
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20716  | https://doi.org/10.1038/s41598-020-77935-w

www.nature.com/scientificreports

3D printable biomimetic rod 
with superior buckling resistance 
designed by machine learning
Adithya Challapalli & Guoqiang Li*

Our mother nature has been providing human beings with numerous resources to inspire from, in 
building a finer life. Particularly in structural design, plenteous notions are being drawn from nature in 
enhancing the structural capacity as well as the appearance of the structures. Here plant stems, roots 
and various other structures available in nature that exhibit better buckling resistance are mimicked 
and modeled by finite element analysis to create a training database. The finite element analysis is 
validated by uniaxial compression to buckling of 3D printed biomimetic rods using a polymeric ink. 
After feature identification, forward design and data filtering are conducted by machine learning to 
optimize the biomimetic rods. The results show that the machine learning designed rods have 150% 
better buckling resistance than all the rods in the training database, i.e., better than the nature’s 
counterparts. It is expected that this study opens up a new opportunity to design engineering rods or 
columns with superior buckling resistance such as in bridges, buildings, and truss structures.

Our mother nature took millions of years to form, create and develop itself into what it is today. Through evolu-
tion, nature modifies its elements to sustain, develop and flourish around their environments. Various species 
have evolved and modified slowly over thousands and millions of years. The plant kingdom is one of the very old 
and major species of nature that controls and supports many other species and systems on Earth. With slow but 
conscientious evolution, plant species educate humankind towards numerous scientific and research breadths. 
By studying nature and the evolution of plants, humans were able to understand Earth and ecosystem better, 
develop cultivation, form civilizations and advance in technology from the stone-age. Humans have used and 
mimicked nature to design and improve their tools for a better living.

Many studies have been focused on the biology of plants to understand and mimic various aspects in devel-
oping new technologies that surpass conventional manmade objects. A few of them include the self-cleaning 
mechanism of aquatic plants like the lotus. The super hydrophobicity of the lotus flowers has been mimicked 
to design facade paints, tiles, self-cleaning glasses and surfaces where hydro-degradation occurs1,2. Biohybrid 
systems such as microfluidic devices have been developed by inspiration from the fluid transportation of plants 
with the light energy stored in them through photosynthesis3,4. The transportation of fluids and waters in the 
plants is also taken as inspiration in textile fabrications. To provide better comfortability in humid conditions, 
moisture management fabrics can provide water transportation formed as sweat to the outer surface of the fab-
ric. Plant structures are mimicked to design these fabrics more effectively than conventional fabrics5. Velcro’s 
are designed by George de Mestral inspired by the hooks of plant burrs6. Pummelo is taken as an inspiration to 
develop structures with excellent damping properties7. This fruit has a thick layer of skin around its pulp that is 
in the form of porous layers. The skin prevents the fruit from impact damage when it hits the ground. Metallic 
foam structures with low weight and good damping properties were developed by studying and mimicking this 
feature of the fruit. The biomimicry of plants is also applied in architectural design. The eye-catching shapes 
of flowers such as lily and plant cells were mimicked to design furniture8. Bamboo which is considered as a 
strong composite material is studied for structures with better structural capacities. The helical reinforcement 
of bamboo fibers is investigated for applications in developing engineering composite materials9. The tendril 
structure from plants has been mimicked to develop polymeric artificial muscles by twist insertion in precursor 
fibers10,11. Scanning Electron Microscopy helped in observing the microscale surfaces of hydrophobic plants, 
which lead to the understanding of the self-cleaning behavior of those plants12. Additive manufacturing and 
various design tools help in the fabrication of very complicated structures, which were not possible by other 
conventional manufacturing methods.
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Buckling is a major failure mode for slender columns or rods subjected to axial compression13. This type of 
failure mode should be avoided in structural design so that the load-carrying capacity of materials can be fully 
utilized. Traditionally, columns or rods are optimized in terms of its geometrical shape such as drum-shaped 
rods have higher buckling load than uniform cylinders14. Because the materials around the rod axis do not pro-
vide much bending resistance, hollow or porous rods usually have higher buckling resistance than solid rods 
with the same amount of materials15,16. As discussed above, plant stem and root usually have porous structures. 
Therefore, mimicking their porous structures may be a way of developing manmade columns or rods with 
superior buckling resistance.

