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ABSTRACT We present a method for tracking densely clustered, high-velocity, indistinguishable objects being spawned at a
high rate and moving in a directed force field using only object centroids as inputs and no other image information. The algo-
rithm places minimal restrictions on the velocities or accelerations of the objects being tracked and uses a methodology
based on a scoring function and a backtracking refinement process. This combination leads to successful tracking of hun-
dreds of particles in challenging environments even when the displacement of the individual objects at successive times ap-
proaches the separation between neighboring objects in any one frame. We note that these cases can be particularly difficult
to handle by existing methods. The performance of the algorithm is methodically examined by comparison to simulated tra-
jectories, which vary the temporal and spatial densities, velocities, and accelerations of the objects in motion, as well as the
signal/noise ratio. Also, we demonstrate its capability by analyzing data from experiments with superparamagnetic micro-
spheres moving in an inhomogeneous magnetic field in aqueous buffer at room temperature. Our method should be widely
applicable since trajectory determination problems are ubiquitous in video microscopy applications in biology, materials sci-
ence, physics, and engineering.
WHY ITMATTERS Many scientific problems require automated methods for tracking objects in video microscopy data.
New algorithms that can perform well in challenging contexts are required. Here, we describe a versatile method suitable
for diverse applications spanning biology, materials science, physics, and engineering. Our algorithm is designed for
situations involving densely packed, indistinguishable, and fast-moving objects in directed force fields and uses only
their centroids as inputs. It imposes minimal constraints on object speeds or accelerations and incorporates a scoring
system with refinement via backtracking. We thoroughly evaluate the algorithm's performance using a combination of
simulations and experimental tests and show that it accurately follows many particles in challenging scenarios, for
example when they are packed together closely and moving at high speeds.
INTRODUCTION

Automatic tracking of objects in images acquired
through video microscopy is critical in many fields of
engineering and science. The track estimation task
in general involves two distinct steps (1). First, objects
of interest—for example, particles, microspheres, cells,
fluorophores—must be found and annotated in each
image frame. Second, by comparing successive
frames, trajectories for the annotated objects must
be built up. The second task becomes easier if the ob-
Submitted November 2, 2023, and accepted for publication February 22,
2024.

*Correspondence: gaire@cua.edu

Editor: Jorg Enderlein.

https://doi.org/10.1016/j.bpr.2024.100148

� 2024 The Authors.

This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
jects are distinguishable, but the more challenging
case is when the objects are indistinguishable. In
this latter case, it is a priori not apparent how to
map an object in one frame to itself in the next frame.
If the objects are closely spaced, further complica-
tions arise since trajectory assignments for two neigh-
boring objects may be switched by an algorithm
without the altered trajectories deviating significantly
from the true ones, making such errors especially
hard to detect computationally.

A number of track determination algorithms have
been developed and have performed with varying de-
grees of success in the most challenging case of
densely clustered, identical particles moving at high
speed—see (2), (3), and (4) and references (32–57)
therein. These algorithms may be divided into two
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FIGURE 1 The key concepts of the algorithm. This figure high-
lights themethod by which the scoring function assigns trajectories.
The two identical objects, depicted as a square and a circle for
clarity, are observed at three times, represented as red at time t ¼
1, green at time t ¼ 2, and blue at time t ¼ 3. The objects move in
a directional force field as shown. The black arrows that connect
the objects symbolize the trajectory links that must be determined.
The various parameters for the scoring function are displayed.
categories: predictive tracking and measurement-
assignment tracking. In predictive tracking, image
data are used to estimate an ensemble of kinematic
models, and based on this ensemble, the algorithms
determine probabilities for the current observations
conditional on each possible trajectory in the
ensemble. These probabilities can also be augmented
with additional data—for example, Anderson et al. use
image intensity information (5), while other methods
have considered distributions of errors for observed
parameters and kinetic model fits (6). For densely
clustered particles or significant noise, predictive
tracking can offer an advantage. However, if the exact
kinematic model is unknown or not accurately esti-
mated—which can often be the case—then the effec-
tiveness of these algorithms will suffer.

