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Abstract: Currently, treatment of diabetes and associated obesity involves Roux-en-Y gastric bypass
or sleeve gastrectomy to reduce the absorption of nutrients from the intestine to achieve blood glucose
control. However, the surgical procedure and subsequent recovery are physically and psychologically
burdensome for patients, with possible side effects, so alternative treatments are being developed.
In this study, two methods, solution casting and machine direction orientation (MDO), were used
to prepare intestinal implants made of poly(vinylidene fluoride) (PVDF) film and implant them
into the duodenum of type 2 diabetic rats for the treatment of obesity and blood glucose control.
The PVDF film obtained by the MDO process was characterized by FT-IR, Raman spectroscopy,
XRD and piezoelectricity tests, which showed higher composition of β crystalline phase and better
elongation and mechanical strength in specific directions. Therefore, the material was finally tested
on rats after it was proven to be non-toxic by biological toxicity tests. The PVDF was implanted
into alloxan-induced diabetic rats, which were used as a model of impaired insulin secretion due
to pancreatic beta cell destruction rather than obesity-induced diabetes, and rats were tracked for
24 days, showing significantly improved body weight and blood glucose levels. As an alternative
therapeutic option, intestinal sleeve implant showed future potential for application.

Keywords: poly(vinylidene fluoride) (PVDF); piezoelectric material; solution casting; machine
direction orientation (MDO); intestinal sleeve implant; type 2 diabetes

1. Introduction

Due to changes in modern eating habits and lifestyles, as well as population growth
and aging, the global prevalence of diabetes has doubled from 4.7% in 1980 to 8.5% in
2014. The World Health Organization (WHO) states that in 2019, diabetes was considered
the cause of death for 1.5 million people. Type 2 diabetes accounted for nearly 90% of
cases, which is physically and mentally painful for patients and also places a significant
burden on the health care system [1–3]. The obesity problem that often accompanies type 2
diabetes is predicted to cost the U.S. $860 billion in health care spending by 2030 [4], with
even more serious consequences if patients are not treated [5–9]. Roux-en-Y gastric bypass
and sleeve gastrectomy are the most common surgical treatments. The former is widely
used in patients with type 2 diabetes and severe esophageal reflux, but there are risks such
as malnutrition, intestinal obstruction, and inability to perform endoscopy through the
mouth, as well as various surgical risks. Sleeve gastrectomy has increased in recent years
because of its relatively low surgical complexity, with advantages that include a lower
risk of anemia and no need for continuous additional nutrient supplementation, but there
are still problems such as regaining weight due to the enlarged gastric pouch and risks
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associated with surgery [10–16]. Some patients still have concerns about the procedure
given the possible lifelong side effects or irreversibility, which has prompted more attention
to and development of the surgical implant technique.

In the past, the main surgical implants were a BioEnteriscs intragastric balloon (BIB)
and laparoscopic adjustable gastric banding (LAP Band). In the former, patients were
usually anesthetized and a silicone ball was placed in the stomach through the esophagus
with the assistance of a gastroscope, without additional surgery. It was a relatively safe
method, but it can only be used for short-term transition, and it was mainly expected that
the patients themselves would develop good eating and living habits to achieve long-term
improvement [17–19]. In the latter case, a silicone band was used to separate a small space
in the upper part of the stomach, and the tightness of this band was adjusted by a regulator
buried under the belly, so that the small space would be filled with adequate amounts of
food to create a feeling of satiety. However, it would take approximately one year to adjust
the band slowly after surgery, and there was a possibility of post-operative infection or
dislocation that would require a second surgery [20–22]. Intestinal sleeve implant was a
relatively new technique, and the main commercialized product was EndoBarrier® from
GI Dynamics. It was composed of a titanium alloy fixture at the upper end, combined with
a 60 cm-long fluoropolymer film sleeve at the lower end, which can be implanted through
an endoscope and formed a physical barrier in the intestine to reduce the direct absorption
of food nutrients and alter the secretion of human hormones (Figure 1) [23]. When applied
to patients with obesity and type 2 diabetes, it provided effective improvements in blood
glucose and weight over a few months to a year of trials. Rapid delivery of nutrients to the
distal gut can exclude nutrients from the proximal bowel as well as duodenal exclusion and
gut hormonal changes, resulting in elevated glucagon-like peptide-1 (GLP-1) and peptide
YY (PYY) and improvements in insulin resistance, glucose tolerance, and beta-cell function,
likely contributing to glucose homeostasis [24,25]. Therefore, more studies on material
selection and design optimization were motivated by the good therapeutic performance of
this alternative treatment method.
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Figure 1. The EndoBarrier device and duodenal implantation (Ruban et al. 2018). 