Porous structures are popular not only in plants but also in seashell structures, animal quills and honeycombs; 
see a schematic on the left-hand side in Fig. 1. These natural structures can be idealized as biomimetic structures 
shown on the right-hand side in Fig. 1. Based on our understanding of buckling resistance, these porous struc-
tures are good candidates to develop biomimetic rods with superior buckling resistance.

The buckling mode in the form of lateral deflection is a common type of failure observed in long rods under 
compression. Inspired by the biological structures, the objective of this study is to design columns or rods with 
superior buckling resistance. Each biological structure is then digitalized to determine its features or finger-
prints, which form a training database. This database is modeled by machine learning to establish the correla-
tion between the features or fingerprints and the buckling load. Data filtering is then conducted to optimize the 
biological structures with a goal of learning from nature but better than nature. To this end, first, the biological 
structures are idealized and modeled using finite element analysis (FEA) to obtain their buckling loads. Some 
typical biomimetic rods are 3D printed and tested to validate the FEA predictions. It is noted that Euler buckling 
equation can be used to determine global buckling load directly for solid rods under ideal boundary conditions 
such as simply supported or fixed boundary conditions. For the biomimetic rods in this study, the complex geo-
metrical shape makes calculation of the bending stiffness extremely difficult. Therefore, Euler buckling equation 
cannot be used directly. This is why we used FEA to provide the training database and used machine learning to 
speed up the discovery of optimized biomimetic rods.

Results
Buckling load analysis of the biomimetic rods.  The mass vs. normalized buckling capacity (since the 
overall volume is constant for all the designs), compressive stress, and axial displacement during stress and buck-
ling analysis for several representative biomimetic rods are shown in Fig. 2. More stress analysis and buckling 
analysis for additional biomimetic rods are presented in Fig. S1 in Supplementary Information (SI).

It is seen from Fig. 2A that the normalized buckling capacities of the biomimetic rods are more than twice 
that of solid and hollow rods with the same mass. Therefore, the biomimetic rods show a considerable improve-
ment in terms of buckling resistance. However, our goal is to mimic nature but exceed the nature counterparts. 
Therefore, we will use machine learning to further improve the biomimetic rods design, which will be discussed 
in the following sections.

Figure 1.   Schematic of biomimetic structures learned from the nature. Biological structures with various 
external shapes and internal porous structures (on the left), and the cross-sectional view of biomimetic rods 
through a combination of external shape and internal microstructure of biological structures (on the right).
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However, one question that needs to be answered before conducting machine learning is that the rods did 
not fail before buckling occurred. This was answered through stress analysis. From Fig. 2B, the peak compres-
sive stress in the biomimetic rods is similar to that in the solid rod when they have the same mass. Of course, 
biomimetic rods can be very lightweight, and for these very lightweight rods, their peak compressive stress is 
high. However, as compared to the compressive strength of the polymer in Table S2, even the stress in the lightest 
rod is far below the polymer strength. Therefore, compression failure is avoided.

As for the axial displacement obtained by stress analysis, a similar tendency to compressive stress is seen, 
i.e., with the same mass, biomimetic rods have similar axial displacement to that in control solid and hollow 
rods; see Fig. 2C.