Measurement-assignment tracking algorithms typi-
cally involve “scoring” each potential trajectory
assignment and then using the scores to determine
the best assignment. Velocities, trajectories, smooth-
ness, shape, and size of objects of interest are often
used to compute scores and must be estimated
from the data. A number of techniques use a Kalman
filter (7) for this purpose (8). Constraints on the accel-
eration/deceleration, radius of turn, or inertia can be
used to isolate only the objects of interest, increasing
computational efficiency (9–12). However, one limita-
tion is that these methods are primarily intended for
tracking single objects under low noise conditions,
although modifications exist to remove these con-
straints (13–15). An alternative to Kalman-filter-based
methods is the multiple-hypothesis tracking algorithm
(16–18), in which all measurements prior to the cur-
rent observations are compared against a predefined
kinematic model to generate a set of parent hypothe-
ses. Measurements in the current observation, as
well as dummy measurements for noise, new objects,
and false positives, are assigned a hypothesis with
respect to the parent hypotheses, and Bayes theorem
is used to calculate the probabilities of each current
measurement based on the prior measurements.

These techniques, although powerful, tend not to
perform well for densely clustered, indistinguishable
particles moving unidirectionally at high speed and
spawned at high rates, and, thus, new algorithms are
called for. Here, we present an algorithm that fills
the gap. Our method can be thought of as a hybrid.
Its core is a measurement-assignment tracking
method—we do not use the data to fit an explicit
kinematic model. However, it takes advantage of the
underlying dynamics of objects moving in a unidirec-
tional force field, much like a predictive tracking algo-
rithm would, in order to provide an initial set of
trajectories for the measurement-assignment-inspired
step.
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In the next section, we describe the algorithm in
detail, as well as provide the procedures—simulation
and experimental—used to validate it. This is followed
by a detailed description of our results and a discus-
sion of what implications they have for the accuracy
and efficiency of our technique.
MATERIALS AND METHODS

Algorithm

We wish to analyze scenes consisting of densely clustered, indistin-
guishable objects moving at high speed. These objects may be
spawned at high rates, and their number frame to frame is not
conserved, as newly born objects add to the object population in
successive frames and others exit the scene before traveling the en-
tirety of the sensor's field of view. Further, objectsmay have a variety
of entrance points, may exit the field of view at any point for any
reason, and may have widely distributed velocities and other trajec-
tory parameters.

The tracking algorithm involves two conceptually distinct but
mutually supporting computations. The first involves a scoring func-
tion, which generates trajectory assignments for the particles, and
the second involves the backtracking method, which takes as its
input the scoring function output and further refines or modifies
those trajectories. (The method presented here is independent of
how particle centroid localization is performed.)

We illustrate the tracking algorithm concept in Fig. 1 with a simple
example consisting of two objects, drawn as a square and a circle
for clarity but considered identical by the algorithm, that have
been observed at three different times; the times have been color



coded as follows: t ¼ 1 by red objects, t ¼ 2 by green, and t ¼ 3 by
blue. The force field is pointing downwards. Arrows connecting the
objects at two consecutive times are characterized by their magni-
tude and the angle q that they make with the force direction. Starting
with the red circle at t ¼ 1, the algorithm must decide at t ¼ 2
whether to assign the green circle or the green square to the red cir-
cle. This is done by computing the score for all vectors from the red
circle to the green objects. As drawn, the link from the red circle to
the green square (the dashed yellow vector) has a y component
that points against the direction of the force. Thus, even though
the green square is closer to the red circle than the green circle is,
the green square link is rejected due to the “backward” movement,
and the green circle is assigned to the red circle's trajectory. Accord-
ingly, the green square would be linked to the red square's trajectory.
In the next iteration, the blue objects (at t ¼ 3) have to be linked to
the green objects. Again, the blue square is slightly closer to the
green circle then the blue circle is, and furthermore, in this case,
the blue square does not show movement against the direction of
the force. Yet, the angle that is formed between the vector connect-
ing the green circle and the blue square is considerably larger than
the angle for the vector connecting the circles, and thus the score
for the blue square to green circle would be appreciably larger
than the score for the blue circle to the green circle. Thus, the algo-
rithmwould assign the blue circle to the trajectory of the green circle
(and therefor also the red circle) while assigning the blue square to
the trajectory defined by the previous squares.

The scoring function, Wp;1;q;2, calculates a score for each object p
with coordinates ðxp;1; yp;1Þ and at time 1 with respect to objects q at
time 2 with coordinates ðxq;2; yq;2Þ, i.e., it assigns a real number to
every possible pairing of objects in two consecutive frames. The
score is not bounded, can take negative, positive, and zero values,
and is defined as follows:

Wp;1;q;2 ¼ sgn
�
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This can be simplified for computational purposes to read
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(Equation 2)

Referring to Eq. 1, the first term in the scoring function is the
signum function, which gives the score a positive value for move-
ments in the direction of the force (which we remind the reader is
taken to be in the negative y direction) and a negative value for
movements in the opposite direction. The numerator in Eq. 1 is
the Euclidean distance between the two observations, while the de-
nominator is the cosine of the angle formed between the direction of
the force and the vector that connects the two objects. The final
term, DBy, is calculated by finding the difference in the mean y coor-
dinates for all objects in two successive frames. However, since the
location of a particle in the next frame has not been definitively as-
signed at this stage, it is calculated for different particle pairings,
and the minimum value is used. This term serves to penalize obser-
vation pairs that do not show substantial movement in the direction
of the force and approximates the minimum distance an object is ex-
pected to move between successive observations based on the
gross behavior of all objects.

