the system out-
put), to handle any unpredictable environmental inputs.
By interacting with the environment, the CNS progres-
sively learns to recruit more muscle synergies to conserve
energy when it ascertains that the environment is now safe
or, in other words, when it rebuilds enough internal model
and is able to rely on it.
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Figure 4: Synergy space at the disturbed (unfamiliar) environment. (a) The variance accounted for (VAF) (%) all possible identified synergies
from the recorded electromyograph while performing the task in the modified environment (mean ± SD, 9 participants). The dashed vertical
line identifies the estimated number of utilized synergies that exceeded the threshold (90%; represented by the horizontal dashed line). (b)
Muscle synergy vectors (W) for one-dimensional synergy, SyD.1. PM: pectoralis major; AD: deltoid anterior; BI: biceps brachii; LD:
latissimus dorsi; IS: infraspinatus; TM: teres major.
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4.1. Features of Behavioral Adaptation in Healthy
Participants. The experimental results in healthy participants
revealed that the formation of muscle synergies is slightly
altered when experiencing sudden changes in the familiar
environment. The two-dimensional muscle synergies operat-
ing in the familiar environment were reduced to a single
dimension when participants were first presented to the
unfamiliar environment. However, this dimensionality
reduction was accompanied by a simultaneous increase in
muscle activations in response to the unfamiliar environ-
mental inputs, suggesting that all muscles may be placed
in a “standby” status, in order to promptly react to any
unpredictable or unsafe input potentially occurring in the
unseen environment/task, despite being energy inefficient.
Nevertheless, our experiments show that training leads to
a gradual adaptation to the new environment, resulting
in the quick recovery of muscle synergy dimensionality
to its original state. Moreover, the resulting energy con-
sumption gradually decreases after the proper motor solu-
tions are found. Note that the evaluation of the adaptation
to the new environment, at this stage, was considered
based on the computed muscle synergy of the healthy
arm performing in a familiar environment.

The abovementioned findings are based on the assump-
tion that movements required for the investigated task shared

a commonality across humans. While it is true that for some
specific tasks, muscle synergy vectors could vary between
individuals, for example, a bench press task at different veloc-
ities, Samani and Kristiansen [45], the investigated task and
perturbation experiments in this study have led us to con-
clude that muscle synergy vectors adequately account for
the EMG activity associated with elbow movements in the
pool of investigated subjects. This is also coherent with prior
findings that reported stereotyped patterns of motor modules
or synergies underlying the control of this motor task in
healthy humans, demonstrating complete muscle patterns
for specified arm movement task goals [23, 46].

4.2. Features of Motor Recovery after Stroke. Instead of
directly examining muscle synergies, the VAF level can be
used as it also seems to encode motor impairments. Our
results in poststroke patients showed a gradual decline in
the VAF over the recovery period. This could be interpreted
as an effort by the CNS to optimize arm movement by tuning
possible motor solutions, similar to what happens in healthy
participants dealing with unfamiliar environments. Notably,
some patients showed recovery in the number of recruited
muscle synergies, i.e., from one- to two-dimensional muscle
synergies, and their clinical score also improved. These
results suggest that the dimensionality of muscle synergy
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Figure 5: Synergy space after being adapted to the unfamiliar environment. (a) The variance accounted for (VAF) all possible identified
synergies from the recorded electromyograph while performing the task in the adaptation environment (mean ± SD, 9 participants). The
dashed vertical line identifies the estimated number of utilized synergies that exceeded the threshold (90%; represented by the horizontal
dashed line). (b) Muscle synergy vectors (W) in the two- dimensional synergies, SyD.2. PM: pectoralis major; AD: deltoid anterior;
BI: biceps brachii; LD: latissimus dorsi; IS: infraspinatus; TM: teres major.
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can be used to measure the level of motor function recovery.
A similar conclusion was deduced in a study by Cheung et al.
[40]. Note that at this stage, the recovery level was evaluated
based on the computed muscle synergy from the intact arm
of the same patient performing the same motor task.

4.3. Neurophysiological Interpretations of Adaptation and
Recovery. The question of whether muscle synergy during
stroke recovery is newly constructed or simply adapted
from existing synergies is a long-standing debate in neuro-
science [47]. Our results here suggest that muscle syner-
gies during recovery from moderate stroke most likely
represent an adaptation of existing synergies, similar to
what occurs in healthy individuals when neurons adapt
to an unfamiliar environment.

In this study, we found that both motor adaptation in
healthy participants and recovery in poststroke patients have
comparable features regarding synergy dimensionality.

Synergies in both cases varied as a function of the degree of
control system adaptation to the environment. We postulate
that, in healthy participants, the experience of the unfamiliar
environment causes a temporal obstruction in CNS neural
processes, as well as in muscles, which prevents the forma-
tion of efficient sets of muscle synergies, i.e., safety over-
comes the efficiency. This can be inferred by the
unregulated muscle activities and reduction in utilized mus-
cle synergy dimensions. Similarly, in poststroke patients,
lower dimension synergies operate in the stroke-affected
arm than in the intact arm. Over time, however, we found
that the dimensions of utilized synergies gradually increase
in both healthy and poststroke participants, leading to the
emergence of efficient motions.

4.4. Recruitment Strategies of Muscle Synergies and Internal
Model Uncertainty. Behavioral studies have shown that the
CNS employs various strategies during interaction with the
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environment to ensure the best possible protection for the
body with the lowest possible energy consumption [48, 49].
Hypothetically, these strategies are mainly chosen depending
on the accuracy of existing internal models representing the
surrounding environment. For instance, accreditation to
anticipatory movements is higher, when the internal model
is properly trained and the environment is stable and predict-
able. In contrast, compensatory and energy consuming reflex
movements increase, when the internal model is tacitly
inaccurate due to an unstable environment [48]. Other
behavioral studies on limb postural control have shown
that the activities of muscles around a joint can be modu-
lated to minimize the perturbing effects of unknown exter-
nal loads [50, 51]. These modulations gradually decrease
over the course of learning a novel motor task [48, 52].

