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Abstract

Background/Aims: Many anti-fibrotic drugs with high in vitro efficacies fail to produce significant effects in vivo. The aim of
this work is to use a statistical approach to design a numerical predictor that correlates better with in vivo outcomes.

Methods: High-content analysis (HCA) was performed with 49 drugs on hepatic stellate cells (HSCs) LX-2 stained with 10
fibrotic markers. ,0.3 billion feature values from all cells in .150,000 images were quantified to reflect the drug effects. A
systematic literature search on the in vivo effects of all 49 drugs on hepatofibrotic rats yields 28 papers with histological
scores. The in vivo and in vitro datasets were used to compute a single efficacy predictor (Epredict).

Results: We used in vivo data from one context (CCl4 rats with drug treatments) to optimize the computation of Epredict. This
optimized relationship was independently validated using in vivo data from two different contexts (treatment of DMN rats
and prevention of CCl4 induction). A linear in vitro-in vivo correlation was consistently observed in all the three contexts. We
used Epredict values to cluster drugs according to efficacy; and found that high-efficacy drugs tended to target proliferation,
apoptosis and contractility of HSCs.

Conclusions: The Epredict statistic, based on a prioritized combination of in vitro features, provides a better correlation
between in vitro and in vivo drug response than any of the traditional in vitro markers considered.
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Introduction

Liver fibrosis, a disease of excessive extracellular matrix (ECM)

accumulation, is a common downstream response to repeated liver

injury, caused by factors such as hepatitis B or C virus infection,

excessive alcohol consumption, non-alcoholic steatohepatitis

(NASH), autoimmune hepatitis, or drugs and toxins such as

azathioprine [1], D-galactosamine [2] or low doses of paracetamol

[3]. In current clinical practice, the most effective anti-fibrotic

treatment is indirect: to target the underlying cause(s) of injury, as

removal of primary insults may lead to spontaneous regression of

fibrosis. For example, lamivudine, which blocks hepatitis B virus

replication, can result in fibrosis resolution [4]. However, fully

activated hepatic stellate cells (HSCs), besides being a major source

of fibrotic ECM [5], also secrete a broad range of chemokines and

cytokines for self-perpetuating fibrosis in the absence of primary

insults [6]. As a result, indirect treatment by removing the

underlying irritant is not effective in a significant population of

liver fibrosis patients.

Current drug discovery efforts for direct anti-fibrotic therapies

have primarily targeted activated HSCs. Over recent years, the

focus in drug discovery research has shifted from cell-free

approaches based on molecular targets, to cell-based systems-

biology based approaches, in an effort to increase success rates and

reduce the overhead costs of drug development [7]. Since multiple

complex pathways are involved in fibrogenesis, it is important to

study the anti-fibrotic effects of a drug in the cellular context.

Several high-throughput in vitro screenings have been performed
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previously on HSCs or fibroblast cells. Xu et. al. (2007) established

a quantitative screening platform based on TGF-b1 dependent

fibroblast nodule formation [8]. Using this system, 8 out of 21

herbal extracts were found to have anti-fibrotic activities [9]. In

other studies, HSC proliferation and apoptosis were used to assess

the direct effects of drugs on HSC [10,11]. Collagen expression is

another indicator commonly used in high-throughput systems

[12,13]. These studies together with conventional low-throughput

in vitro and in vivo studies have identified a diverse group of positive

chemicals. The most promising ones, such as losartan, pioglitazone

and Fuzheng Huayu tablets, have entered phase IV clinical trials

[14].

Despite numerous efforts in anti-fibrotic drug discovery, there is

no anti-fibrotic drug approved by the U.S. Food and Drug

Administration. Many candidate drugs for fibrosis have failed in

preclinical or clinical trials. One of the reasons is that in vitro data

have poor correlation with in vivo drug effects due to the

complicated pathophysiological background of hepatic fibrogen-

esis. As a result, drugs with high in vitro efficacies based on simple

biochemical assays may fail to produce significant in vivo effects

[15]. Despite the different levels of complexity between the in vitro

and in vivo systems, previous studies from other fields such as drug

dissolution [16,17], have demonstrated that optimized design of in

vitro systems can result in better correlation with in vivo data

[18,19].

In the present study, we quantitatively assessed and compared

end-point anti-fibrotic drug responses from in vitro and in vivo

models. A high-content analysis (HCA) system was established that

provides a strong positive correlation with the in vivo drug

responses. A drug efficacy predictor (Epredict) was computed and

optimized to have a high positive correlation with the in vivo drug

efficacy (Ein vivo) extracted from studies using rat carbon

tetrachloride (CCl4) treatment models. This positive correlation

was validated with two additional validation datasets from rat

CCl4 preventive and dimethylnitrosamine (DMN) treatment

models. Moreover, a linear in vitro-in vivo relationship was

consistently observed in all three datasets, suggesting that the

Epredict value can also be used to rank drug efficacy and generate

predictions. Drugs with higher Epredict were observed to exert their

primary effects by targeting HSC proliferation, apoptosis or

contractility, which are consistent with previous anti-fibrosis

strategies.

Materials and Methods

Cell culture
The human HSC cell line LX-2 was obtained as a generous gift

from Dr. Scott Friedman (Mount Sinai Hospital, NY). The cells

were cultured in Dulbecco’s modified eagle medium with

1000 mg/L glucose (Biopolis Shared Facilities, Singapore) and

10% heat inactivated fetal bovine serum (Gibco, Grand Island,

NY, USA) and incubated in 37uC in a humidified atmosphere with

95% air/5% carbon dioxide.