The scoring function is constructed such that small, positive
scores are preferred, as these indicate movement in the direction
of the force; large, negative scores, on the other hand, imply dis-
placements in opposite or orthogonal directions.

The backtracking approach provides a quality check for the score-
based track assignments. It builds on the idea that if an object is
observed at (x1, y1) at time 1 and subsequently at (x3, y3) at 3, then
it is likely that for an observation at an intermediate time 2, the co-
ordinates (x2, y2) should fall close to the straight line connecting
(x1, y1) and (x3, y3). This is accomplished by calculating the following
quantity:

D1;2;3 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � x2Þ2 þ ðy1 � y2Þ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x3Þ2 þ ðy2 � y3Þ2

q �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x3Þ2 þ ðy1 � y3Þ2

q
:

(Equation 3)

D1;2;3 is a measure associated with a frame triplet. It calculates
the sum of distances from an object's intermediate position (at
time 2) to its positions at times 1 and 3 and, from this, subtracts
the distance between its positions at times 1 and 3. Larger D values
indicate a significant deviation from the direct path between times 1
and 3, while smaller values represent closer alignment with the path;
the limit of D ¼ 0 represents the case of three collinear points.

An important advantage of the backtracking method is that it can
provide a means to determine the extent of nonphysical trajectory
assignments, i.e., imputed trajectories that involve movements
against the direction of the force. It also checks for significant lateral
movements. Close agreement between the two methods suggests
that there are few, if any, unphysical trajectories in the set of
computed trajectories. Further discussion of the various aspects
of the algorithm and its implementation, including a simplified illus-
trative example, can be found in Fig. S1.
Particle trajectory simulations

Performance of the algorithm was tested against simulated trajec-
tories generated using the following inputs: 1) the total number of
objects generated over the course of a simulation np; 2) the size
of the “image” in the x and y dimensions; 3) the spawn rate, the
typical time between successive objects entering the field of view;
4) the initial position (x0, y0); 5) the initial velocity (vx0, vy0); 6) the ac-
celeration (ay) of each object and noise components drawn indepen-
dently for x- and y-object coordinates from a normal distribution with
mean zero; and 7) the variance s, a measure of the signal/noise ra-
tio. x0 is defined as the row coordinate of the pixel where a particle
enters the simulated field of view, and y0 is the column coordinate.
The inputs can be single valued or defined from an interval from
which they may be drawn with uniform probability. The latter allows
us to assess how well the algorithm can deal with objects with
nonuniform behavior and also perform sensitivity analyses. The sim-
ulations continue until the final object exits the field of view of the
“image.” Object coordinates are determined using the basic kinemat-
ical equations.

xt2 ¼ xt1 þ ðt2 � t1Þvx0 (Equation 4)
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a ðt � t Þ2

yt2 ¼ yt1 þ ðt2 � t1Þvy0 þ y 2 1

2
(Equation 5)

Here, (xt1, yt1) is the position of the particle at time t1 and (xt2, yt2)
is its position at t2. Position is measured in pixels, velocity in pixels/
frame, and acceleration in pixels/frame2. Given a specific pixel size
and frame rate, these values can be converted to physical units. As
the time slices are uniformly separated, if an object spawns at a time
between two time steps, its motion to the next time step is deter-
mined using the kinematical equations. Subsequently, it is simply
a matter of stepping through time to calculate the spatial coordi-
nates of the trajectory for each object. Noise is then added, and
the final output is a list of observations (x, y, t) and trajectory ID
numbers for each observation.

