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The impact of learning on perceptual decisions and
its implication for speed-accuracy tradeoffs
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In standard models of perceptual decision-making, noisy sensory evidence is considered to be

the primary source of choice errors and the accumulation of evidence needed to overcome

this noise gives rise to speed-accuracy tradeoffs. Here, we investigated how the history of

recent choices and their outcomes interact with these processes using a combination of

theory and experiment. We found that the speed and accuracy of performance of rats on

olfactory decision tasks could be best explained by a Bayesian model that combines

reinforcement-based learning with accumulation of uncertain sensory evidence. This model

predicted the specific pattern of trial history effects that were found in the data. The results

suggest that learning is a critical factor contributing to speed-accuracy tradeoffs in decision-

making, and that task history effects are not simply biases but rather the signatures of an

optimal learning strategy.
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Evidence accumulation is an important core component of
perceptual decision-making that mitigates the effects of
environmental uncertainty by combining information

through time1–8. Theoretical models based on a random
diffusion-to-bound (Drift-diffusion models—DDMs) have been
successful in modeling critical aspects of psychophysical decision
tasks, capturing the dependence of accuracy (psychometric) and
reaction time (chronometric) functions. These models have been
tested both by searching for neural activity corresponding to
model variables1,9–13, and the exploration of more sophisticated
task designs and modeling6,14.

One widely observed but not well-understood phenomenon is
that different kinds of decisions appear to benefit from accu-
mulation of evidence over different time scales. For example,
monkeys performing integration of random dot motion1 and rats
performing a click train discrimination task6 can integrate evi-
dence for over one second. But rats performing an odor mixture
categorization task fail to benefit from odor sampling beyond
200–300 ms14,15. A possible explanation is that neural integration
mechanisms are specific to a given species and sensory modality.
However, even animals performing apparently similar odor-based
decision tasks can show very different integration time
windows16,17. Changes in speed-accuracy tradeoff (SAT)2,11,18,
which could change the height of the decision bound, have been
proposed as a possible explanation for differences seen across
similar studies. However, manipulation of motivational para-
meters failed to increase the integration window in odor cate-
gorization, suggesting that other factors must limit decision
accuracy14.

In DDMs, the chief source of uncertainty is stochasticity in
incoming sensory evidence, modeled as Gaussian white noise
around the true mean evidence rate19,20. It is this rapidly fluc-
tuating noise that accounts for the benefits of temporal integra-
tion. The nature and implications of other sources of variability
have also been considered6,8,19–22, including variability in starting
position21, non-accumulation time20 and threshold19. A poten-
tially important source of variability is trial-by-trial fluctuations
in the mean rate of evidence accumulation. Such fluctuations
would correspond to uncertainty in the mapping of sensory data
onto evidence for a particular choice9,23. This mapping could be
implemented as the strength of weights between sensory repre-
sentations into action values9. A combination of weights would
then represent a classification boundary between sensory sti-
muli24. Weight fluctuations would introduce errors that, unlike
rapid fluctuations, could not be mitigated by temporal integration
and would therefore curtail its benefits14,25. Such “category
boundary” variability (not to be confused with the stopping
“bound” in accumulation models) might affect differently parti-
cular decision tasks, being particularly important when the
stimulus-to-action map must be learned de novo14,25.

The effects of reward-history on choices in perceptual tasks,
although commonly observed26–29, have been considered sub-
optimal biases because each trial is in fact independent of the
preceding trials. Here, we hypothesized that such biases are
instead signatures of an optimal learning strategy that is adapted
to natural dynamic environments30. Intuitively, an optimal
learning agent must always use both priors (history of stimuli,
choices and rewards) and current sensory information in pro-
portion to their confidence31,32. Under this view, an optimal
choice policy and learning algorithm that uses accumulation of
evidence and reward statistics to infer choices and update its
stimulus-choice mapping—a Bayesian drift-diffusion model—can
be derived32. Here, to test this model, we compared performance
of rats in two odor-guided decision tasks: (1) an odor identifi-
cation task in which the difficulty was increased by lowering
stimulus concentration and (2) an odor mixture categorization

task15, in which the difficulty was increased by making the stimuli
closer to a category boundary. We hypothesized that performance
in the second task would be dominated by uncertainty in the
stimulus-choice mapping and therefore benefit less from sensory
integration. Indeed, we observed that the change in reaction times
over a given range of accuracy was much smaller in the mixture
categorization task. We found that standard diffusion-to-bound
models could fit performance on either task alone, but not
simultaneously. However, the optimal Bayesian-DDM model
could fit both tasks simultaneously and out-performed simpler
models with and without alternative learning rules. Critically, the
introduction of learning predicted a history-dependence of trial-
by-trial choice biases whose specific pattern was indeed observed
in the data. These findings suggest that “errors” in many psy-
chophysical tasks are not due to stochastic noise, but rather to
suboptimal choices driven by optimal learning algorithms that are
being tested outside the conditions in which they evolved33.