Drug preparation
45 anti-fibrotic drugs and 4 non-specific control compounds not

related to fibrosis were included in this study. The stock solution of

each drug was prepared by dissolving the drug in dimethyl

sulfoxide (Sigma-Aldrich, St Louis, MO, USA) at the maximum

solubility of a drug unless the solvent is specifically indicated in the

manufacturer’s information sheet. The highest working concen-

tration of each drug was determined as the IC50 value from a cell

viability assay (Table S1) and was dispensed in the second column

of a 96-well plate (Nunc, Roskilde, Danmark). 10 other working

concentrations were prepared by 2-fold serial dilution from the

highest concentration in the same 96-well plate from column 3 to

column 12. The first column of each plate was used as a drug-free

control column.

Drug treatment
LX-2 cells were seeded in 96-well glass-bottom optical plates

(Matrical bioscience, Spokane, Washington). The seeding density

was 0.007 million in 100 ml medium per well, allowing cells to

reach 70% confluence after a 3-day incubation. 24 hours after cell

seeding, the culture medium was removed and fresh medium with

drug was added and the cells were further incubated for 48 hours

before the viability assay or staining was performed.

Cell viability assay
Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)2-(4-sulfophenyl)-2H-tetrazolium (MTS),

according to the manufacturer’s instructions (CellTiter 96 Aqueous

One Solution Cell Proliferation Assay, Promega). MTS reagent was

prepared by mixing minimum essential medium (Gibco, Grand

Island, NY, USA), FBS and CellTiter One solution at a ratio of 9:1:2

just before the assay. 120 ml of the prepared reagent was added to

each well and the plates incubated for 60 minutes in a 37uC
incubator. At the end of the incubation, 100 ml of the medium was

transferred to a new 96-well plate and the absorbance read at

490 nm. All readings were corrected with blank controls (MTS

reagent incubated for 1 hour in 37uC in empty wells). All conditions

were duplicated per experiment and all experiments were performed

twice. The average values were used to determine the IC50 values

and the highest drug working concentrations were set to be close to

the IC50 values.

Cell staining
Ten markers of fibrosis (Table S3) were included in this study

and they were studied using 7 staining sets. We used 5 Cellomics

Hitkits to track changes in cell proliferation (BrdU cell prolifer-

ation kit), apoptosis (Multiparameter apoptosis 1 kit and Caspase 3

activation kit), cell shape (Multiparameter apoptosis 1 kit),

oxidative stress (Oxidative stress 1 kit) and cytokine activities

(Smad3 and phospho-CREB activation kit). Five samples and their

duplicates were separately stained using the 5 kits. The staining

steps were carried out according to the manufacturer’s instructions

(Thermo Fisher Scientific, Rockford, Illinois) with the exception of

the nuclear staining procedure. For all the staining protocols in this

study, nuclei were separately stained (Hoechst 33258 diluted

1:1000) after secondary antibody staining and incubated for

10 minutes under room temperature before the cells were washed

and subjected to image acquisition.

In addition, two samples and their duplicates were separately

stained with collagen type III antibody or double-stained with

matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of

metalloproteinases-1 (TIMP-1) antibodies. LX-2 cells were fixed

in pre-warmed 3.7% paraformaldehyde (Sigma-Aldrich, St Louis,

MO, USA) in 37uC for 10 minutes and permeabilized with 1%

Triton X-100 (Thermo Fisher Scientific, Rockford, Illinois) at

room temperature for another 10 minutes before blocking with

10% BSA (Sigma, Canada). After 30 minutes blocking, the cells

were incubated with either anti-collagen III antibody (diluted

1:100, Santa Cruz Biotechnology) or a mixture of the MMP-2 and

TIMP-1 antibodies (anti-MMP-2 antibody was diluted 1:1000,

Santa Cruz Biotechnology; anti-TIMP-1 antibody was diluted

1:100, Santa Cruz Biotechnology) for 2 hours at room tempera-

ture. After washing, the cells were incubated with fluorescein-

conjugated affinity purified anti-rabbit IgG (H&L) (goat) (diluted
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1:200, Rockland, USA) or Texas red conjugated affinity purified

anti-mouse IgG (H&L) (donkey) (diluted 1:200, Rockland, USA) at

room temperature for 1 hour, protected from light. Hoechst

33258 (diluted 1:1000) was subsequently added for 10 minutes

before the cells were washed and subjected to image acquisition.

Image acquisition
Images were acquired using Cellomics ArrayScan VTI (Thermo

Scientific) controlled by vHCSTM Scan software version 6.1.4

(Build 6133). All images were taken with a LD Plan_Neofluar 206
air objective. 16 high-resolution images (102461024 pixels) were

taken per well, which captured about 1000 to 2000 cells per

experimental condition.