  

Figure 1. The EndoBarrier device and duodenal implantation (Ruban et al. 2018).

Currently, many biomedical materials have been developed for human implants with
different properties such as biodegradability, bioactivity and bioinertness [26]. However,
utilization of piezoelectric materials in biomedical device fabrications is rarely handled
because of its practical limitations such as biological compatibility, flexibility and structure
of the biological systems. Polymer-based piezoelectric materials have more advantages
in fabricating biomedical devices compared with inorganic-based piezoelectric materials
such as barium titanate (BaTiO3), quartz, aluminum nitrate (AIN), and zirconium titrates
(PZT) [27–29]. Particularly, poly(vinylidene fluoride) (PVDF) is a semi-crystalline piezoelec-
tric polymer with a glass transition temperature (Tg) of −35 ◦C and a melting point (Tm)
of 177 ◦C, and provides better stability and resistance to acid and alkali corrosion. PVDF
can be divided into five crystalline phases—α, β, γ, δ and ε—and is converted by heat
compression [29,30], additional electric field [31,32], quenching [33,34], and other processes.
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Some of the phases even have different piezoelectric properties due to changes in polarity,
and so they have been widely used in the fields of sensors, energy and biomedicine. In this
study, two different processes, solution casting and machine direction orientation (MDO),
were used to produce film intestinal sleeves with different PVDF crystalline phase ratios,
which were implanted into rats with type 2 diabetes to evaluate the effect on weight, blood
glucose control and therapeutic efficacy. These intestinal sleeve implants may have high
potential for treatment of obesity and type 2 diabetes in clinical practice.

The aim of this work is to prepare a PVDF sleeve using two methods: solution
casting and machine direction orientation. Newly prepared films were thermally treated
and characterized by FTIR, RAMAN, SAXS, SEM, mechanical testing and ESI. Thermal
treatment induced changes in the crystalline structure of the polymer, mainly resulting in a
beta-crystalline structure due to transformation of the alpha-crystalline structure. Finally,
experiments were performed using SD rats, resulting in a weight reduction of 11% after 24
days, which is very similar to the commercially available EndoBarrier.

2. Experimental Sections
2.1. Materials

Poly(vinylidene fluoride) (PVDF), N-methylpyrrolidone (NMP), and alloxan mono-
hydrate were all purchased from Sigma-Aldrich in Saint Louis, MO 63103, USA. All other
chemicals purchased were of analytical grade and without further purification.

2.2. Preparation of PVDF Films

PVDF films were prepared by two different methods. The first method was solution
casting. An amount of 10 g of PVDF was dissolved in 40 g of NMP and stirred at 500 rpm
at 100 ◦C for at least 6 h until the solution was visually clear. Then, the solution was
poured onto a smooth glass substrate and quickly squeegeed with a coater (Figure S1),
and then dried in an oven at 90 or 100 ◦C for 24 h to remove the solvent. After drying,
the glass substrate was cooled at room temperature for 30 min before tearing off to avoid
deformation of the film by pulling it at a high temperature.