We selected simulation parameters to cover a range of cases that
might exist in experiments or data processing tasks. Our choices for
simulation parameters were motivated by simulations performed to
recapitulate bead drop experiments (described under experimental
validation and in the supporting material) These typically capture
around 100 particles, so we set np ¼ 100. Since the particles are in-
jected from the micropipette in the manner of a vertical line source,
we set x0 ¼ [100, 100] and y0 ¼ [1, 100]. The magnetic beads have a
horizontal velocity (x direction) component; however, we found min-
imal initial velocity in the y direction: vx0¼ [�0.5, 2.5] and vy0¼ [0, 0].
For the spawn rate, there are a few instances in which asmany as six
particles appear simultaneously out of the pipette, which would
imply a rate of six. However, most often particles may be separated
by dozens of frames, which would be a rate of 1/12. Since we
wanted to challenge the algorithm, we drew spawn rates from [6,
1/2]. Variations in the magnetic moments of the superparamagnetic
particles imply variations in the magnetic forces on them. Thus, we
expect small fluctuations around the mean acceleration. Moreover,
the mean acceleration depends on the distance from the magnet.
Thus, simulations were run with ay ¼ [1, 2]; [5, 6]; [9, 10]; [13, 14];
[17, 18]; [21, 22]; [25, 26]. Simulations were also performed at the
four different noise strengths described previously. For further dis-
cussion on the rationale for the selection of simulation parameters,
especially for a detailed discussion of the rationale behind the
choice of the spawn rate np, please see the supporting material.
FIGURE 2 Results of simulations in which the number of total ob-
jects simulated was varied. All other simulation parameters re-
mained in the baseline configuration with x0 ¼ [1, 400], y0 ¼ [1, 1],
vx0 ¼ [0, 0], vy0 ¼ [0, 0], ay ¼ [9, 9], and a spawn rate of 3/10, corre-
sponding to 10 new objects every 3 frames. The simulations were
run with added noise of strengths zero, one, two, and three as indi-
Quantifying the algorithm's performance

Two criteria were used to compare the results of the algorithm to
experimental data and the ground-truth trajectories known from sim-
ulations. First, the correct number of individual observation links is
determined by comparing the simulation particle coordinates at
each time step (ground truth) to the coordinates assigned to the
same particles by the algorithm. From this, we determine if a particle
has been correctly linked to itself at the next time step, and the total
number of correctly identified links is recorded as a percentage of
the known links.

The second approach utilizes the variation of information (VI)
metric. This compares two partitions F and G of a set A, where
each partition consists of disjoint subsets F ¼ {f1, f2,., fe} and
G ¼ {g1, g2,., gf}, by computing the following quantity:

VIðF;GÞ ¼ �
X
i;j

ri;j

"
log
�
ri;j
pi

	
þ log

 
ri;j
qj

!#

(Equation 6)
where pi ¼ jFi j

n , qj ¼ jGj j
n , ri;j ¼ jFi

T
Gjj

n , and n ¼ P
ijFij ¼ P

j
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�� ¼
jAj. In our case, the set A consists of all observations in the simula-
cated by the legend.
tions. The partition F is the correct trajectory assignments from the
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simulations and the partition G is the algorithm output trajectories.
The disjoint subsets within F and G are the individual object trajec-
tories. As defined, VI is zero if the two partitions are identical. As the
difference between the partitions grows, VI grows as well; thus, low
values of VI are desirable.
Experimental validation

We performed experimental validation of our method by finding the
magnetic force on magnetic microparticles moving in a buffer in a
magnetic field by using to inferred trajectories of magnetic micropar-
ticles to compute the drag force and by a second independent
method and comparing the two results. See the supporting material
for more details.
RESULTS

Performance and sensitivity analyses on simulation
data

Figs. 2, 3, 4, 5, and 6 display the algorithm's perfor-
mance when varying each simulation parameter
(excluding total particles) individually. Each figure
has two columns with eight plots, illustrating the algo-
rithm's performance variation with changing parame-
ters. The left column shows the percentage of
correct trajectory links (averaged over 50 simulations),
while the right column presents VI scores, computed
by grouping all 50 replications into a superset. Each
column includes four plots, arranged by noise strength
(0–3). The x axis is spawn rate, and each plot repre-
sents specific spawn rates with grouped bars of