Image processing and statistical analysis
There are about 100 cells captured per image. Image

segmentation and feature extraction were performed with a

modified evolving generalized Voronoi diagrams algorithm [20],

in which individual cells were identified and 25 or 16 cytological

features were extracted per cell, for samples with 3-channel or 2-

channel staining respectively. These features described cellular

shape, protein distribution and content. A complete list of

cytological features is shown in Table S2. The efficacy predictor

(Epredict) was computed using Matlab R2009a with image

processing and statistical toolboxes (material S1). In short, the

raw data from in vitro experiments consists of multiple dimensions

that include multiple cells in each treatment condition, drug

concentrations, cellular features, and fibrotic markers. We reduced

the data complexity in a 3-step statistical process (described in the

material S1) and derived a SAUC value per fibrotic marker per

drug. Subsequently, the Epredict score was computed by a linear

combination of the SAUC values. The optimized weight for each

fibrotic marker in the linear combination was calculated and

validated independently with the training and validation in vivo

data sets respectively (described in the result section 4).

Automation
During activation, HSCs undergo phenotypic changes such as

increasing proliferation and ECM production (Fig. 1A) [21]. Many of

these changes are potential therapeutic targets. We followed 5 such

changes (Fig. 1B) with 10 chosen markers (Fig. 1C) using an HCA

system that can be divided into 4 components: sample preparation,

automated image acquisition, image processing and statistical analysis

(Fig. 1D). All the sample preparation procedures including cell

culture, drug preparation, drug treatment, cell viability assay and

immunofluorescence staining were automated using a JANUSTM

automated liquid handling system (Perkin Elmer).

Results

We have developed an HCA-based quantitative assessment

screen that uses the Epredict value to correlate in vitro and in vivo anti-

fibrotic drug responses. Subsequently the Epredict value was used in

two applications: predicting in vivo drug efficacy from in vitro data,

and determining the cellular pathways that are common among

the more effective anti-fibrotic drugs.

All 10 markers of fibrosis captured drug-induced changes
in LX-2 cells

In HCA, cells were treated with the 49 drugs at 11

concentrations, stained for 10 markers of fibrosis (Table S3), and

imaged using automated microscopy. Cellular features such as the

extent of changes in shape and marker intensity were then

quantified for assessing the anti-fibrotic efficacies of the drugs.

Drug-induced changes can be clearly detected in the datasets;

for example, glycyrrhizin caused an increase in apoptosis (i.e.,

increase in the caspase 3 level and decrease in the mitochondrial

membrane potential DYm, measured by Mitotracker Red) and a

decrease in four other markers: proliferation (i.e., bromodeoxyur-

idine (BrdU) positive cells), oxidative stress (i.e., dihydroethidium

(DHE) intensity), collagen (i.e., collagen type III intensity), and

TIMP-1 (i.e., TIMP-1 intensity). The Smad3 marker for TGF-b1/

fibrosis signaling was also studied. The ratio between nuclear and

cytoplasmic intensities for Smad3 decreased with drug treatment,

demonstrating reduced nuclear translocation and reduced activa-

tion of the protein. This suggests that glycyrrihizin can down-

regulate the TGF-b1 signaling pathway. Furthermore, the total

Smad3 level increased in cells treated with anti-fibrotic drugs;

previous work showed that Smad3 is required for inhibiting HSC

proliferation [22] (images in Fig. 2A).

Changes in fibrotic markers in vitro are consistent with in
vivo drug response

We used a modified evolving generalized Voronoi diagrams

algorithm to identify individual cells from the images. 5 nuclear

features and 11 cytoplasmic features per marker were extracted

from each cell. These features quantitatively described cellular

characteristics such as cell shape, protein expression levels and

protein localization in the nucleus and cytoplasm (Table S2).

The cellular features from cells treated with various drug

concentrations were normalized and combined to create a single

SAUC score per fibrotic marker per drug (material S1). The SAUCs

vary positively with the anti-fibrotic effects of a drug on the 10

markers. Briefly, we converted the cellular feature values into a

Kolmogorov-Smirnov score [23] or ratio depending on whether a

feature value has a unimodal or bimodal distribution. Both

Kolmogorov-Smirnov score and ratio vary from -1 to 1 and the

combined result was termed the KR value (Fig. 2A). A negative KR

value represents a decreasing feature value (e.g. intensity)

compared with the control; while a positive one represents

increasing feature value. The KR values exhibit drug concentra-

tion-dependent changes shown by the color intensities in the

heatmaps. The extent of changes of cells stained with a particular

marker is then computed from the KR values and termed the

SAUC score, which is the sum of the sign corrected area under the

curve from a plot of KR values versus drug concentrations. The

sign of the SAUC value was corrected to increase if the drug

exhibits anti-fibrotic effects (material S1).

Each drug has 10 SAUC values corresponding to the 10 markers

of fibrosis. In vitro drug effects can be assessed based on these values,

and the results could be correlated to in vivo response. For example,

oxymatrine exhibited a higher efficacy than colchine, as oxymatrine

treated rats had lower histopathological scores, smaller collagen

area in the liver tissue, and lower concentrations of the serum

markers such as hyaluronic acid and procollagen III compared with

colchicine treated rats [24]. From our HCA results, the SAUC values

for at least half of the markers showed a higher value for oxymatrine

than colchicine (Fig. 2B). In order to have a more quantitative

comparison of the drug efficacies, our goal is to consolidate the 10

SAUC values into a single index as a drug efficacy predictor that is

positively correlated with an in vivo drug efficacy index.