From Fig. 2, both the external shape and internal porous structure of the biomimetic rods have a significant 
impact on the buckling load. It can be seen from Fig. 2A that cactus and square-shaped stems are slightly better 
as compared to the bamboo stem which has a circular external shape. It is worthwhile to note that all these rods 
mimic basic stem cross-sections which consist of xylem (hollow cylinders) other than roots which are porous all 
the way. The inner radius of these rods can be varied to increase the buckling resistance of the structures. As for 
the effect of inner pores distribution, it is observed from Fig. S1 and Table S4 that designs with continuous porous 
inner structure as in the bamboo stem perform better than designs in the quill inner structure of a hedgehog, 
which has scattered pores. The cross-sections mimicking roots, animal quills, seashell inner and outer construc-
tions were outperformed by stem like hollow cylinders in terms of buckling capacity and compression strength; 
see Fig. S1. Therefore, by altering and combining various structural features of these bio mimic structures, much 
better designs with higher buckling strengths can be achieved.

Experimental validation.  Comparisons between the 3D printed biomimetic rods and FEA modeled rods 
in terms of normalized buckling loads are depicted in Fig. 3. It is seen that the experimental results agree with 
the simulation results. A slight difference is found between the experimental and simulation, which is primarily 
due to the compromise in the 3D printing due to low printing resolution18. It should be noted that the boundary 
conditions for the rods in the simulations were adjusted to suit the experimental conditions. Table S3 gives the 
comparison of the buckled shape between the FEA modeling and experimental testing for several typical biomi-
metic rods, again, with a good agreement. Therefore, the FEA is validated. The validated FEA will be utilized to 
calculate the buckling load of the optimized biomimetic rods later.

0.E+00
1.E+06
2.E+06
3.E+06
4.E+06
5.E+06
6.E+06
7.E+06
8.E+06
9.E+06
1.E+07

0 0.05 0.1 0.15 0.2

Co
m

pr
es

si
on

 S
tr

es
s 

(P
a)

Mass (Kg)

Mass Vs Compression Stress

Square stem

Solid column

Cactus stem

Hollow Column

Bamboo stem

0.E+00

2.E-03

4.E-03

6.E-03

8.E-03

0 0.05 0.1 0.15 0.2

Di
sp

la
ce

m
en

t (
m

)

Mass (Kg)

Mass Vs Displacement

Solid Column

Hollow Column

Square stem

Bamboo stem

Cactus stem

0

500

1000

1500

2000

2500

3000

0 0.05 0.1 0.15 0.2

Re
la

�v
e 

bu
ck

lin
g 

ca
pa

ci
ty

 
(N

/(
Kg

/m
3 )

) 

Mass (Kg)

Mass Vs Rela�ve Buckling

Solid column

Hollow Column

Bamboo stem

Cactus stem

Square stem

(A) 

(B) (C) 

Figure 2.   Simulation results from ANSYS17 conducted on control solid rods, hollow rods, and biomimetic rods. 
Mass vs (A) normalized buckling capacity, (B) compression stress, and (C) axial displacement, respectively.
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From this initial investigation, it was observed that directly mimicking these structures in obtaining optimum 
designs has a couple of limitations. Firstly, it is too strenuous and not ideal to manually design, analyze and com-
pare all the possible rods. Secondly, although an optimum set of structures can be deduced from the designs, it 
is believed that much better designs with higher structural capacities exist and it is impossible to explore all the 
possible structures or the structure design space by combining these biomimetic designs. Therefore, machine 
learning was used to help identify the optimal rods.

Correlation between buckling load and fingerprints though forward design.  Figure 4 shows the 
predictions by machine learning vs. true response or observations by FEA. With the line being predictions and 
the dots being the observations, the closer the observations to the prediction line, the better the model is. From 
Fig. 4, it is clear that the ensemble tree model gives the best prediction.