Results
Different speed-accuracy tradeoffs in two different olfactory
decision tasks. We trained Long Evans rats on two different
versions of a two-alternative choice (2AC) olfactory reaction time
task. We refer to these as two “tasks”, but they were identical in all
aspects except for the nature of the presented stimulus (Fig. 1). In
the first task, “odor identification”, a single pure odor was pre-
sented in any given trial. We manipulated difficulty by diluting
odors over a range of 3 log steps (1000-fold, liquid dilution)
(Fig. 2a). Thus, absolute concentration determined the difficulty.
In the second task, “odor categorization”, mixtures of two pure
odors were presented with a fixed total concentration but at four
different ratios15 (Fig. 2b). The distance of the stimulus to the
category boundary (50/50, iso-concentration line), determined
the difficulty, with lower contrasts corresponding to more difficult
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Fig. 1 Two-alternative odor choice task. a Rats were trained in a behavioral
box to signal a choice between left and right port after sampling a central
odor port. The sequence of events is illustrated using a schematic of the
ports and the position of the snout of the rats. b Illustration of the timing of
events in a typical trial. Nose port photodiode and valve command signals
are shown (thick lines). A trial is initialized after a rat pokes into a central
Odor Port. After a randomized delay dodor a pure odor or a mixture of odors
is presented, dependent of the task at hand. The rat can sample freely and
respond by moving into a choice port in order to get a water reward. Each
of these ports is associated to one of two odors—odor A ((R)-(−)-2-
octanol) and odor B ((S)-(+)-2-octanol). Highlighted by the gray box,
reaction time (RT) is the amount of time the rats spend in the central Odor
Port after odor valve is on (i.e. discounting dodor). See Methods for more
details.
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trials. E.g., 56/44 and 44/56 stimuli (12% contrast) were more
difficult than 80/20 and 20/80 (60% contrast). Note that the
easiest stimuli (10−1 dilution and 100% contrast) were identical
between the two tasks. In a given session, the eight stimuli from
one of the two tasks were presented in randomly interleaved
order. To ensure that any differences in performance were due to
the manipulated stimulus parameters, all comparisons were done
using the same rats performing the two tasks on different days
with all other task variables held constant (Supplementary Fig. 1).
We quantified performance using accuracy (fraction of correct
trials) and odor sampling duration, a measure for reaction time
(RT)14,15 (Fig. 1, Supplementary Fig. 2). We observed that rats
performing the two tasks showed marked differences in how
much RTs increased as task difficulty increased (Fig. 2c–f). For
the identification task, RTs increased substantially (112 ± 3 ms;
mean ± SEM, n= 4 rats; F(3,31) = 44.04, P < 10−7; Fig. 2d),
whereas for the categorization task the change was much smaller
(31 ± 3 ms; F(3,31) = 2.61, P= 0.09, ANOVA) (Fig. 2f), despite
the fact that the accuracy range was similar.

To control for the possibility that a smaller performance range
for the categorization task accounted for differences in SAT, we re-
ran this task with two sets of stimuli with harder, lower contrast
stimuli. This yielded a range of accuracies as broad as those in the
identification task yet still only resulted in 41 ± 24 and 50 ± 19ms
changes in RT (Supplementary Fig. 3). Therefore, the difference
observed in SAT for odor identification vs. mixture categorization
was not due to differences in the range of task difficulties.

Construction of a diffusion-to-bound model for olfactory
decisions. In order to explore which variables might be

constraining the rats’ performance, we fit the data using DDMs
(Fig. 3a). In a 2-AFC task with free response time, trading off the
cost of accumulating evidence with reward rate becomes para-
mount. With adequately tuned decision thresholds, DDMs are
known to implement the optimal tradeoff strategy across a wide
range of tasks, including those used here34–36. We implemented a
DDM composed of sensory, integration and decision layers. The
sensory layer implements a transformation of odor concentrations
into momentary evidence. Perceptual intensity in olfaction37,38, as
in other modalities2,6 can be well-described using a power law. We
therefore defined the mean strength of sensory evidence μ for each
odor using a power law of the odor concentrations,

μi cið Þ ¼ kcβi ð1Þ
where k and β are free parameters2. We constrained k and β to be
identical between the two odors (stereoisomers with identical
vapor pressures and similar intensities15,39–41). Evidence at each
time step is drawn from a normal distribution miðtÞ : Nðμi; σÞ,
where σ ¼ 1 is the standard deviation of the variability corrupting
the true rate, μi. The integration layer, which also consists of two
units, integrates the noisy evidence over time independently for
each odor. The last step of the model consists of a unit that takes
the difference between the integrated inputs. If this difference
exceeds a given bound, θ or –θ, the model stops and makes a
choice according to the hit bound: left for θ, right for –θ. Finally,
we allowed for a time-dependent decrease in bound height
(“collapsing”), τ, mimicking an urgency signal35,42 (Methods).

Diffusion-to-bound model fails to fit both tasks simulta-
neously. To explain our behavioral data with the standard DDM,
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Fig. 2 Comparison between odor identification and mixture categorization tasks. a, b Stimulus design. In the odor identification task, the odorants were
presented independently at concentrations ranging from 10−1 to 10−4 (v/v) and sides rewarded accordingly (a). For the mixture categorization task, the
two odorants were mixed in different ratios presented at a fixed total concentration of 10−1, and rats were rewarded according to the majority component
(b). Each dot represents one of the 8 stimuli presented for each task. c, d Mean accuracy (c) and mean reaction time (d) for the identification task plotted
as a function of odor concentration. e, f Mean accuracy (e) and mean reaction time (f) for the categorization task plotted as a function of mixture contrast
(i.e. the absolute percent difference between the two odors). Error bars are mean ± SEM over trials and rats. Colors in dots are presented as to help parse
between stimulus space and psych- and chronometric curves. Solid lines depict the obtained fits for the predicted curves of a DDM, an exponential curve
for performance and a hyperbolic tangent for RTs, as described in ref. 2.
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we developed a series of different fitting procedures. All involved
maximizing a log-likelihood function for a data set of 22,208
(identification), 19,947 (categorization) or 42,155 (both) trials
using simulations over 100,000 trials (Methods). The overall
quality of each fit is shown in Supplementary Fig. 4. The first
procedure was to test whether we could predict the behavioral data