An in vivo anti-fibrotic drug efficacy index ranks drugs
based on their in vivo effects

Different weights will be assigned to the SAUC values to reflect

the relative importance of each of the markers towards the overall

efficacy. The weights should be chosen so that the overall index

Ranking Anti-Fibrotic Drugs
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can reflect the in vivo response of a drug. Before we can do that, we

need a numerical measure of the in vivo drug efficacy. Previous

work that involved multiple drugs in a single in vivo study carried

out the drug efficacy comparison by assessing the extent of fibrosis

in liver biopsy samples, as well as the level of surrogate serum

markers for liver fibrosis such as alanine aminotransferase (ALT)

and aspartate aminotransferase (AST). Such an approach does not

summarize the experimental results into a drug efficacy index for

direct comparison and ranking of drugs within a single in vivo study

or between studies. Here we analyzed the literature and an in vivo

drug efficacy scoring system was computed based on histological

scores.

Most of the in vivo studies reported in the literature were carried

out in rat models. Although numerous such papers are available,

there is no standard method to compare these results. To compare

the in vivo drug efficacies, we have established an in vivo index based

on pathologist-graded histological scores, which are considered a

gold standard for quantifying the extent of fibrosis. A systematic

search was performed on the reported in vivo effects of all 49 drugs

on hepatofibrotic rats. The search yielded 28 papers from 1986 to

2009 with pathologist-graded histological scores, using CCl4,

TAA, DMN, cisplatin, pig serum, high calorie diet or bile duct

ligation induced fibrotic rats (Table S4). These studies can be

further divided into preventive or treatment models, depending on

whether a drug is given since the first injection of hepatotoxin or

after liver fibrosis has been established.

To define a formula for in vivo drug efficacy, we attempted to

combine the histological score of fibrotic animals without drug

treatment (Sc) and the histological score of drug treated animals

(St). The in vivo efficacy of a drug is expected to be positively

correlated with the changes in histological scores between the

control and drug-treated biopsy samples (Sc - St). In addition, the

drug efficacy may also be positively dependent on the fibrosis

severity, as there are observations that individuals with more

advanced fibrosis are less likely to respond to treatment, hence

these patients require drugs with higher efficacy [15]. A

Figure 1. Principle for evaluation of anti-fibrotic drug efficacy. (A) Phenotypic changes of hepatic stellate cells during activation. (B) Potential
sites for therapeutic interventions and (C) markers that track the effects of the interventions. (D) The high-content analysis system with 4 core
components (sample preparation, automated image acquisition, image processing and statistical analysis).
doi:10.1371/journal.pone.0026230.g001
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quantitative in vivo efficacy index (Ein vivo) was computed as shown

below:

Ein vivo~Sc|(Sc{St)

Both Sc and St were linearly converted to a 0–4 scale, which is a

commonly used range for histological scores in several fibrosis

scoring systems such as Metavir, Knodell and Ludwig [25]. If

histological scores of a drug from multiple studies were available,

the highest Ein vivo value was chosen.

The severity of fibrosis induced by different hepatotoxins varies

(e.g. Ein vivo for silymarin is 0.8 for DMN treatment model, 3.1 and

6 for CCl4 treatment and preventive models); hence the indices are

only comparable within the same fibrosis model. Subsequent

correlation analysis was conducted using studies with long-term

(.3 week) drug treatment, and fibrotic models with at least 3

drugs. The in vivo results satisfying these criteria are summarized in

Table 1. CCl4 preventive and treatment models have 5 drugs in

common; we found that three of these drugs: silymarin, malotilate

and pioglitazone have the same relative ranking in both models

while PCN and taurine didn’t follow the ranking. Interestingly

subsequent analysis showed that both PCN and taurine were

outliners in the in vitro-in vivo correlation plots.

The calculated Ein vivo is an attempt to capture the therapeutic

efficacy of drugs on human patients. There are relatively few studies

suitable for directly comparing drug effects on human patients due

to variations in experimental design. In one example, two similar

clinical studies using colchicine and silymarin on patients with

cirrhosis due to any primary insults showed that colchicine led to

75% 5-year survival rate [26], while silymarin led to 58% 4-year

survival rate [27]. Ein vivo agrees with these reports that colchicine has

a higher value (5.7) than silymarin (0.8) (Table 1).

An in vitro efficacy predictor Epredict that positively
correlates with the Ein vivo value of a drug

The SAUC values for the majority of drugs showed a weak

positive correlation with the Ein vivo (Fig. S1: DYm, TIMP-1, DHE,

pCREB and Smad3). We investigated if we could further enhance

this correlation by applying weights (0, 1 or 2) to the SAUC values.

0 indicates no contribution of the marker to the positive

correlation; while 2 indicates strong contribution of the marker

to the positive correlation. The Ein vivo values from the CCl4
treatment model were used as the training dataset to find the

optimized weights.

All possible linear combinations of the 3 weights with 10

markers (310 combinations) were subjected to the Spearman’s rank

Figure 2. Images and quantification of the changes of LX-2 with drug treatment. (A) The cells are treated with or without 13.3 mM
glycyrrhizin as indicated for 48 hours. Nuclei are stained (blue) in all the images; while 10 fibrotic markers are represented with either red or green
colors. Heatmaps show the variations of the KR values for each of the cytological features (y-axis) with increasing drug concentrations from 0 mM to
13.3 mM (x-axis). Cytological features with similar variations are clustered together in the heatmaps. Drug-induced concentration-dependent changes
can be clearly detected in the graphs. Numbers in the heatmaps are the SAUC values. (B) The SAUC values for drugs colchicine and oxymatrine.
doi:10.1371/journal.pone.0026230.g002

Table 1. Indexing of anti-fibrotic drugs from in vivo data.