The second method was MDO. First, the PVDF powder was heated in a single-screw
extruder at 100 ◦C to process the powder into wire. Second, the obtained PVDF wire was
directly placed into the stretching machine and preheated in rolls at 90 or 100 ◦C, then in
rolls with a stretching ratio of 3 by adjusting the speed for machine direction orientation,
and finally annealed in rolls at 25 ◦C and cooled and shaped to obtain a PVDF film.

2.3. Characterization of PVDF Films

The surface morphology of the films was analyzed by scanning electron microscopy
(SEM) (JEOL, JSM-6500F, JEOL LTD. Tokyo, Japan) at 10 kV. The crystalline phases were
analyzed by Fourier transform infrared (FTIR) spectroscopy (PerkinElmer Spectrum two,
PerkinElmer Ltd, Bucks, UK) and Raman spectroscopy (JASCO NRS5100) with a laser
light wavelength of 532 nm. In addition, a universal tensile tester (Shimadzu EZ-LX,
Shimadzu®Corp, Kyoto, Japan) was used to measure the mechanical properties of the films.
All of the samples were molded into dumbbell shapes with a total length of 165 mm and
thickness of 0.4 mm (two shoulder sections were 54 mm in length and 19 mm in width; the
middle section was 57 mm in length and 13 mm in width), and tested with a strain rate of
10 mm/min. The stress was obtained by dividing the force by the cross-section area, the
strain as the length change related to the original length, and Young’s modulus as the slope
of the stress–strain curve in the linear zone. The piezoelectric properties were measured by
electrochemical impedance spectroscopy (EIS) combined with an oscilloscope.

2.4. Preparation of PVDF Film Intestinal Sleeve Implants

To prepare the intestinal sleeve implant, it was necessary to combine two components
(Figure 2, left side). One part was a 1 cm diameter thermoplastic polyurethane (TPU)
flat-bottomed spherical hollow model that serves as a fixation device for the anterior end
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of the duodenum of the rat after implantation. In the other part, the film was rolled into
a cylinder of 1 cm diameter and 5 cm length and sealed with a heat sealer at the joints.
Finally, the two parts were bundled and connected with non-absorbable sutures to obtain
the PVDF film intestinal sleeve implant.
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Figure 2. (Left side) PVDF film intestinal sleeve implant and, (Right side (a–d)) surgical procedure
of film intestinal sleeve implantation in SD rats.

2.5. Animal Experiments

The Sprague Dawley rats (SD rats) used in the experiments were obtained from the
National Defense Medical Center Animal Center. The animal experiments have been
reviewed by the Institutional Animal Care and Use Committee and follow the guide for the
care and use of laboratory animals. The rats were first induced with alloxan monohydrate at
a dose of 170 mg/kg. The SD rats were then monitored for fasting glucose > 120 mg/dL for
3 days to ensure successful induction of type 2 diabetes before surgery. Animal experiments
were divided into five groups: solution casting at 90 ◦C, solution casting at 100 ◦C, MDO at
90 ◦C, MDO at 100 ◦C, and control. Each group had 5 rats, hence the total number of rats
involved in animal study experiment was 25.

To compare film intestinal sleeve implants obtained with different preparation meth-
ods, the trial was divided into three groups. One group was SD rats implanted with film
intestinal sleeve implants prepared by the solution casting method, and the other group
was SD rats implanted with film intestinal sleeve implants prepared by the MDO method.
The remaining group of SD rats were not implanted with film intestinal sleeve implants
but underwent the same surgical procedure as the control group. The specific surgical
procedure was to ensure that the SD rats were fasted for at least 18 h, followed by intra-
venous injection of Zoletil 50 at a dose of 10 mg/kg to complete general anesthesia and
fixation on the surgical table. After opening the abdominal cavity by midline dissection, a
10 mm incision was made in the lower part of the stomach near the pylorus, and then the
film intestinal sleeve implant was slowly inserted into the duodenum through the pylorus
using an auxiliary device until the fixation device was approximately 5 mm below the
pylorus. The wound was then sutured and completed (Figure 2a–d). Blood glucose and
body weight of SD rats were measured at 0, 12 and 24 days after completion of surgery.