In the ensemble tree approach, the data set is randomly divided into different subsets by the algorithms within 
itself for predictions. Though precise values for predictions may not be achieved by ensemble tree as it is based on 
the mean of predictions from the subsets, this model is very advantageous in handling sophisticated data. Since 
the fingerprints of the current data type contain very large vectors, ensemble tree seems to be a fitful model for 
regression with this particular data type. Once the model was ready it was exported to the MATLAB19 workspace 
for testing. The test data was made into a table matching the labels as the training data and imported into the 
workspace. The ‘yfit’ functions were used to predict the buckling strengths of the test data. The error percent-
age was calculated to be less than 10% for the majority of the test data, except for a few dummy points where it 
exceeded 10%. This margin of errors has also been used previously by others20–22. It is noted that, although the 
margin of errors have been used, a better comparison of the root mean squared error (RMSE) between the train-
ing and testing data would be useful when commenting on any overfitting, which can be an issue with ensemble 
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Figure 3.   Experimental validation for buckling capacity conducted on biomimetic rods. Four groups of 
biomimetic rods were used for validation: Bamboo stem, Cactus square, Square stem, and Solid.

Figure 4.   Comparison of predictions vs. true responses. From left to right, they are Ensemble tree, Support 
vector machines, and Gaussian process regression for buckling capacities of the training dataset.
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trees. This will be considered in our future studies. Hence this model can be used to predict the buckling strength 
of any column containing the features of the trained models instantly.

Optimization of biomimetic rods.  Figure 5 shows the machine learning framework, including potential 
applications in biomimetic lattice structures. After the optimization, a total of 160 new rods were created, which 
are all better than the 1500 rods in the initial training database. Table S5 summarizes the 160 new designs. 

In order to determine the buckling load of the newly optimized rods, the validated FEA was used again. Uni-
axial compression modeling conducted on these new designs used the same boundary conditions as the modeling 
conducted on the biomimetic rods. The results are reported in Fig. 6. It is seen from Fig. 6 that the optimized rods 
inspired from the biomimetic rods through optimization exhibit a buckling strength nearly double that of the 
biomimetic rods in the initial training dataset. Figure S2 shows the stress distribution for several optimized rods.

Conclusions
Biomimetic rods were created and optimized through machine learning, with superior buckling properties. 
Through the combination of the external shape and internal porous structure of several biological systems, a 
total of 1500 biomimetic rods were created and modeled using ANSYS for their buckling load and stress. Some 
typical biomimetic rods were then 3D printed and tested for validation of the finite element analysis (FEA). The 
bagged ensemble tree algorithm was used for forward design to establish the correlation between the buckling 
load and fingerprints of the 1500 biomimetic rods in the training dataset. Data filtering through MATLAB cod-
ing, EXCEL functions and machine learning was then implemented to optimize these biomimetic designs and 
obtained 160 new rods. It was observed that without causing much additional stresses, the optimized biomimetic 
rods possess buckling loads several times higher than those of the classical solid or hollow cylinders widely used 
in engineering structures. This study opens up an opportunity to design lighter weight rods with much improved 
buckling resistance.

Methods
Selection of biological counterparts and creation of biomimetic rods.  In this study, biomimetic 
rods with a combination of the external shape (upper left in Fig. 1) and internal microstructure (bottom left in 
Fig. 1) in biological counterparts are created as shown on the right-hand side in Fig. 1. From the schematics 
on the right-hand side in Fig. 1, we created 21 basic biomimetic rods. In particular, the external stem shapes of 

Figure 5.   Machine learning assisted design of optimal biomimetic rods and lattice unit cell. (A) Biomimetic 
inspirations, (B) initial designs, (C) forward machine learning predictions through bagged ensemble tree, (D) 
data filtering to find optimal biomimetic structures, (E) CAD designs of single optimum rods (top view), and 
(F) potential application (3D printed lattice structure containing optimal bio-inspired rods).
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the rice plant, bamboo, cactus, square (mint, cup plant), bulrush, papyrus and she-oak plants, and the internal 
porous structures of roots, hedgehog quills, seashells and honeycomb were combined to create the biomimetic 
rods. However, to conduct machine learning, 21 rods are not enough. In this study, a total of 1500 rods were cre-
ated for modeling. These additional rods were created based on the 21 basic rods, by making modifications such 
as changing the shape of pores, pore size distributions, pore locations in the rods, etc. The number of additional 
rods created for each group can be found in Table S1 in the Supplementary Information (SI).