Animal models Drugs

histological
score (DMN
alone) (Sc)

histological
score (with
drug) (St)

Ein vivo:
(Sc-St)xSc

DMN induced fibrosis (treatment) silymarin [40] 2 1.6 0.8

thalidomide [41] 1.56 0.89 1

tetrandrine [40] 2 1.3 1.4

colchicine [42] 3.8 2.3 5.7

CCl4 induced fibrosis (treatment) silymarin [43] 3.4 2.5 3.1

5-Pregnen-3b-ol-20-one-16a-carbonitrile (PCN) [44] 3.84 2.8 4

malotilate [45] 3.76 2.67 4.1

rosmarinic acid [43] 3.4 2.1 4.4

pioglitazone [46] 4 2.63 5.5

taurine [47] 3.33 1.33 6.7

CCl4 induced fibrosis (preventive) PCN [44] 3.6 3.68 20.3

taurine [48] 3.03 1.87 3.5

melatonin [49] 3.38 2.25 3.8

oxymatrine [50] 3.76 2.43 5

silymarin [51] 4 2.5 6

malotilate [45] 2.91 0.76 6.3

EGCG [52] 3.58 1.5 7.4

pioglitazone [46] 4 1.94 8.2

All data are taken from the literature using dimethylnitrosamine (DMN) treatment, carbon tetrachloride (CCl4) treatment, or CCl4 preventive fibrotic rat models.
Histological scores are linearly converted to a scale from 0 to 4. Ein vivo is established as shown. Drugs under each animal model are sorted according to increasing Ein vivo.
Silymarin, malotilate and pioglitazone have the same relative ranking in CCl4 treatment and preventive models.
doi:10.1371/journal.pone.0026230.t001
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correlation test [28] against Ein vivo from CCl4 fibrosis model. One

outlier was allowed in the analysis, as the sample size is relatively

small. The Spearman’s rank correlation coefficient rho ranges from

0 to 1, where 1 means perfect rank correlation (excluding the

outlier), and 0 means the opposite order. The optimized weight for

each marker was determined to be the value with the highest

frequency occurrence out of all cases which achieved rho = 1 (Fig.

S2). High weight implies high importance of the marker towards a

strongly positive correlation. The optimized weights yielded the

following efficacy predictor (Epredict), computed as the linear

combination of the 10 optimized weights with the SAUC values:

Epredict~SAUCDHEzSAUCcollagen III

z2|SAUCmitochondrial membrane potential

z2|SAUCTIMP{1z2|SAUCpCREBz2|SAUCSmad3

A greater Epredict represents a higher drug efficacy and all negative

values were assigned to 0 as no efficacy. We also incorporated an

additional step to identify drugs with non-specific effects that cause

an increase in collagen expression (material S2 and Fig. S3); their

Epredict values were also assigned to 0 (Table 2). Fig. 3A shows that

the Epredict values had a good correlation with the Ein vivo from the

CCl4 treatment model, which was used for optimizing the weights.

Although the statistical approach used was to optimize the ranking

order of the drugs, a linear relationship was observed in the plot.

Taurine was found to be an outlier. Its relatively high in vivo

efficacy compared with the other drugs used in CCl4 treatment

model in Table 1 might be due to the much higher drug

concentration used in the study (1200 mg/kg daily) compared with

a typical drug concentration (,100 mg/kg daily) for the rest of the

drugs.

To validate that Epredict is a robust anti-fibrotic drug efficacy

predictor that can correlate with the in vivo data from other rodent

fibrosis models different from the training dataset; we tested the

ability of Epredict to correlate with two ‘‘blind’’ in vivo datasets. We

drew two additional correlation plots of Epredict against Ein vivo from

DMN treatment (Fig. 3B) and CCl4 preventive models (Fig. 3C).

Epredict was kept the same as computed for the CCl4 treatment

model. A positive correlation as well as a linear relationship

between Epredict and Ein vivo was again observed in both plots. To

further prove that this relationship does not depend on the choice

of the training set of data, similar results were obtained if DMN

treatment or CCl4 preventive models were used as the training

dataset instead of the CCl4 treatment model (data not shown).

Fig. 3D and E demonstrate how rho varies with the number of

markers and the number of cytological features, respectively. Both

curves reach a plateau before or at our experimental configuration

of 10 markers and 16 features per cell, showing that our study

design is sufficient for the anti-fibrotic correlation study. We next

test the robustness of the experimental configuration by shuffling

the weights in the Epredict formula; Fig. 3F shows the plot for the

percentage distribution of rho for all possible combinations of the 3

weights and 10 markers. There is a 23% chance of rho being equal

to 1, which is significantly higher than the random control (5%

chance of rho being equal to 1) in which the relative ranks were

randomized before applying the Spearman’s rank correlation test.

This demonstrates that a positive correlation between the in vitro

and in vivo indices can be achieved even if the optimized set of

weights is not used, implying that the weighting procedure of our

system is not vulnerable to high background noise. The in vitro

SAUCs have good predictive value alone, and the Epredict weighting

of the SAUCs optimizes their correlation and augments their

predictive power.