2.6. The Oral Glucose Tolerance Test

The oral glucose tolerance test (OGTT) is used to measure the ability of an organism to
absorb glucose in order to measure insulin function and glucose tolerance. Type 2 diabetes
SD rats were fasted for 18 h to ensure that they were in a fasting state. Blood was first
collected from the tail vein to measure the 0 min glucose value, and then 2 mg/mL of
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glucose was injected orally into the rats. After that, blood was collected at 30, 60, 90 and
120 min and blood glucose levels were measured again.

3. Result and Discussion
3.1. Characterization of PVDF Films

The PVDF films prepared by the solution casting method at 90 and 100 ◦C were
observed at 500× and 5000× using a scanning electron microscope. First, at a magnification
of 500×, the surface of the film had a certain degree of unevenness and porosity at both
temperatures (Figure 3a,b). However, when combined with the images at 5000×, further
analysis revealed that the number and size of pores tend to decrease as the temperature
is increased, and show a flatter and denser surface (Figure 3c,d). The crystalline structure
of granular protrusions can be observed on the surface because the drying temperature
of the PVDF solution coated on the glass plate in the oven was different and therefore
would affect the volatilization rate of the solvent. At a lower temperature, due to the slower
volatilization rate and longer residence time of the solvent, the film forms a spatial barrier
during the drying process of the film, resulting in the formation of pore structures. The
slower drying process also meant slower film formation, which leads to a certain degree
of aggregation and inhomogeneity of the polymer solution, and eventually affects the
structural compactness and flatness of the film.

The PVDF films obtained after stretching at 90 and 100 ◦C using the MDO method
were observed at 1000× and 5000× using a scanning electron microscope (Figure 3e–h).
No obvious holes or particle-like protrusions were observed on the surface of the films,
which were smoother than those from the solution casting method. The main reason
for this was that during the MDO process, continuous and steady stress was applied
to the surface of the material by stretching rollers, and therefore the process produced
corresponding stress marks (Figure 3e,f). Furthermore, because of the unique properties of
PVDF, its crystalline state can change at high temperatures and pressures, which also leads
to changes in the microstructure.

In order to confirm the crystalline phase transition of PVDF more precisely, FTIR
analysis was performed. For the films prepared by the solution casting method, the
characteristic peaks of the γ phase were observed at 810 and 1234 cm−1 in the infrared
spectrum. This was mainly due to the transformation of the α phase into the γ phase
during the high temperature annealing process of the sample preparation. However, only
part of the crystalline phase was converted, so the characteristic peaks of the α-phase were
still observed at 1209 and 1180 cm−1.

For the films prepared by the MDO method, a high percentage of the α phase was
converted to the β phase during the stretching process, so the characteristic peaks of the β
phase can be observed at 839, 1275 and 1431 cm−1, but some weak characteristic peaks of
the α phase can still be observed (Figure 4a). The wavenumber and vibration mode of the
characteristic peaks of each phase are also listed for reference (Table S1) [35–39].