In Table S1, the biomimetic rods were arranged into 7 groups based on their external shape. To keep con-
sistency, each column or rod had the same height of 10 cm and the same overall volume (volume of the solid 
material + volume of the pores). We used a circular rod with a diameter of 1 cm to determine the volume, which 
was 7.85cm3. For comparison purpose, both solid cylinder and hollow cylinder (1 cm outer diameter and 0.5 cm 
inner diameter) were used as control rods. In addition to the 1 cm outer diameter for both solid and hollow rods, 
two additional outer diameters of 1.5 cm and 2.0 cm were also investigated, leading to a total of 6 control rods.

Buckling Load analysis of the biomimetic rods.  For the biomimetic rods created in Table S1, their 
buckling load is largely unknown. Therefore, finite element analysis (FEA) was used to determine the buckling 
load for each biomimetic rod. ANSYS workbench was used to conduct stress and buckling analysis. 3D print-
able Polylactic Acid (PLA) manufactured by Hatchbox was used as the common material for all the designs. The 
mechanical properties under uniaxial compression of PLA were evaluated using a Q-TEST 150 machine. For 
this purpose, ASTM standard D695-1523 for compression of additive manufactured components was followed. 
Ten samples were printed with five for the strength test and the other five for the modulus test. The speed of 
testing, which was 2 mm/min., and measurement procedures followed the specifications in23. The properties of 
the material are summarized in Table S2. The stress vs. strain data from the uniaxial compression test at room 
temperature was imported directly into ANSYS as the constitutive law; see a typical result in Fig. S3.

All the rods in Table S1 were modeled using ANSYS design modeler and analyzed under uniaxial compres-
sion. The same height (10 cm), boundary conditions, loading and meshing scheme were applied to all the rods 
for consistency. Static analysis and Euler’s buckling analysis were conducted to evaluate the rod response at a 
constant load. For buckling analysis, all the rods were modeled with the same uniaxial compression load (1000 N) 
with one end fixed and the other end pin supported. For each rod, ANSYS output a buckling factor, which when 
multiplied by the applied load (1000 N), gave the actual buckling load of the rod. A convergence analysis was 
conducted, and based on the results, the final element type was determined to be hexahedral and the element 
size was 0.1 mm. The buckling load, stress, displacement, mass and volume of all the rods were recorded from 
the model interface.

Experimental validation.  For the experimental validation, initially SolidWorks design tool was used to 
model some typical biomimetic rods. STL file formats were generated for the rods in order to be machine-read-
able. An extrusion-based 3D printer-Creality Cr-10 s at LSU was used to print these optimized rods using PLA 
filament. PLA with an extruder temperature of 210 °C and nozzle thickness of 1.75 mm was used. The 3D printer 
consists of three different resolutions from coarse to fine layer thickness. To compensate for the time constraint 
and maintain consistency, coarse resolution was employed for all the rods printed. Minimum post-processing 
was required for extrusion-based printing of these designs as only a few supports were required. The STL files of 
the drawings from SolidWorks were converted into a g-code using the Cura24 interface available online. These 
g-codes were fed into the printer to print the desired rods. Figure S4 shows several 3D printed biomimetic rods. 
Once all the rods were printed and cleared of the support material, a Q-TEST 150 testing machine with a capac-
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ity of 150KN was used for the compression testing. The test was conducted at 2 mm/min for all the rods. The 
mass of each rod was physically weighed prior to the tests. The buckling capacities, i.e., the load when the rods 
start to buckle were recorded.