FIGURE 3 Results from simulations exam-
ining the initial x-position variation. While
initial x-position variation was tested with
values of 0, 100, 200, 300, and 400 (units of
pixels), the remaining simulation parameters
were held in the baseline configuration with
np ¼ 30, y0 ¼ [1, 1], vx0 ¼ [0, 0], vy0 ¼ [0, 0],
and ay ¼ [9, 9]. The two columns show the
two performance metrics: percentage of cor-
rect trajectory links in the left column and vari-
ation of information in the right column. Four
rows correspond to the four different noise
strengths: zero, one, two, and three. The x
axis for all plots is the spawn rate in units of
objects/frame. Each spawn rate grouping con-
tains five bars of different shades of gray,
which represent the different initial x-position
variations as shown in the legend at the bot-
tom.
different shades of gray, indicating the varied param-
eter. See the legend for an explanation of the gray-
shade values.
We varied the total number of particles tracked (10,
20, 40, 80, 160, 320) in simulations with a spawn rate
of 10/3 and other parameters at baseline values (see
FIGURE 4 Results from simulations exam-
ining the initial y-position variation. While
initial y-position variation was tested with
values of 0, 50, 100, 150, and 200 (units of
pixels), the remaining simulation parameters
were held in the baseline configuration with
np ¼ 30, x0 ¼ [1, 400], vx0 ¼ [0, 0], vy0 ¼ [0, 0],
and ay ¼ [9, 9]. The two columns show the
two performance metrics: percentage of cor-
rect trajectory links in the left column and vari-
ation of information in the right column. Four
rows correspond to the four different noise
strengths: zero, one, two, and three. The x
axis for all plots is the spawn rate in units of
objects/frame. Each spawn rate grouping con-
tains five bars of different shades of gray,
which represent the different initial y-position
variations as shown in the legend at the bot-
tom.
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FIGURE 5 Results from simulations exam-
ining the initial x-velocity variation. While
initial x-velocity variation was tested with
values of 0, 2, 4, 6, and 8 (units of pixels/
frame), the remaining simulation parameters
were held in the baseline configuration with
np ¼ 30, x0 ¼ [1, 400], y0 ¼ [1, 1], vy0 ¼ [0, 0],
and ay ¼ [9, 9]. The two columns show the
two performance metrics: percentage of cor-
rect trajectory links in the left column and vari-
ation of information in the right column. Four
rows correspond to the four different noise
strengths: zero, one, two, and three. The x
axis for all plots is the spawn rate in units of
objects/frame. Each spawn rate grouping con-
tains five bars of different shades of gray,
which represent the different initial x velocity
variations as shown in the legend at the bot-
tom.
Fig. 2). The algorithm showed excellent performance
with close to 100% correct links for all particle
numbers tested. Results were weakly sensitive to
noise, dropping to about 90% at noise level three for
all np. Measured by VI, the performance degradation
was expected but generally small (VI stayed below
one for all noise and particle number values). However,
for noise levels one and two, VI behaved nonmonotoni-
cally with particle numbers, increasing from 20 to 40,
decreasing somewhat from 40 to 160, and rising again
at 320.

In Fig. 3, we varied x0 by drawing from intervals of
different lengths [200, 200], [150, 250], [100, 300], [50,
350], and [1, 400]. Optimal performance occurs when
x0 is drawn from a wide distribution and the spawn
rate is small (rate of one or lower). At rates between
two and eight, wider sampling in x0 leads to better per-
formance; for instance, for a rate of four, the percent-
age of correct links varies from 70% to 95% as x0 is
sampled from intervals of length 0 to 400. VI results
align with the percentage of link findings. For high
spawn rates and point sources, the VI is close to three.
However, without noise, performance significantly im-
proves for rates of eight or less, with VI less than one,
and almost zero for very low spawn rates. The trend re-
mains consistent with the introduction of noise: per-
formance improves the most as x0 is drawn from
longer intervals, approaching values with zero noise.
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Overall, we found weak sensitivity to noise across
the parameter sets tested.

The initial y position intervals were taken from [0, 50,
100, 150, 200], as depicted in Fig. 4. Overall, the algo-
rithm performed very well, with close to 100% correct
identification and VIs less than one across a wide
range of noise, spawn rates, and y0 interval lengths.
However, performance declined as the interval length
increased, modulated by the spawn rate, and showed
low sensitivity to noise when spawn rate and interval
length were constant. At high noise (strength 3) and
spawn rates (8 and 16), performance dropped to below
50% for trajectory link identification, especially with
higher y position variation. Noise strength had limited
impact on performance, except for specific cases like
spawn rate two, where VI slightly increased from 0.1 to
0.25 at interval length zero for noise strength three. At
lower spawn rates, the differences in VI for various
noise values were negligible.