After qualitative analysis by FTIR, we were able to confirm the presence of different
crystalline phases, but there was no quantitative response to the proportion of each phase.
Therefore, Raman spectroscopy was further used to analyze the phases and to perform
peak fitting and peak separation. The characteristic peaks of each phase in the Raman
spectra of the solution casting and MDO films have been labeled (Figure 4b and Table
S2) [40]. The peaks in the range of 780–860 cm−1 had a higher intensity and overlap, so
they were selected for peak fitting and peak separation (Figure S2). Then, the peaks at 795,
840 and 812 cm−1 were selected to correspond to the α, β and γ phases, respectively, for
the calculation of the crystalline phase ratio. The peak intensity of the β phase was divided
by the sum of the intensity values of the α, β and γ phases to compare the results of the β
crystalline phase ratio of the films obtained by different methods and parameters (Table 1).
Similarly, the XRD results also supported the previous analysis. In the solution casting
group, a strong peak at 19.9◦, and weak peaks at 18.5◦ and 39.1◦ were observed, indicating
higher γ phase composition. The MDO group, on the other hand, showed a strong peak at
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20.2◦ and a weak peak at 36.3◦, indicating higher β-phase composition (Figure 5a,b) [41]. It
was found that the MDO group had a higher percentage of β crystalline phase, making
the α phase convert to the β phase more efficiently, and also bringing more significant
piezoelectric properties (Figure 5c–e). Presented in Figure 5c–e are the voltage pulses for
both the solution casting and MDO approaches varying time and with an applied pressure
of 1 N/cm−1. A significant voltage difference of approximately 0.4 V was obtained for
MDO, which is attributed to the higher β phase. Similarly, with an applied pressure of 1
N/cm−1, a voltage difference of approximately 2 V can be generated.
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Figure 3. SEM images of a PVDF film formed by solution casting at (a) 90 ◦C and 1000×, (b) 100 ◦C
and 1000×, (c) 90 ◦C and 5000×, and (d) 100 ◦C and 5000×; and by MDO at (e) 90 ◦C and 1000×,
(f) 100 ◦C and 1000×, (g) 90 ◦C and 5000×, and (h) 100 ◦C and 5000×.
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Figure 4. (a) FTIR spectra of PVDF films formed by different process methods. (b) Raman spectra of
PVDF films formed by different process methods.

Table 1. Peak intensity ratio of each crystalline phase after the peak splitting process.

α 795 cm−1(a.u.) β 840 cm−1

(a.u.)
γ 812 cm−1

(a.u.) β/(α + γ) (%)

Solution casting
90 ◦C 81.0 142.0 177.0 35.5

Solution casting
100 ◦C 78.1 126.2 163.3 34.3

MDO 90 ◦C 154.6 329.6 107.7 55.7

MDO 100 ◦C 264.0 519.2 110.6 58.1

Combining the above analyses of crystal phase composition, possible differences
in the mechanical properties should be noted. The yield point of the solution casting
method group reached 66.08 MPa and Young’s modulus reached 38.81 MPa as the process
temperature was increased. This trend corresponds to the SEM image of the denser structure
due to the increase in process temperature, and indicates better mechanical properties. The
MDO method group, which was subjected to unidirectional stretching during the process,
exhibited directional selectivity. In parallel stretching, the yield point reached 173.32 Mpa,
but the average elongation was only 14.59%. In vertical stretching, the yield point was only
22.78 MPa, but the average elongation was up to 94.89% (Figure 6 and Table 2). Therefore,
compared to the typical stress–strain curve, which exhibited a general positive correlation
between stress and strain, structural changes generated by the MDO manufacturing process
resulted in a separate increase in stress or strain in two separate tensile directions [42].
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Table 2. Tensile test results of PVDF films with different process methods.

Sample Yield Point (MPa) Average Elongation (%) Young’s Modulus (MPa)