of the categorization task using the fitted parameters from the
identification task. The model captured both accuracy and RTs in
the identification task (Fig. 3b, solid lines). However, when the
same model was run on the categorization task, the model cor-
rectly predicted the range of RT’s in the data, but strongly over-
estimated the animals’ accuracy at low contrasts (Fig. 4c, solid
lines). Therefore, as a second procedure, we attempted to fit the
model to the categorization task and predict the identification
task. This was also unsuccessful: the model fit the categorization
data well (Fig. 3c, dashed lines) but failed to capture either
accuracy or RTs in the identification task (Fig. 3b, dashed lines). A
third procedure, simultaneous fitting both data sets, also failed in
describing both tasks successfully (Supplementary Fig. 5). Thus it
was not possible to accurately fit the standard DDM to both tasks
using a single set of parameters. Accurate fits to both tasks were
only possible if we allowed parameters to be fit independently.

Differences in SAT are not due to context dependent strategies.
Motivational variables can modulate performance and reaction
time in perceptual tasks. For example, variables like reward rate35

or emphasis for accuracy vs. speed2,11 can have an effect on
observed SATs, by modulating decision criteria. Because the two
tasks were run in separate sessions, we considered the possibility
that rats changed these criteria between sessions. To address this,
we devised a “mixture identification” task in which we interleaved
the full set of stimuli from the two tasks as well as intermediate
mixtures (Fig. 4a). On any given session, 8 randomly chosen sti-
muli out of the 32 possible were presented. Consistent with the
previous observations, RTs in this joint task were significantly
affected by concentration but not by mixture contrast (Fig. 4b, c;
two-way ANOVA (F(3,48) = 8.69, P < 10−3 vs. 0.94, P= 0.42)).
There was no significant interaction between concentration and
contrast (F(9,48) = 0.28, P > 0.9). Each individual rat showed a
significant effect of odorant concentration (ANOVA for each rat:
F1(3,15)= 78.66, P1 < 10−6; F2(3,15)= 14.66, P2 < 10−3; F3(3,15)=
204.91, P3 < 10−7; F4(3,15) = 27.86, P4 < 10−4), whereas only two
showed a significant effect of mixture contrast (F1(3,15) = 1.14,
P1= 0.39; F2(3,15) = 0.52, P2= 0.67; F3(3,15) = 9.6, P3 < 0.01;
F4(3,15) = 6.47, P4 < 0.05). These results indicate that the dif-
ferences in the relation between accuracy and RT in the previous
data set are not due to changes in decision criteria across sessions.
As expected from the failure of standard model to fit the previous
data, the standard DDM model could not explain these data
either (Supplementary Fig. 6).

DDM with stimulus-dependent Bayesian learning fits perfor-
mance across both tasks. Until now, we have been considering a
standard DDM that assumes all behavioral uncertainty comes
from rapid variability in incoming sensory evidence. However, it
is well known that subjects’ choices are sensitive to the recent
history of rewards28,43–45, and that reward expectation can
influence performance and RTs14,46,47. One possible explanation
for the overestimate of accuracy in the categorization task is
therefore that choices and trial outcomes produce on-going
fluctuations in the animals’ mapping from odors to choices
through a process resembling reinforcement learning. Such fluc-
tuations would produce uncertainty in classification of stimuli
near the category boundary that could not be rescued by inte-
gration during a trial14,25.

To develop this idea, we asked how optimal subjects ought to
use trial history (stimuli, choices, and rewards) to update their
“belief” about the category boundary under the assumption that it
is volatile (i.e. that the true mapping from stimuli to correct
choices varies stochastically across trials). Although the full
Bayesian optimal strategy is intractable, we were able derive a
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Fig. 3 Failure to simultaneously fit performance on identification and
categorization tasks with Drift-diffusion model. a Drift-diffusion model
(DDM). The model consists of three layers—sensory, integration and
decision layer. At the sensory layer, concentrations are transformed into
rates that are contaminated with Gaussian noise. These rates are then
integrated over time (integration layer) and combined. Note that the choice
of weights (−1 and 1) for the decision layer allows it to effectively be a
DDM with collapsing bounds. This model presents 7 parameters
(Methods). b Fitting results for accuracy and reaction time in identification
task. Black solid line represents the model fit for this data, and dashed lines
the prediction from the categorization data fit. c Fitting results for accuracy
and reaction time in categorization task. Solid black lines depict the
prediction for this data from the model fitted to identification, and dashed
lines the DDM fit for this data. Error bars are mean ± SEM over trials
and rats.
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near-optimal strategy that yields behavioral performance indis-
tinguishable from optimal32 (Methods). This resulted in a DDM
with stimulus-dependent Bayesian learning, which we refer to as
“Bayes-DDM” (Fig. 5a). The Bayes-DDM is the same as the
standard DDM but augmented with weights that transform the
stimulus input into evidence:

ei ¼ wisiðtÞ; ð2Þ
which is then combined with bias b to form a net evidence

eðtÞ ¼ w1s1ðtÞ þ w2s2ðtÞ þ b: ð3Þ

In this equation, the weights wi and the bias b define,
respectively, the slope and offset of the category boundary.