The initial x velocity (vx0) was sampled from inter-
vals with varying widths: [0, 0], [�1, 1], [�2, 2], [�3, 3],
and [�4, 4], representing variations of 0, 2, 4, 6, and
8, respectively, as illustrated in Fig. 5. An increase in
variation generally led to decreased algorithm perfor-
mance for fixed noise and spawn rates. For instance,
at noise level zero and spawn rate 16, the percentage
of correct trajectory links decreased from 95% to 75%,
and the VI increased from under 0.5 to close to 1.5 as



FIGURE 6 Results from simulations exam-
ining the initial y velocity. While initial y-veloc-
ity variation was tested with values of 0, 2, 4, 6,
and 8 (units of pixels/frame), the remaining
simulation parameters were held in the base-
line configuration with np ¼ 30, x0 ¼ [1, 400],
y0 ¼ [1, 1], vx0 ¼ [0, 0], and ay ¼ [9, 9]. The
two columns show the two performance met-
rics: percentage of correct trajectory links in
the left column and variation of information
in the right column. Four rows correspond to
the four different noise strengths: zero, one,
two, and three. The x axis for all plots is the
spawn rate in units of objects/frame. Each
spawn rate grouping contains five bars of
different shades of gray, which represent the
different initial y-velocity variations as shown
in the legend at the bottom.
the interval widened. However, with lower spawn rates
(e.g., two or less), the overall performance improved
significantly, nearing 100% correct identification and
VI close to zero. These results remained robust even
with increased noise amplitude. The worst perfor-
mance occurred at spawn rate one and noise three,
but even then, over 95% of trajectory links were
correctly identified, and VI remained below 0.25.

The simulations results presented in Fig. 6 were per-
formed by selecting vy0 from the intervals [0, 0], [0, 2],
[0, 4], [0, 6], and [0, 8], corresponding to variation
lengths of 0, 2, 4, 6, and 8, respectively. At low noise
strengths (zero and one), a slight decrease in algo-
rithm performance was observed as initial y-velocity
variation increased. However, at higher noise
strengths (two and three), the performance difference
between y-velocity variations disappeared. The per-
centage of correct trajectory links drops from the
mid-90% range to the mid-80% range for spawn rates
of 16, 8, and 4. VI measures did not show a discernible
trend across spawn rates for noise strengths of two
and three. In such cases, the alterations caused by
high noise strengths overwhelmed any impact of
initial y-velocity variations.

We performed additional simulations with altered
initial y acceleration: ay ¼ [9, 9]; [7, 11]; [5, 13]; [3, 15];
[1, 17], representing variation in values of 0, 4, 8, 12,
and 16, respectively (see Fig. S4). For zero noise, a y-ac-
celeration variation of zero led to notably better algo-
rithm performance in both the percentage of correct
trajectory links and VI. However, for y-acceleration varia-
tions greater than zero, there was no clear trend in per-
formance. The differences in VI values were less
noticeable at higher noise strengths, and in some cases,
VI for y-acceleration variation of 0 was greater than the
maximum variation of 16. When the noise strength is 3
and the spawn rate is 16, we see that VI for y-accelera-
tionvariationof0 isgreater thanwhen they-acceleration
variation is at the maximum, 16. Overall, there was a
slight improvement in performance with low y-accelera-
tion variation, but the difference was often minimal and
within the standard deviation of other values.
Experimental tests

We also carried out experimental tests to assess the
accuracy of our method by releasing neutrally
buoyant, micron-sized magnetic beads suspended in
buffer in the magnetic field of a small bar magnet. In
the low Reynolds number condition of the experiment,
the drag force, which is proportional to the velocity, is
equal to magnetic force. By computing the magnetic
force in two independent ways, we were able to
compare the particle-trajectory-based method to a
second, orthogonal method. We found good agree-
ment between the velocity-based method, which
Biophysical Reports 4, 100148, June 12, 2024 7



used the particle tracking algorithm to determine ve-
locity, and the reference method.

Please see the supporting material for simulation
studies designed to recapitulate experimental condi-
tions and details on the experimental tests, as well
as studies on algorithm run time.
DISCUSSION

We have presented an algorithm for determining tra-
jectories of closely spaced, indistinguishable objects
that are spawned at high rates and are moving rapidly
in a directional force field. The algorithm combines a
scoring function that considers expected motion due
to the force field with a backtracking method inspired
by measurement-assignment techniques. In order to
test its performance, we carried out simulation-based
validation and sensitivity studies in which we system-
atically varied the spawn rate, initial conditions for
object position and velocity (x0, y0, vx0, vy0), object ac-
celeration (ay), and noise strength or the signal/noise
ratio (s). We also looked at how the performance
scaled with np, the total number of particles tracked.
These were complemented by additional simulations
designed to recapitulate microsphere tracking experi-
ments (described in the supporting material), and
experimental validation was performed as well. Re-
sults were quantified in terms of 1) the percentage
of correct links identified and 2) the VI score.