The in vivo histological scores can be estimated from Epredict

The linear relationship observed in all the three correlation plots

may be used to generate predictions of in vivo drug efficacies based

on in vitro measurements. Since all the in vivo data from long-term

drug treatment studies have been used either to build or validate

the in vitro-in vivo correlation, we now turn to short-term drug

treatment (,3-week treatment including single injection) as

another source of information for validating the predictive

capability of Epredict. One such study is available, concerning

sulfasalazine. We would like to use in vitro Epredict values generated

from HCA to predict in vivo histological scores. Since Epredict was

optimized with data from long-term studies, the predicted

histological scores should be similar to long-term drug treatment

outcomes. The histological scores from short-term studies are

expected to be slightly higher than our prediction, because

prolonging the treatment with the same drug used in the short-

term studies may further improve the fibrotic status and decrease

the histological scores.

The Epredict value of sulfasalazine is 39437; using the linear

relationship from the CCl4 treatment model (equation in Fig. 3A),

the Ein vivo value is calculated to be 5.8. Assuming the histological

score of rat livers with CCl4 induced fibrosis and no anti-fibrotic

treatment is 3.0 (same as in [29]), a long-term treatment with

sulfasalazine is predicted to reduce the fibrosis histological score to

1.1. A short-term study on rat CCl4 treatment model reported that

a single injection of sulfasalazine reduced the fibrosis score to 1.5

compared with 3.0 in untreated CCl4-only livers [29]. The results

agreed with our expectation, showing that the in vivo histological

scores can be estimated from Epredict.

High-efficacy drugs tend to target proliferation,
apoptosis and contractility of HSCs

All drugs were grouped into 3 categories based on their Epredict

values. The negative (n) group was defined to include all drugs

with Epredict equivalent to 0. Seven drugs with the highest Epredict

values were placed into the very positive (vp) group. The rest of the

drugs were in the positive (p) group. Before proceeding to

quantitative analysis, we firstly remark on some trends and

background about the categorized drugs. The n group has 16

drugs including 6 anti-oxidants, two HMG-CoA reductase

inhibitors, simvastatin and lovastatin, and all 4 non-specific

control compounds not related to fibrosis. Tranilast from the p

group showed anti-fibrotic effects in renal and liver fibrosis

[30,31], and it has a relatively high Epredict value of 19594. It has

been reported as a positive drug in another high-throughput

screening study [8]. In the vp group, glycyrrhizin, a herbal extract

from licorice, showed positive effects on patients with hepatitis C

[32]. Pioglitazone is another highly effective drug in the vp group

that has been subjected to multiple advanced stage clinical studies

[14]. It is one of the peroxisomal proliferator activated receptor

gamma ligands, which have overall higher efficacies on human

patients than colchicine, interferon gamma, and angiotensin

receptor blockers [15].

The mean KR values of the average intensity for fibrosis markers

were represented as boxplots for the n, p and vp groups of drugs

(Fig. 4A). Fewer outliers (red plus) were observed in the plot for the

vp group compared with that for all the drugs (n+p+vp), showing

that drugs with high efficacies have similar cellular effects and

probably have similar cellular targets.

A principal component analysis (PCA) was carried to detect the

set of markers that carry the most information, which could reflect

the importance of the underlying pathways. We found that the top

4 principal components built from SAUC values from drugs in the

vp group explained more than 95% of the cumulative variance in
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the system. The first principal component mainly captures

variation in DYm, which plays an important role in the apoptotic

pathway. The second principal component mainly captures

variations in caspase 3 (also apoptosis), collagen III (ECM),

MMP-2 (ECM) and TIMP-1 (ECM) (Fig. 4B). The three groups of

drugs with different levels of efficacy can be well separated when

mapped to the first, second and fourth principal component

coordinates (Fig. 4C). The vp group (blue) is found to have

relatively large values in the first, second and fourth principal

components; while the p group (black) has positive values in the

first principal component, but relatively low values in the second

principal component. These results showed that apoptosis is an

attractive anti-fibrotic target, while targeting ECM directly is also

effective. Interestingly DYm and caspase 3 did not co-vary with

each other in the first and second principal components,

suggesting that highly effective anti-fibrotic drugs target distinct

sub-pathways of apoptosis: either the intrinsic mitochondria-

dependent pathway, or caspase 3-dependent non-mitochondrial

pathways. As a result, multiple apoptotic markers are needed to

measure the effect of an anti-fibrotic drug on HSC apoptosis. In

addition, MMP-2 and TIMP-1 have expected roles in the PCA

analysis, being somewhat important, and often co-varying

inversely with each other.

To validate the finding that apoptosis is an attractive anti-

fibrotic target, the primary mechanism of action of each drug was

found from the literature (Table S5) and was broadly categorized

into 4 targets [33]. The target ‘‘cytokine’’ includes drugs targeting

cytokines such as TGF-b1 and PDGF activities; the target ‘‘ECM’’

includes drugs inhibiting collagen synthesis or promoting degra-

dation; the target ‘‘ROS’’ includes all anti-oxidants; and the target

‘‘HSCs’’ includes all other aspects including drugs targeting HSC

proliferation, apoptosis or contractility. Drugs were allowed to be

in 1 or multiple categories to account for the multiple signaling

pathways a drug may be involved in; however, secondary

mechanism of action (e.g. HCS apoptosis due to the anti-oxidative

activity of a drug) is not included. The results were summarized in

4-way Venn diagrams (Fig. 4D). The 49 drugs showed a balanced

distribution in each of the 4 categories. However, the more

effective drugs seem to have their primary effects on HSCs

directly, which agrees with the PCA result that the HSC apoptosis

pathway is a potent drug target.

Discussion

Suppressing collagen production or reducing HSC viability

represents an important anti-fibrotic drug screening strategy.