The abovementioned literature findings are consistent
with our results. In our experimental conditions, both the
behaviors observed in the modified environment (healthy
participants) and in the initial stage of rehabilitation (post-
stroke participants) can be regarded as pure compensatory
movements in response to the new environmental condition,
i.e., different dynamics of arm motion in healthy participants
and different neural pathways in poststroke patients. How-
ever, these compensatory movements gradually change to
anticipatory movements through training and interaction
with the environment. The anticipatory movements correlate
with the tuned muscle synergies, which interact efficiently
with the familiar environment. In the unfamiliar environ-
ment, however, the simultaneous increase of muscle activi-
ties, although energetically expensive, may reflect a
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compensatory strategy to overcome the yet untrained
internal model. These otherwise inefficient muscle activi-
ties gradually decrease over the course of interaction with
the environment. In line with our findings, Kawato et al.
[53] argued that the alteration of muscle activities when
first learning new skills is effective in learning schemes
that take advantage of motor command errors resulting
from the feedback controller as learning signals during
building of internal models.

4.5. Towards Neurorehabilitation. Currently, most muscle
synergy studies are limited to offline synergy analysis, which
focuses on classifying motor skill or impairment levels. To
move beyond this stage and towards real application for
rehabilitation, a better understanding of synergy usage dur-
ing learning and adaptation is required. Testing various
training hypotheses directly in poststroke patients can be a
complicated task, due to the age of typical stroke patients
and related factors. Our muscle synergy analysis results sug-
gest that motor function recovery in poststroke patients is
comparable to adaptation to unfamiliar environments in
healthy participants. A natural next step would be to investi-
gate the introduction of multiple unfamiliar tasks, i.e., build a
stroke-like scenario in healthy participants, and test various
training/rehabilitation protocols to determine ways to
enhance the adaptation process, before using such protocols
in poststroke patients.

In our protocol, we tried to avoid/reduce muscle fatigue;
although this might not be fully possible, especially in the
case of more demanding scenarios (e.g., during repetitive
training tasks for poststroke treatment), it should be noted
that muscle fatigue reduces strength and increases perceived
effort, as observed in joint kinematics and movement com-
plexity analyses in healthy individuals [54]. However, these
changes due to muscle fatigue do not reflect alterations in
the overall principal component shape [55, 56]. In contrast,
our results are in agreement with prior results by Simkins
et al. [57], demonstrating that differences between joint
movements in pathological conditions are comparable to
the differences observed for able-bodied movement syner-
gies, further supporting the hypothesis that altered synergies
upon neurological injury are an expression of similar spinal
mechanisms, as those regulating intact synergies in multi-
joint movements. Furthermore, in their work, Simkins and
colleagues [57] argue that alterations in pathological syner-
gies during rehabilitation are shaped by plasticity at the spi-
nal level. Interestingly, Jacobs et al. [58] discussed that, in
tasks requiring high cortical involvement, the effect of train-
ing on the organization of intact muscle synergies is
expressed with changes in modular organization, while in
more basic, automated movements (e.g., walking), requiring
less cortical activity, no changes in synergy number and
structure are found. Equivalently, Torres-Oviedo et al. [22]
investigated synergy organization during postural control
(e.g., during walking) and showed that synergy robustness
does not depend on reflex pathways or from biomechanical
task constraints. In agreement with Krishnamoorthy et al.
[59], our results demonstrate that muscle synergies and their
organization are specific to the task, since they change with

changes in stability conditions and new muscle synergies
emerge to account for changes in postural responses.

5. Conclusion

The goal of our study was to explore the computational
mechanism behind behavioral adaptation in humans when
encountering an unfamiliar environment and how it com-
pares to behavioral recovery in poststroke patients. Uncover-
ing this mechanism would enhance our understanding of
motor control and recovery and offer guidance to develop
new rehabilitation approaches for various neural disorders.
These results suggest that the CNS monitors the familiarity
of the internal model with the surrounding environment
and, relying on that, predicts the suitable motor control strat-
egy by tuning muscle synergy dimensionality. When the
internal models are immature, the CNS utilizes more muscles
with high activities, by recruiting fewer synergies, to compen-
sate for unexpected interactions with unfamiliar environ-
ments. These extra utilized muscles may work as an
additional neural feedback to update the internal model.
When learning occurs and the internal model representa-
tions are built up, the CNS decreases the movement energy
by increasing the recruited muscle synergies.

We conclude that abnormal muscle patterns in post-
stroke patients are similar to the patterns observed at the
beginning of neuronal network adaption in new environ-
ments. Changes in muscle synergy can be used as an indica-
tor of motor function recovery, as indicated by our
experiments in healthy participants and also supported by
prior results as a valid source to design metrics to quantify
acquisition of motor skills in healthy humans [26]. We are
currently developing an advanced rehabilitation system with
an online assistive robot that takes into account patient
pathology and interindividual synergy variability to support
motor function recovery. Future studies are required to
examine in more detail how muscle synergies are recruited
over the course of complex and continuous movements,
such as learning a sequence of whole-body movements
while driving a car or riding a bike. Such understanding
may not only enable finding new synergy-based indices
indicating the level of motor impairment in poststroke
patients but also predict their recovery level along with
their rehabilitation.
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