Starting with np, we found a weak dependence on
particle number. This is not surprising since we expect
entry of new objects to be compensated, to some
extent, by the exit of others, roughly leaving the
same number of particles to be tracked in each frame
independent of the total number of particles.

The performance was generally robust as a function
of the initial kinematical parameters of the particles
(x0, y0, vx0, vy0, ay), with successful link detection of
90% or higher over a wide range of values for these
quantities, even for objects with large variations in ve-
locities or accelerations (i.e., when, in simulations, we
drew these values from intervals of varying lengths).
Also, we found that the spawn rate and, to a lesser
extent, the noise strength played a bigger role in
limiting the algorithm.

As x0 is drawn from wider intervals, the resulting tra-
jectories tended to be laterally spaced apart, which
helped with the identification task, as misidentifica-
tions would lead to an object in the next frame undergo-
ing a large lateral displacement, an assignment that
was heavily penalized by the scoring function.
Conversely, a point source leads to tightly clustered
paths (the location of the point source does not matter;
data not shown), and this case is difficult to parse. This
is because the lateral separation between links may
8 Biophysical Reports 4, 100148, June 12, 2024
only be a few pixels, making scoring-based discrimina-
tion less effective. This also explains why the perfor-
mance measured in VI for the point source case is
very sensitive to noise. Even for zero noise, trajectories
are packed together tightly, leading to a challenging
discrimination task. When noise is added, the chances
of erroneous link assignments go up even more, mak-
ing it that much harder to assign true trajectories. For
y0, at high spawn rates, increasing the length of the in-
terval increases the probability that a new object A will
spawn at time tj very close to the position of object B at
time ti. If A is closer to B's location at tj�1 than B at tj is
to its previous value, then the algorithm will determine
that A should be assigned to the trajectory of object B
while assigning B at tj to a new trajectory, leading to link
(and trajectory) misidentifications.

When we looked at the effect of increasing the vari-
ation in vx0, we expected improved performance since
greater nonuniformity in vx0 can increase horizontal
separation between objects. However, because we
allow objects to have both positive and negative x ve-
locity, the chance of multiple path intersections in-
creases. The algorithm is capable of dealing with
path intersections when the trajectories are spaced
in time adequately (lower spawn rates), but as the ob-
jects are grouped closer and closer together (at high
spawn rates), it can become quite challenging to
discern between trajectories that intersect frequently
within a small space. These trends were recapitulated
for vy0, where an increase in vy0 led to a slight decrease
in performance. As the scoring function penalizes mo-
tion against the direction of the force, variations in the
movement of objects in the direction of the force will
see a smaller change in algorithm performance. As
for ay, the results were robust to nonuniformities in
the acceleration of the objects.

When looking at how performance depends on noise
and spawn rate, in general, we found a more prominent
role for the spawn rate, although the signal/noise ratio
affected results as expected. Indeed, increasing noise
strength correlates with a decrease in performance.
This is especially true for trajectories that are closely
spaced since densely clustered objects can essentially
swap positions and still have trajectories close to the
true ones. This is evident in Fig. 3, which plots results
fromaltering the initial x-position variation. In these sim-
ulations, the most densely clustered objects are repre-
sented by an initial x-position variation of 0 and a
spawn rate of 16, with 16 objects appearing from the
same exact point in every frame. As we look at the
change in performance metrics from noise strength of
zero to noise strength of one, we see a significant
decrease in performance, with VI values increasing
twofold for noise strength of one compared to noise
strength of zero. As the objects increase in separation



FIGURE 7 Examining the effect of the backtracking method on the
scoring function output. Here, we show how the backtracking
method may alter the scoring function output from the set of simu-
lation trials shown previously. The x axis values correspond to re-
sults that were calculated by subtracting the number of correct
assignments from the scoring function only from the number of cor-
rect trajectory assignments using both the scoring function and
backtracking method. Thus, a positive number indicates trials that
saw improvement with the backtracking method, while negative
numbers correspond to trials in which the backtracking method
caused additional incorrect assignments. These results were
collected into bins of width 5, and so each bar shows the percentage
of the total number of trials in that bin. The red curve is a Gaussian fit
with fit parameters: mean¼ 8.6 and standard deviation¼ 24.25. The
bin values are half-closed intervals, e.g., [0,5) for the bin labeled 0 or
[5,10) for the bin labeled 5.
(the initial x-position variation is larger), the effect of
noise on the algorithm performance is less profound.
Furthermore, when the objects are separated both
spatially and temporally, the noise strength has even
less influence on the algorithm performance. Again,
referring to Fig. 3, initial x-position variations of 300 or
400 and spawn rates of 1 or less lead to barely notice-
able changes in VI values.