Feature identification or fingerprints.  The first step in machine learning is to digitalize the biomimetic 
rods. Machine learning is artificial intelligence which can be used to train systems to learn from the data pro-
vided, which in turn can be used for predicting or categorizing new untrained data. It is very advantageous 
in reducing human intervention, complicated programming and computational time. The machine learning 
algorithm needs the rods to be fingerprinted. Fingerprinting refers to converting each individual rod into a 
machine-readable code or sequence. For this purpose, each different shape and feature of the designs are given 
a unique identification (number). For example, a bamboo-inspired column consists of an outer circular shape, 
inner circular surface and several smaller hollow cylinders of different diameters. These shapes differ from 
design to design. A unique number for the outer circle, inner circle and the rest of the smaller circles are assigned 
along with their location with respect to the origin of the coordinate system. It was made sure that the outer 
circle’s center lay on the origin for all the designs. For simplification, all the small circles that form porosity are 
designed to be of the same diameter. Similarly, each design with a new shape is given a unique number. Seven 
outer circles (1 to 7), six inner circles (8 to 13) and three smaller inner circles (14 to 16) are identified from the 
bamboo-inspired designs. These shapes are numbered and used to form the fingerprints. A similar procedure 
is followed for all the 1500 biomimetic rods in Table S1. A single vector consisting of different numbers includ-
ing all the features in a rod was the final fingerprint for the rod. Some designs such as the root cross-section 
contain about 400 small spherical pores, which implies that the fingerprint vector comprises 400 variables plus 
the outer circle. For example, the fingerprint of a rod with outer, inner and ten small cylinders is of the form 
“1 (0,0), 9 (0,0), 14 (0.8, − 0.18333), 14 (0.71667, − 0.26667), 14 (0.56667, − 0.31667), 14 (0.76667, − 0.51667), 
14 (0.56667, − 0.51667), 14 (0.36667, − 0.53333), 14 (0.45, − 0.71667), 14 (0.31667, − 0.65), 14 (0.11667, − 0.6), 14 
(0.21667, − 0.75)”. It uniquely defines a rod that contains an outer circle (1 (0,0)), an inner circle (9 (0,0)) and 
then smaller circles (14 (0.8, − 0.18333), 14 (0.71667, − 0.26667), 14 (0.56667, − 0.31667), 14 (0.76667, − 0.51667), 
14 (0.56667, − 0.51667), 14 (0.36667, − 0.53333), 14 (0.45, − 0.71667), 14 (0.31667, − 0.65), 14 (0.11667, − 0.6), 14 
(0.21667, − 0.75)). The meaning of the numbers can be explained as follow. For example, for 14 (0.21667, − 0.75), 
the number 14 means it is a small circle or cylinder, and (0.21667, − 0.75) is the coordinate of the bottom center 
of the cylinder.

Forward design and prediction.  Machine learning can be formally perceived in two settings, supervised 
and unsupervised learning. Supervised learning implies data having known input and output values. On the 
contrary un-supervised learning consists of a set of inputs without labels. In this particular study, the data avail-
able (biomimetic rods with uniaxial buckling loads) have both the inputs, which are the structural properties 
such as mass, volume and microstructure, and the output, which is the buckling strength of individual structures 
(rods). Hence, supervised learning was used to train the dataset. All the rods were fingerprinted in the same 
manner as proposed above to maintain consistency. The mass, volume and buckling strength of all the designs 
were used directly as features. All the data were stored in an excel sheet containing the mass, volume, buckling 
strength and fingerprints of geometrical features of the individual rods. While approaching a supervised or 
un-supervised learning problem, many different algorithms are available and no one approach can be called 
superior to the others. Each type of problem and datasets have a suitable algorithm that works best. Supervised 
machine learning algorithms are being widely used in material and chemical engineering for property prediction 
and discovering new materials. Kernel Ridge Regression (KRR) has been used to handle non-linear relations in 
the property predictions of polymers20. Gaussian Process Regression (GPR) has been used by the same group 
identifying that it is more suitable for predicting a better uncertain/confidence interval of polymers and their 
properties20. Neural network models have been used by Stephen et al. to assist in the discovery of polymers 
with high thermal conductivity25. Support vector machines (SVM) which are considered to be very effective in 
real value function estimation have been used to predict the mechanical properties of cement21,22. Several other 
algorithms like decision trees, K-Nearest Neighbors, and gradient boosting algorithms have been proved to be 
effective in predicting properties with high accuracy26. Neural networks have been used to estimate the stress 
distribution in the aortic wall based on FEA results with an average discrepancy of 0.492%27. Regression tree 
has been used to predict the mechanical properties of carbon fibers like the longitudinal and transverse elastic 
modulus and shear modulus using data generated from finite element modeling28. Support Vector Regression 
models have been used to propose FEA models which can find a direct relationship between the input and 
output of the elements. This avoids the complex numerical iterations involved in finding the internal displace-
ment field29. Ensemble methods have been used to model the bio-mechanical behavior of breast tissues under 
compression using results for FEA models30.