After each trial, we updated the stimulus weights wi using a
tractable approximation to the Bayes-optimal learning rule,

Δw ¼ αwðs; tÞΣws; ð4Þ
where Σw is the weight covariance matrix (also learned; Methods),
that quantifies the current weight uncertainty, and αwðs; tÞ the
learning rate. This learning rule introduces three new parameters
that describe the learner’s assumptions about how the weights
change and influence the learning rate α (Methods).

We fitted the Bayes-DDM to the data by maximizing the log-
likelihood of both olfactory decision tasks simultaneously2. In the
absence of a closed-form analytical solution19, we generated mean
RTs, choices and trial-to-trial choice biases by numerically
simulating a sequence of 100,000 trials for each combination of
tested parameters (Methods). In contrast to the standard DDM,
the Bayes-DDM produced a very good simultaneous fit of the
both tasks (Fig. 5b, c). As a further test, we also assessed whether
the model could fit the behavioral results for the merged
(interleaved) task (Fig. 4). To do so, we fitted the model to the
32 stimuli from the interleaved condition. We found that the
model indeed provided a good qualitative match to this data set as
well (Fig. 5d). Therefore, by making the additional assumption
that subjects assume a volatile category boundary and make trial
by trial adjustments accordingly, we were able to arrive at a model
that captured our entire data set.

Bayes-DDM successfully predicts trial-by-trial conditional
changes in choice bias. The Bayes-DDM model can be con-
sidered as a hypothesis concerning the form of trial-to-trial biases
that we expect to be sufficient to explain the data. Crucially, the
specific predictions of this model can be tested against behavioral
variables that were not directly fit. That is, we can check whether

the form of the trial-to-trial biases in the experimental data is in
fact compatible with the form and magnitude of the learning we
introduced.

We observed quite large effects of trial history. Figure 6 shows
the average psychometric choice functions (Fig. 6a, b, dashed
lines) and psychometric choice functions conditioned on the
previous odor stimulus (Fig. 6a, b, solid lines, with different
stimulus difficulties separated by quadrants, as indicated). Note
that only cases in which the previous trial was rewarded are
included. To quantify the impact of a previous trial, we calculated
the difference in the average choice bias conditional upon the trial
being correct and a given stimulus being delivered relative to the
overall average choice bias (ΔCB(x); Methods). Note that ΔCB(x)
is a measure of the amount of learning induced by a past trial, as
measured the fractional change in choice probability, with
ΔCB(x) > 0 indicating a greater likelihood of repeating a choice
in the same direction as the prior trial, ΔCB(x) < 0 a choice in the
opposite direction. Because ΔCB(x) was symmetric for left/right
stimuli, we plot ΔCB(x) collapsed over stimuli of equal difficulty
(Fig. 6c, d; uncollapsed data plotted in Supplementary Fig. 7;
individual rats shown in Supplementary Fig. 8).

These analyses showed that rats have a tendency to repeat a
choice in the same direction that was rewarded in the previous
trial (“win-stay”), but the stimulus-dependent analysis revealed a
qualitative difference between the two tasks with respect to how
past stimuli impacted choice bias. For the identification task, the
influence of the previous trial was largely stimulus-independent
(Fig. 6c, one-way ANOVA, F(3,12) = 2.0, P= 0.17). For the
categorization task (Fig. 6d), in contrast, that influence showed a
graded dependence on the stimulus, being larger for a difficult
previous choice than for an easier one (F(3,12)= 25.4, P < 10−5).
We also conducted this analysis for incorrect trials but, due to the
small numbers of trials, the data were too variable to draw any
firm conclusions (Supplementary Figs. 9, 10).

Remarkably, for both tasks the predictions of Bayes-DDM
closely matched the data. For the categorization task, as expected,
the model captured the strong dependence of ΔCB(x) on stimulus
difficulty (Fig. 6d). For the identification task, the model was able
to capture the relative lack of stimulus dependence of ΔCB(x)
(Fig. 6c). These results can be understood by considering that the
Bayes-DDM depends on both the accumulated inputs s and
decision time t, reflecting a form of decision confidence32

(Methods). In tasks like ours, with a varying difficulty, harder
trials are associated with later choices and come with a lower
decision confidence48. On correct easy trials, learning is smaller
when the animal’s confidence is high. This makes sense: if the
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animal is correct and highly confident, there is little reason to
adjust the weights. The relative lack of stimulus dependence of
ΔCB(x) in the identification task is explained by a low signal-to-
noise ratio for difficult trials, implying that the sensory
component of Eq. 4 will be low. Thus, there is a larger
contribution of the stimulus-independent term (the bias—b) in
updating choice bias (Methods). Although the dependence of
decision confidence on decision time suggests the possibility of a
dependence of ΔCB(x) on RT, we found that bias learning washes
out the confidence–RT relationship, such that neither data nor

the Bayes-DDM model feature a strong modulation of learning by
RT (Supplementary Fig. 11).

Comparison with other learning rules. The optimal Bayes-DDM
learning rule takes a complex form involving multiple terms
whose respective roles are not immediately clear. In order to gain
some insight into why this rule captures the animals’ behavior,
and whether confidence has a role, we fitted several variations of
our model.