One of the fundamental limits of tracking algorithms
is how closely the objects are located to one another.
This isa functionnotonlyof theobjects'motion inspace
but also of the rate at which they enter or exit the sen-
sor's field of view, i.e., the rate at which they spawn.
The role of the objects' spatial density was evident in
our simulationswhenwestudiedhowsensitive thealgo-
rithmwas to variations in the initial positions, velocities,
and accelerations. These three parameters were found
to have the most significant effect on object density,
with greater variation in their values leading to greater
spatial separation. (The caveat is that greater variation
in x velocity and y acceleration can also increase the fre-
quency of trajectory intersections.)

We determined mean nearest-neighbor distances
for objects in these trials, i.e., the mean distance be-
tween each object at time t and its nearest neighbor
at that same time. Deciding between the nearest
neighbor and the true object is the core challenge
that the algorithm faces. These nearest-neighbor dis-
tances vary depending on the simulation parameters
used, including both spatial parameters and spawn
rates. At a spawn rate of 16, the mean nearest-
neighbor distance is between 3 and 19 pixels, regard-
less of the spatial parameters. Reducing the spawn
rate to 4, the mean nearest-neighbor distance grows
to between 4 and 50 pixels. Then, at a spawn rate of
1, the mean nearest-neighbor distance spans the
range of 40 to 140 for all spatial parameters. It is inter-
esting to note that we see instances in the simulations
where high spawn rate (R8) and dense object clus-
tering can often present nearest-neighbor distances
of less than a single pixel and sometimes even with
multiple object centroids within a single pixel. Parsing
trajectory assignments for objects spaced so closely
is incredibly challenging, particularly so without utiliz-
ing any special image processing methodology.

The spawn rate also played a significant role in the
ability of the algorithm to discriminate trajectories.
Indeed, in any of the Figs. 2, 3, 4, and 5, an examination
of thesamecolorbarsofanysubplot shows that theper-
formance of the algorithm improves consistently as the
object spawn rate is decreased. For object spawn rates
of one or lower, the worst performance of the algorithm
across all variables occurs for an initial x-position varia-
tion of zero and noise strength of three, in which 70% of
trajectory links were correctly identified and a VI of 1.4
was achieved. This is perhaps one of the most difficult
cases to parse accurately, and yet the algorithm is
capable of detecting 70% of trajectory links correctly
while maintaining a VI of 1.4. In fact, the only other
case in which VI is greater than one for a spawn rate
of one is when the initial x-position variation is zero
and the noise strength is two. For all other parameter
value combinations, VI is below one. Even for a spawn
rate of two, the algorithm only has significant issues
when the initial x-position variation is zero; for all other
parameter combinations, VI at spawn rates of two
does not significantly exceed one. In an experimental
setting, this means that if the frequency of observation
(frame rate) is high enough to reduce the spawn rate to
some value around two, then the algorithm should have
excellent performance regardless of object dynamics.

The backtracking method was evaluated by
comparing correct trajectory links of the scoring func-
tion to those of the complete algorithm. For the set of
simulation parameters discussed previously, the num-
ber of correct trajectory links using the entire algo-
rithm was compared to the number of correct
trajectory links using the scoring function only, and
the difference between the two values was calculated
(see Fig. 7). A Gaussian fit with mean 8.16 and stan-
dard deviation 24.25 is also shown for comparison.
In this figure, histogram bins less than zero represent
Biophysical Reports 4, 100148, June 12, 2024 9



trials in which the backtracking method resulted in a
decrease in the number of correct trajectory links,
while positive bins count simulations where an
improvement after backtracking was achieved. We
see that while there are situations in which the back-
tracking method can reduce the effectiveness of the
scoring-function-based trajectory assignment, most
often, the backtracking method improves upon the
initial trajectory assignments. We also note that for
the bulk of the simulations, the backtracking method
makes in the range of 0–25 trajectory assignment cor-
rections after examining hundreds of inputs. This sug-
gests that the scoring function is likely capable of
performing rather well on its own, but an improvement
on the scoring function is seen in the majority of cases
after passing through the backtracking method.

Finally, we carried out experimental tests to assess
the accuracy of the algorithm by comparing the forces
imputed by the algorithm with those determined inde-
pendently using an orthogonal comparator method.
As discussed in the supporting material, we found
good agreement between the algorithm-based and
reference methods.
SUPPORTING MATERIAL

Supplemental information can be found online at https://doi.org/10.
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