Single-parameter in vitro studies have relatively poor correlation

with in vivo drug efficacy; while multi-parameter in vitro studies are

easy to perform but difficult to interpret. In this paper, we take a

systematic statistical approach to the problem of correlating multi-

parameter HCA screening against published in vivo drug effects.

Our HCA system includes 10 fibrotic markers and 16 imaging

features per marker, which follow changes in reactive oxygen

species, TGF-b, proliferation, apoptosis, collagen regulation and

cell contractility. Using a limited subset of the in vivo literature, we

compute an optimized interpretation of the in vitro data, called

Epredict, to predict in vivo drug efficacy. Then we test the

performance of the Epredict values on two different subsets of the

in vivo literature. We find that Epredict is able to identify drugs with

anti-fibrotic effects, and also be able to distinguish drugs with

moderate and high efficacies.

Studies of in vitro-in vivo comparative efficacy can help select

promising categories of drugs to be given priority in the drug

discovery pipeline. However, it is challenging to perform such

Table 2. List of Epredict values for all the drugs.

Drugs Epredict

taxifolin 0

taurine 0

curcumin 0

resveratrol 0

silymarin 0

minoxidil sulphate 0

simvastatin 0

genistein 0

lovastatin 0

PTK787/ZK22258 (PTK/ZK) 0

Y27632 0

rotenone 0

AG1295 0

paclitaxel 0

aphidicolin 0

nocodazole 0

pentoxifylline 5175

matrine 5295

astragaloside IV 5496

thalidomide 6263

colchicine 6487

TGFb inhibitor V 6974

gliotoxin 7086

5-Pregnen-3b-ol-20-one-16a-carbonitrile (PCN) 8203

camostat mesylate 8231

imatinib mesylate 8454

oxymatrine 8528

pirfenidone 8837

minoxidil 9069

AG1296 9154

somatostatin 10057

MG132 10669

tetrandrine 10747

telmisartan 11467

malotilate 12941

melatonin 13728

fasudil HCl 14295

olmesartan medoxomil 15959

silybin 18138

TGFb inhibitor III 18315

tranilast 19594

epigallocatechin gallate (EGCG) 19704

bortezomib 21047

rosmarinic acid 21435

berberine chloride 21983

staurosporine 25015

glycyrrhizin 25728

pioglitazone 35226

sulfasalazine 39437

doi:10.1371/journal.pone.0026230.t002
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analysis from limited in vivo literature. The preclinical and clinical

results of many drugs are often lacking, incomplete or inconclu-

sive. Even when in vivo data is available, the histological scores may

not be assessed, while other serum markers such as ALT and AST

may not directly reflect fibrosis severity [34]. Another important

concern is the inter-observer variability by pathologists doing

histological examination of biopsy samples [35]. This intrinsic

baseline error seems to be well tolerated and low enough not to

mask the linear relationship between data from in vitro cell culture

and in vivo rat models in this study.

In this study the Epredict value was derived from HCA and a

limited training set of in vivo data, but its magnitude showed strong

positive correlation with most of the available in vivo scores from

fibrotic rat models, including blinded data sets that were reserved

for validation purposes. The level of the in vitro efficacy was

assessed by the overall effect of a drug on multiple pathways and

partially reflects the complex in vivo response. It is interesting to see

that a linear relationship with R2.0.9 exists between the in vitro

and in vivo data for CCl4 and DMN fibrotic treatment models;

while a weaker linear correlation (R2 = 0.54) was observed for the

Figure 3. Correlation between Epredict and Ein vivo. (A) Optimization of Epredict. Epredict is computed as a weighted combination of the features with
weights optimized using Spearman’s rank correlation test to best correlate with Ein vivo from the CCl4 treatment model. (B, C) Blind validations of in
vitro-in vivo correlation between Epredict and Ein vivo from two independent datasets containing DMN treatment and CCl4 preventive models
respectively. The linear relationship is highlighted using linear regression lines in all (A, B and C). The equations of the linear regression lines and the
R2 values are computed without considering the outliers in the graphs (i.e., taurine in A, colchicine in B and PCN in C). (D) The relationship between
the average rho value and the number of markers. (E) The relationship between average rho and the number of features per marker. Error bars
represent standard deviation. (F) The percentage distribution of rho is plotted for all possible combinations of the 3 weights and 10 markers. The
random control was done by randomizing the relative ranks of the in vivo drug efficacies for the Spearman’s rank correlation test.
doi:10.1371/journal.pone.0026230.g003

Ranking Anti-Fibrotic Drugs

PLoS ONE | www.plosone.org 9 November 2011 | Volume 6 | Issue 11 | e26230



Figure 4. Distinctive characteristics of the negative (n), positive (p), and very positive (vp) groups of drugs. (A) The average intensities
of the 10 makers for all drugs (n+p+vp), all positive (p+vp) drugs and the vp group of drugs are shown in the boxplots, where inter-quartile ranges are
represented by boxes. Whiskers represent 1.5 times the inter-quartile range and any data (outliers) beyond the whiskers are shown using red +. (B)
Principal component analysis (PCA) is done using data from the vp group. The top 4 principal components explain 95% of the cumulative variance in
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CCl4 preventive model. In the latter, fibrosis causing agents such

as CCl4 and drugs were given together to rats. As a result, many of

the drugs showing positive effects are protecting hepatocytes from

toxins or preventing HSC activation, rather than inducing fibrosis

regression. Since an activated HSC cell line is used in our

screening platform, it is more closely mimicking the treatment

model; hence a stronger linear relationship exists for both CCl4
and DMN treatment models. Furthermore, anti-oxidants work by

preventing HSC activation induced by free radicals. This group of

drugs can be considered preventive drugs, more than treatment

drugs, which agrees with our result that most of the anti-oxidants

have lower Epredict values.