We first fitted a model without learning but in which the weights
are drawn on every trial from a multivariate Gaussian distribution
whose mean is set to the optimal weights (1=

ffiffiffi
2

p
, �1=

ffiffiffi
2

p
and 0)

and whose variance is a free parameter. Interestingly, this model
could fit the psychometric and chronometric curves in both tasks.
However, the model failed to show sequential effects since the
weights are redrawn independently on every trial (Supplementary
Fig. 12). Model comparison confirmed that this model performs
considerably worse than Bayes-DDM (Fig. 7).

DDMs weight the difference between the two evidences. To
control for a possible alternative integration process, we imple-
mented two different versions of an LCA model49 (Methods) in
which absolute evidences for each side are integrated over time,
and the two integrators inhibit each other. These models did a
good job of explaining both psych- and chronometric curves. but
failed to replicate the changes in choice bias seen in the data
(Supplementary Figs. 13, 14). This also suggests that a learning
process must be at play.

Next, we tried a model with a limited form of learning in which
the optimal learning rule is applied only to the bias while the
sensory weights are set to their optimal values. It has been argued
that sequential effects can be captured by variations in the bias28.
This model had a BIC score comparable to the optimal model
(Fig. 7) and captured the flat profile of the identification task, thus
suggesting that sequential effects in this task are due to bias
fluctuations. However, this model failed to account for the profile
of sequential effects in the categorization task (Supplementary
Fig. 15). Although the data show sequential effects inversely
proportional to the difficulty of the previous trial, this model
predicted a flat profile (Supplementary Fig. 15g).

Conversely, we fitted a model in which the sensory weights, but
not the bias, are adjusted on every trial according to the optimal
learning rule. This model fit the psychometric and chronometric
curves reasonably well (Supplementary Fig. 16). However, in
contrast to the previous model, this one captured the sequential
effects in the categorization task but not in the identification task
(Supplementary Fig. 16d). Moreover, the BIC score for this model
was far worse than Bayes-DDM. In addition, we fitted a model
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that adjusts only the bias on a trial by trial basis, but with
randomly fluctuating sensory weights (Supplementary Fig. 17).
This model retained the sequential effects seen in the identifica-
tion task, but failed to produce those of the categorization task
(Supplementary Fig. 17g). Taken together, these modeling results
suggest that the learning-induced bias fluctuations support the
sequential effects in identification, whereas the learning-induced
weight fluctuations support the sequential effects in
categorization.

As a final model, we explored a simpler, heuristic implementa-
tion of the Bayes-DDM rule using a delta rule that is modulated
by decision confidence. For this purpose, we used a standard
DDM with learning rules of the form:

Δw ¼ α λ� θt¼T

θt¼0

� �
s ð5Þ

Δb ¼ αb λ� b
θt¼0

� �
ð6Þ

where θt=0 is the value of bound at the beginning of the trial,
whereas θt¼T is the value of the bound at the time of the decision,
λ is the correct choice (1 or −1), and α and αb are the weight and
bias learning rates. The modulation of learning by confidence is

due to the term θt¼T
θt¼0

. The collapsing bound causes this ratio to
decrease with elapsed time. Critically, elapsed time is inversely
proportional to confidence in DDMs when the difficulty of the
task is unknown and varies from trial to trial35,48. Therefore, for
incorrect trials, the error term in this learning rule is decreasing as
confidence decreases over time, which is to say the model learns
less when it is less confident. Interestingly, for correct trials, the
relationship is inverted, as the model learns more strongly when
less confident, which makes intuitive sense: in confident correct
trials there is no more information to be gained. Ultimately, this
rule is only an approximation to the optimal rule. Nonetheless,
Bayesian model comparison revealed that this learning rule
accounts for our experimental data nearly as well as the full
optimal learning rule, thus indicating that the rat’s behavior is
consistent with a confidence weighted learning rule (Fig. 7,
Supplementary Fig. 18, RL-DDM).

The results of Bayesian model comparisons are often sensitive
to the way extra parameters are penalized. We found this not to
be the case in our data, as the ranking of the models remained the
same whether we use AIC, AICc or BIC. Moreover, our
conclusions held whether we fitted individual animals separately,
or as if obtained from a single ‘meta-rat’ (Figs. 6, 7 and
Supplementary Fig. 4).
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Fluctuations in category boundary degrade odor categorization
performance more than identification. Finally, we sought to
gain insight into how category boundary learning works in con-
junction with stimulus integration to explain the difference
between identification and categorization performance. To do so,
we calculated “inferred” drift rates (μ) for that trial by taking the
actual accumulated evidence (before weight multiplication) and
divided by integration time. This allowed us to visualize the
combined effects of stochastic noise and boundary (weight)
fluctuations (Methods) (Fig. 8). Here, for all panels we plot the
evidence for the two options (μ1, μ2) against one another, so that
the ideal category boundary is the diagonal (black line). In Fig. 8a,
b, we show all the stimuli for the standard DDM, whereas
Fig. 8c–f focus on only one of the hardest stimuli. Figure 8c, d
shows the standard, non-learning DDM fit to the identification
task and tested on both. Where accuracy should be similar for the
two tasks, it can be seen that this model generates too few errors
for the categorization task (compare the low fraction of red dots
(error) to blue dots (correct) in Fig. 8d vs. c). In Fig. 8e, f, we re-
ran the same trials, using “frozen noise”, but simulating a fluc-
tuating bound comparable to the Bayes-DDM with optimal
learning (Methods). Here the meaning of the dot colors is dif-
ferent: trials that did not change classification are gray, trials that
became incorrect are red, and trials that became correct are blue.
It can be seen that weight fluctuations changed the classification
of very few trials in the identification task (Fig. 8e) but changed a
substantial fraction in the categorization task (Fig. 8f), the
majority of which became errors (red).