Solution Casting 90 ◦C 54.14 17.01 22.84

Solution Casting 100 ◦C 66.08 32.17 38.81

MDO 90 ◦C Parallel 134.58 16.33 34.67

MDO 90 ◦C Vertical 20.29 79.77 23.48

MDO 100 ◦C Parallel 173.72 14.59 36.28

MDO 100 ◦C Vertical 22.78 94.89 26.94

3.2. In Vivo PVDF Film Intestinal Sleeve Implantation for Glucose and Obesity Control

Before in vivo testing, the material was analyzed using the 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and was shown to be non-cytotoxic
(Figure S3). In order to compare the difference in blood glucose levels after implantation
of the intestinal sleeve, an oral glucose tolerance test was used and the area under the
curve was calculated. After 24 days, the AUC of the control group increased slightly by
0.36% to 26,835; the AUC of the solution casting method group decreased by 22.72% to
20,360; and the AUC of the MDO method group decreased by 27.30% to 19,410 (Figure 7a).
This shows that intestinal cannula implantation was effective in reducing blood glucose
levels due to the effect of duodenal exclusion and gut hormonal changes, and the MDO
method group was more effective. Finally, both the solution casting group and the MDO
group were found to be effective in reducing weight by approximately 11% after 24 days,
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and improving the obesity problem (Figure 7b).Using a polytetrafluoroethylene (PTFE)-
coated plastic sleeve from EndoBarrier (GI Dynamics) with a duodenal bulb leads to a
significant weight loss of approximately 12% and glycemic control, but there are device
design complications such as bleeding and perforation [24,43]. As compared with the PTFE-
based commercial EndoBarrier, the obtained PVDF-based EndoBarrier device fabrication
exhibits significantly reduced blood glucose levels and weight loss of approximately 11%
after 24 days of treatment.
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Figure 7. Blood glucose levels (a), area under the curve (AUC), and (b) weight change rate recorded
on day 0, day 12, and day 24. Every group has at least three replications and all data are presented as
the mean ± standard error of the mean (SEM). * p < 0.05 based on analysis by the unpaired Student’s
t-test.

In order to determine how safe the implanted device is, histopathological staining
evaluations were performed to highlight any inflammation and tissue damage effects
on various tissues such as duodenum, liver and stomach over 4 weeks. As shown in
Figure 8, the hematoxylin and eosin (H&E) staining images for duodenum, liver and
stomach tissue sections (on Day 28) were did not show significant inflammation or lesions,
though the implanted device results in slight chronic inflammation. There is some focal
plane erosion that is identical to that in control groups. Compared with normal tissues,
after implantation of the intestinal sleeve, the duodenal tissues showed cellular infiltration
in the entire intestinal wall layer as well as mild inflammation. As for liver tissue sections,
no inflammation and no acute damage or necrosis were observed compared to normal
tissue, so this implantation method does not produce liver abscesses. A similar scenario
was observed for stomach tissues, i.e., no fibrosis, or acute damage and injury. Overall, the
designed PVDF-based EndoBarrier device can be used to create a new safe approach to the
piezoelectrical polymer with efficacy in treatment of type 2 diabetes and obesity.
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Figure 8. The H&E-stained tissue sections for various implanted tissues. Polymer intestinal sleeve
implanted in the duodenum (a,b) and control duodenum (c,d); polymer intestinal sleeve implanted
in liver tissue (e,f) and control liver tissue (g,h); polymer intestinal sleeve implanted in stomach tissue
(i,j) and control stomach tissue (k,l). Magnification, ×40 in (a,c,e,g,i,k) and ×100 in (b,d,f,h,j,l).

4. Conclusions

In this study, PVDF films implanted in the digestive tract of rats for the treatment
of type 2 diabetes were successfully prepared by using two different methods: solution
casting and MDO. In particular, the PVDF film prepared by the MDO method exhibited a
higher degree of structural compactness and better mechanical properties to reduce the risk
of damage to the film in the digestive tract. In addition, due to the polarization of PVDF
in the process, the phenomenon of crystalline state change was also analyzed by various
instruments. After the PVDF was implanted into type 2 diabetic rats, blood glucose levels
and body weight were tracked for 24 days and it was found that both had a decreasing
effect on controlling blood glucose and weight loss. Overall, this device has demonstrated
its potential for use in the control of type 2 diabetes. However, systematic detailed experi-
mental evidence from biopsies of the upper gastro-intestinal tract for implantation of the
PVDF-based EndoBarrier can provide insight into the mechanisms behind the increase in
glucose metabolism and weight loss, work that is currently in progress.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14112178/s1, Figure S1. Schematic diagram of the self-
designed film coater. Figure S2. Raman spectroscopy peak splitting schematic diagram. Figure
S3. Cytotoxicity test of PVDF with different process methods. Table S1. Reference of PVDF FTIR
characteristic peak. Table S2. Reference of PVDF Raman characteristic peak.
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