The ability of cell culture models to predict in vivo drug effects is

limited by many fundamental constraints. For example, drugs

might be able to improve liver fibrosis by improving vascular flow

or liver architecture, such as the angiotensin II receptor

antagonists losartan and candesartan. Some drugs are metabolized

by hepatocytes into secondary compounds with different effects;

and such effects cannot be foreseen in vitro using HSC

monocultures. This study investigated the effects of drugs on

HSCs only. Our system is not suitable to substitute for animal

trials, but we recommend it for prioritizing the selection of drugs to

enter animal trials.

Interestingly, we have observed promising pieces of evidence that

the Epredict score can potentially be correlated with data from human

clinical trials. For example, the group of drugs with relatively high

Epredict scores (e.g. pioglitazone [36] and glycyrrhizin [37]) gave more

promising results in human clinical trials than the group of drugs

with low Epredict scores (e.g. colchicine [38] and silymarin [39]).

Furthermore, drugs with lower Epredict scores generally have fewer in

vivo publications than drugs with higher Epredict scores. Such

relationship may be partially due to the fact that the hepatic stellate

cell line used in this study is from human origin.

In conclusion, our anti-fibrotic drug screening platform is able

to index and rank drugs according to their in vitro efficacy. The in

vitro index system positively correlates with the in vivo histological

scores, which shows that our in vitro cell-based system has some

predictability of the in vivo drug response. Furthermore, drugs with

higher efficacies are found to exert their effects through directly

modulating HSC proliferation, apoptosis or contractility.

Supporting Information

Figure S1 Correlation between SAUC and Ein vivo for rat
CCl4 treatment model.

(TIF)

Figure S2 Pie charts showing the chance of occurrence
of weights in all cases where the Spearman’s rank
correlation coefficient rho achieves 1 for the training set
of data. The optimized weight for each marker is the value with

the highest occurrence indicated with a * in each pie chart, which

implies the relatively higher importance of the marker towards

contributing to a stronger positive correlation.

(TIF)

Figure S3 Images and quantification of hepatic stellate
cells LX-2 with collagen III immuno-fluorescence stain-
ing. Cells are treated with (A) pioglitazone, (B) EGCG, or (C)

aphidicolin at the indicated concentrations for 48 hours (blue:

nuclei; green: collagen III). The amount of collagen III in the

cytoplasmic region is quantified and represented as the percentage

of total collagen III intensity with respect to the control without

drug treatment. Error bars represent standard deviation from 2

replicate datasets.

(TIF)

Table S1 List of drugs and their highest working
concentrations.

(DOC)

Table S2 List of cellular features according to staining
sets. 10 fibrotic markers were studied using 7 staining sets. S1:

Cellomics BrdU cell proliferation kit (BrdU). S2: Cellomics

multiparameter apoptosis 1 kits (F-actin, mitochondrial membrane

potential, DYm). S3: Cellomics caspase 3 activation kit (caspase 3).

S4: Immunofluorescence staining of collagen III (collagen III). S5:

Immunofluorescence staining of MMP-2 and TIMP-1 (MMP-2,

TIMP-1). S6: Cellomics oxidative stress 1 kit (DHE). S7: Cellomics

Smad3 and phospho CREB activation kit (Smad3, pCREB). Ch1:

channel 1 for nuclear staining (blue). Ch2: channel 2 for protein

staining (red or green for two-channel images; green for three-

channel images). Ch3: channel 3 for protein staining (red for three-

channel images). The nuclear region is defined by the Ch1 object

mask. The cytoplasmic region that is positive for protein staining is

defined by Ch2 (or Ch3) object mask. Nuclei were stained in all 7

staining sets. Since nuclear features (features 1 to 5) are similar

regardless of the protein stainings in channel 2 and 3, they are only

considered once in S1. S1, S3, S4 and S6 were duble-stained with

one nuclear dye (Ch1) and one dye for a marker protein (Ch2).

They do not have features related to Ch3.

(DOC)

Table S3 List of references for the 10 markers of
fibrosis.

(DOC)

Table S4 List of papers with pathologist-graded histo-
logical scores on fibrotic rats from 1986 to 2009.

(DOC)

Table S5 Mechanisms of action of the drugs. All 49 drugs

are classified based on their mechanisms of action from the

literature.

(DOC)

Material S1 Computing Epredict from cellular feature
values.

(DOC)

Material S2 Method to identify drugs with non-specific
effects from in vitro HCA analysis.

(DOC)

the system. (Ci) All 49 drugs are mapped to the first and second principal component coordinates. Drugs in the gray box in (Ci) are mapped to the
second and fourth principal component coordinates in (Cii). The vp group (blue) is found to have relatively large values in the first, second and fourth
principal components; while the p group (black) has positive values in the first principal component, but relatively low values in the second principal
component. (D) All drugs (n+p+vp), all positive (p+vp) drugs and the vp group of drugs are classified into 4 categories according to their mechanisms
of action.
doi:10.1371/journal.pone.0026230.g004
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