The difference in effects on the two tasks can be understood by
considering that stimulus weights have a multiplicative effect on
evidence strength. Thus, stimulus weight fluctuations correspond
to rotations around the origin and are larger for larger stimulus
values. Therefore, high concentration mixtures, which are far
from the origin, are much more susceptible to these fluctuations
than low concentration stimuli (Fig. 8e). In contrast, variability in
the bias, b, affect the intercept of the bound, giving rise to additive
effects that are similar no matter the magnitude of the evidence
and therefore affect the two tasks in a similar way (Supplementary
Fig. 19).

Discussion
Our results demonstrate that rats show different speed-accuracy
tradeoffs (SAT) depending on the task at hand. When challenged
to identify odors at low concentrations, rats show a significant
increase of reaction time (RT) that is accompanied by perfor-
mance degradation (Fig. 2c, d). In contrast, when the challenge is
to categorize mixtures of two odors in different proportions, rats
show only a small increase in RT (Fig. 2e, f). We used a standard
drift-diffusion model (DDM) to show that this difference cannot
be explained by stimulus noise (Fig. 3) even with the addition of
reward-dependent choice biases (Supplementary Fig. 15). We
therefore introduced a Bayesian learning process, the kind theo-
rized to drive stimulus-response learning optimally in dynamic
environments32. With the combination of these three factors—
stimulus noise, reward bias and categorical boundary learning—
the resulting “Bayes-DDM” not only fit the average performance
data (Fig. 6b–e), but also predicted the choice biases on the recent
history of stimuli, choices and rewards (Fig. 6f, g). Furthermore,
Bayes-DDM was able to fit the performance over an interpolated
stimulus space combining both tasks (Fig. 6d), ruling out differ-
ences in strategies between the two tasks and arguing that rats
used the same decision-making system while identifying and
categorizing odors.

We found that odor categorization performance is more sus-
ceptible to category boundary fluctuations than identification
(Fig. 8) which in turn implies that the categorization task benefits
less from longer temporal integration. Indeed, additional Bayes-
and RL-DDM simulations showed that performance remains
almost unaltered in mixture categorization with an increase of
integration threshold, contrasting with what would be predicted
for odor identification (Supplementary Fig. 20). This agrees with
the observation that one sniff (the minimal unit of olfactory
sampling time for animals such as a rat) is enough for maximum
performance in mixture categorization15. Weight fluctuations,
which impair performance in a trial-by-trial basis, cannot be
filtered out within the integration process. On the other hand, the
identification task is mostly affected by stimulus noise, which is
reflected within the diffusion process, and thus benefits much
more from integration. We thus conclude that the observation of
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different SATs is due to different computational requirements in
the two tasks.

Previous studies have explored dynamic stimulus learning
using signal detection theory52–58], but none has attempted to
accounting for the impact of learning on evidence accumulation
and RTs. Frank and colleagues combined reinforcement learning
with DDMs in the RL-DDM model50–52. However, in this model
the integration and learning processes are completely separable
and did not interact. Our results show that learning can interact
with evidence accumulation and that this can be detrimental for
psychophysical performance. We suggest that this takes place
because animals adopt a strategy that is optimized under the
assumption of a dynamic environment, whereas the actual
environment is static.

The continual, performance-hindering, learning we observed is
striking considering that our task itself doesn’t change over
months of testing. This was not due to incomplete learning, as
performance was stable over the analyzed data (Supplementary
Figs. 21, 22). The psychophysics-like experimental paradigm is
indeed highly artificial in the sense that outcomes and states are
crystallized. It is unlikely that this would be the case in a more
naturalistic environment, where, due to environmental dynamics,
odors could signal different outcomes, rewards and states over
time. A normal, ever-changing environment would imply

adaptability and never-ending learning as the optimal strategy.
This strategy becomes suboptimal in a static environment, but
this may be a small price to pay compare to the cost of stopping
learning erroneously when the world is actually dynamic. These
results are consistent with a recent proposal that suboptimal
inference, as opposed to internal noise, is a major source of
behavioral variability33. In this case, the apparent suboptimal
inference is the result of assuming that the world is dynamic
when, in fact, it is static.

Methods
Animal subjects. Four Long Evans rats (200–250 g at the start of training) were
trained and tested in accordance with European Union Directive 2010/63/EU. All
procedures were reviewed and approved by the animal welfare committee of the
Champalimaud Centre for the Unknown and approved by the Portuguese Veter-
inary General Board (Direcção Geral de Veterinária, approval 0421/000/000/2019).
Rats were pair-housed and maintained on a normal 12 h light/dark cycle and tested
during the daylight period. Rats were allowed free access to food but were water-
restricted. Water was available during the behavioral session and for 20 min after
the session at a random time as well as on non-training days. Water availability was
adjusted to ensure animals maintained no <85% of ad libitum weight at any time.

Testing apparatus and odor stimuli. The behavioral apparatus for the task was
designed by Z.F.M. in collaboration with M. Recchia (Island Motion Corporation,
Tappan, NY). The behavioral control system (BControl) was developed by Z.F.M.,
C. Brody (Princeton University) in collaboration with A. Zador (Cold Spring
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Harbor Laboratory). The behavioral setup consisted of a box (27 × 36 cm) with a
panel containing three conical ports (2.5 cm diameter, 1 cm depth). Each port was
equipped with an infrared photodiode/phototransistor pair that registered a digital
signal when the rat’s snout was introduced into the port (“nose poke”), allowing us
to determine the position of the animal during the task with high temporal pre-
cision. Odors were delivered from the center port and water from the left and right
ports. Odor delivery was controlled by a custom made olfactometer designed by Z.
F.M. in collaboration with M. Recchia (Island Motion Corporation, Tappan, NY).
During training and testing the rats alternated between two different boxes.