In this study, MATLAB was used to evaluate the dataset with different machine learning algorithms available. 
Ninety percent of the data were used for training the regression models and the remaining ten percent of the 
data were used for testing the performance of the various algorithms. The mass, volume and fingerprints were 
defined as the inputs and the buckling strength was defined as the output for all the regression models. Since the 
output is a single variable depending on multiple input variables that are correlated to each other, it is easy for 
the machine learning algorithm to formalize a relationship between them. Fivefold cross-validation was used 
to evaluate the performance of the machine learning algorithms in predicting new data. MATLAB allows us to 
check the performance of various pre-programmed machine learning algorithms with our data and gives a root 
mean square error (RMSE) of each model prediction. It is the difference between the predictions and actual val-
ues of the observations. It was observed that the Ensemble Bagged Tree algorithm with a leaf size of eight is the 
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best-suited machine learning algorithm based on the RMSE as compared to other models like SVM, GPR and 
neural networks for the data type being analyzed. In this model, an ensemble tree divides the dataset into differ-
ent subsets and trains each subset individually. The average of all the subset model predictions was used as the 
final prediction31. The ensemble of all the subsets gave a much robust model as compared to individual subsets.

Optimization.  The further step in designing biomimetic rods is to optimize these designs to develop even 
better rods with superior buckling strengths. The advantage of using a machine learning program for optimiza-
tion is the exceptional speed in validating new designs and also ease in designing. The program needs to be fed 
with just the fingerprints of the new designs to predict their buckling loads. For the optimization, the developed 
machine learning algorithm is used for forward prediction of various untrained fingerprints. It is fairly easy to 
develop a code that generates different fingerprint patterns compared to manually designing each structure indi-
vidually. Therefore, initially a MATLAB code is programmed to generate all the possible combinations inspired 
from the biomimetic rods. This generates more than a million combinations. However, not all combinations 
exhibit finer structural properties. From the first few datasets, a clear pattern (number of internal micro struc-
tures) can be manually observed which helped in defining a minimum and maximum porosity for the rods to 
perform better compared to the semi optimal (1,500 biomimetic) rods. This initially helped in truncating the 
data sets manually. For further filtering of non-optimal designs, EXCEL and MATLAB functions are (can be) 
used. In EXCEL32, “IF” function and “>” or “<” can be used to identify the numbers greater or less than a given 
value (buckling load in this case) and the “Index” function can be used to display the filtered fingerprints. MAT-
LAB does not have a function for indexing. But the “>” or “<” can be used to identify the desired fingerprints 
from the predicted dataset and the identified variables (fingerprints) can be called and defined into a new data-
set. Finally, a dataset that contained 160 new designs (fingerprints) which exhibited better buckling properties 
compared to the biomimetic rods in the training dataset was generated. The optimum designs which have higher 
buckling strengths were taken to evaluate their performance. These new fingerprints were converted into 3D 
CAD designs using ANSYS and analyzed under uniaxial compression for their structural properties.

Data availability
All other data are available from the authors upon reasonable request.
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