The test odors were S-(+) and R-(−) stereoisomers of 2-octanol, chosen
because they have identical vapor pressures and similar intensities. In the odor
identification task, difficulty was manipulated by using different concentrations of
pure odors, ranging from 10−4 to 10−1 (v/v). The different concentrations were
produced by serial liquid dilution using an odorless carrier, propylene glycol (1,2-
propanediol). In the odor mixture categorization task, we used binary mixtures of
these two odorants at different ratios, with the sum held constant: 0/100, 20/80, 32/
68, 44/56 and their complements (100/0, etc.). Difficulty was determined by the
distance of the mixtures to the category boundary (50/50), denoted as “mixture
contrast” (e.g., 80/20 and 20/80 stimuli correspond to 60% mixture contrast).
Choices were rewarded at the left choice port for odorant A (identification task) or
for mixtures A/B > 50/50 (categorization task) and at the right choice port for
odorant B (identification task) or for mixtures A/B < 50/50 (categorization task). In
both tasks, the set of eight stimuli were randomly interleaved within the session.
During testing, the probability of each stimulus being selected was the same.

For the experiment in Figs. 2, 3, 5 and 6, only mixtures with a total odor
concentration of 10−1 were used. For the experiment in Fig. 4, we used the same
mixture contrasts with total concentrations ranging from 10−1 to 10−4 prepared
using the diluted odorants used for the identification task. In each session, four
different mixture pairs were pseudo-randomly selected from the total set of
32 stimuli (8 contrasts at 4 different total concentrations). Thus, for this task, a full
data set comprised 4 individual sessions.

For all the different experiments, four of the eight stimuli presented in each
session were rewarded on the left (odorant A, for identification; A/B > 50/50, for
categorization) and the other four were rewarded on the right (odorant B, for
identification; A/B < 50/50, for categorization). Each stimulus was presented with
equal probability and corresponded to a different filter in the manifold.

For the experiments in Supplementary Fig. 3, we used two different sets of
mixture ratios: 0/100, 17/83, 33.5/66.5, 50/50 in one experiment and 0/100, 39/61,
47.5/52.5, 49.5/50.5 in the second experiment. In the experiment using 50/50
mixture ratios, we used two filters both with the mixture 50/50, one corresponding
to the left-rewarded stimulus and the other one to the right-rewarded stimulus.
Thus, for the 50/50 mixtures, rats were rewarded randomly, with equal probability
for both sides.

Reaction time paradigm. The timing of task events is illustrated in Fig. 1. Rats
initiated a trial by entering the central odor-sampling port, which triggered the
delivery of an odor with delay (dodor) drawn from a uniform distribution with a
range of [0.3, 0.6] s. The odor was available for up to 1 s after odor onset. Rats
could exit from the odor port at any time after odor valve opening and make a
movement to either of the two reward ports. Trials in which the rat left the odor
sampling port before odor valve opening (~4% of trials) or before a minimum odor
sampling time of 100 ms had elapsed (~1% of trials) were considered invalid. Odor
delivery was terminated as soon as the rat exited the odor port. Reaction time (the
odor sampling duration) was calculated as the difference between odor valve
actuation until odor port exit (Fig. 1) minus the delay from valve opening to odor
reaching the nose. This delay was measured with a photo ionization detector (mini-
PID, Aurora Scientific, Inc) and had a value of 53 ms.

Reward was available for correct choices for up to 4 s after the rat left the odor
sampling port. Trials in which the rat failed to respond to one of the two choice
ports within the reward availability period (~1% of trials) were also considered
invalid. For correct trials, water was delivered from gravity-fed reservoirs regulated
by solenoid valves after the rat entered the choice port, with a delay (dwater) drawn
from a uniform distribution with a range of [0.1, 0.3] s. Reward was available for
correct choices for up to 4 s after the rat left the odor sampling port. Trials in which
the rat failed to respond to one of the two choice ports within the reward
availability period (0.5% of trials) were also considered invalid. Reward amount
(wrew), determined by valve opening duration, was set to 0.024 ml and calibrated
regularly. A new trial was initiated when the rat entered odor port, as long as a
minimum interval (dinter-trial), of 4 s from water delivery, had elapsed. Error choices
resulted in water omission and a “time-out” penalty of 4 s added to dinter-trial.
Behavioral accuracy was defined as the number of correct choices over the total
number of correct and incorrect choices. Invalid trials (in total 5.8 ± 0.8% of trials,
mean ± SEM, n= 4 rats) were not included in the calculation of performance
accuracy or reaction times (odor sampling duration or movement time).

Training and testing. Rats were trained and tested on three different tasks: (1) a
two-alternative choice odor identification task; (2) a two-alternative choice odor
mixture categorization task15; and (3) a two-alternative choice “odor mixture
identification” task. The same rats performed all three tasks and all other task
variables were held constant.

The training sequence consisted of: (I) handling (2 sessions); (II) water port
training (1 session); (III) odor port training, in which a nose poke at the odor
sampling port was required before water was available at the choice port. The
required center poke duration was increased from 0 to 300 ms (4–8 sessions); (IV)
introduction of test odors at a concentration of 10−1, rewarded at left and right
choice ports according to the identity of the odor presented (1–5 sessions); (V)
introduction of increasingly lower concentrations (more difficult stimuli)
(5–10 sessions); (VI) training on odor identification task (10–20 sessions); (VII)
testing on odor identification task (14–16 sessions); (VIII) training on mixture
categorization task (10–20 sessions); (IX) testing on mixture categorization task
(14–15 sessions); (X) testing on mixture identification task (12–27 sessions)
(Supplementary Fig. 1).

During training, in phases V and VI, we used adaptive algorithms to adjust the
difficulty and to minimize bias of the animals. We computed an online estimate of
bias:

bt ¼ ð1� τÞCt þ τbt�1 ð7Þ
where bt is the estimated bias in the current trial, bt−1 is the estimated bias in the
previous trial, Ct is the choice of the current trial (0 if right, 1 if left) and τ is the
decay rate (τ= 0.05 in our experiments). The probability of being presented with a
right-side rewarded odor p was adjusted to counteract the measured bias using:

pR ¼ 1� 1

1þ e
bt�b0ð Þ

γ
ð8Þ

where b0 is the target bias (set to 0.5), and γ (set to 0.25) describes the degree of
non-linearity.

Analogously, the probability of a given stimulus difficulty was dependent on the
performance of the animal, i.e., the relative probability of difficult stimuli was set to
increase with performance. Performance was calculated in an analogous way as (1)
at the current trial but ct became rt—the outcome of the current trial (0 if error, 1 if
correct). A difficulty parameter, δ, was adjusted as a function of the performance,

δtþ1 ¼ �1þ 2

1þ e
pt�p0ð Þ

γ
ð9Þ

where p0 is the target performance (set to 0.95). The probability of each stimulus
difficulty, φ, was drawn from a geometric cumulative distribution function
(GEOCDF, Matlab)

φtþ1 ¼
1� GEOCDF i; jδtþ1j

� �
PN

j¼1 1� GEOCDF j; jδtþ1j
� � ð10Þ

where N is the number of stimulus difficulties in the session, and takes a value from
2 to 4 (when N= 1, i.e. only one stimulus difficulty, this algorithm is not needed); i
corresponds to the stimulus difficulty and is an integer from 1 to 4 (when δ > 0, the
value 1 corresponds to the easiest stimuli and 4 to the most difficult one, and vice-
versa when δ < 0). In this way, when |δ| is close to 0, corresponding to an average
performance close to 0.95, the distribution of stimuli was close to uniform (i.e. all
difficulties are equally likely to be presented). When performance is greater, then
the relative probability of difficult trials increased; conversely, when the
performance is lower, the relative probability of difficult trials decreased. Training
phases VI and VIII were interrupted for both tasks when number of stimulus
difficulties N= 4 and difficulty parameter δ stabilized on a session-by-session basis.

Each rat performed one session of 90–120 min per day (250–400 trials), 5 days
per week for a period of ~120 weeks. During testing, the adapting algorithms were
turned off and each task was tested independently. The data set was collected only
after performance was stable (Supplementary Fig. 21) during periods in which the
animals showed stable accuracy and left/right bias on both tasks (Supplementary
Figs. 21, 22). Throughout the test period, there was variability in accuracy and bias
across sessions, but there was no correlation between these performance metrics
and session number (accuracy: Spearman’s rank correlation ρ=−0.066, P= 0.61
for identification, ρ= 0.16, P= 0.24 for categorization; bias: ρ= 0.104, P= 0.27 for
both tasks, identification: ρ= 0.093, P= 0.48, categorization: ρ= 0.123, P= 0.37).

Session bias and choice bias. The psychometric curves are obtained by fitting the
function, ψ(x):

ψðxÞ ¼ lL þ ð1� lL � lRÞΦðxjμ; σÞ ð11Þ
where x is the stimulus, Φ(x|μ,σ) is the cumulative function of a Gaussian with
mean and variance, μ and σ, and lL and lR are the right and left lapse rates. The
parameters are fitted by minimizing the square distance between ψ(x) and the
empirical fraction of right-ward choices for each stimulus value x through fmin-
search (Matlab)28,37:

To quantify how a reward and its interaction with stimulus difficulty impacts
choice bias, we also fitted psychometric curves for the current trial T, conditioned
on the response and difficulty of the previous trials, T−1:

ψ xT jCT�1 ¼ R; dT�1ð Þ ¼ lLT þ ð1� lLT � lRT ÞΦ xT jμT ; σT ;CT�1 ¼ R; dT�1

� �
where C(T−1)= R means that the animal made a correct, right-ward choice on the
previous trial. The difficulty variable d(T−1) indicates that the stimulus in the
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previous trial took the value x(T−1) or x
y
T�1 corresponding to difficulty level d(T−1).

For instance, in the identification task, the conditions in which [A]=10−1 or
[B]= 10−1 corresponds to the same difficult level. Difficulty corresponds to the x-
axis on Fig. 6c–d and Supplementary Figs. 7 and 8).

We then quantified the change in choice bias as a function of the difficulty on
the previous trial as follow:

ΔCc
b dT�1ð Þ ¼ 1

2
ψ xT ¼ IjCT�1 ¼ R; dT�1ð Þ � ψ xT ¼ IjCT�1 ¼ L; dT�1ð Þð Þ ð12Þ

where I is the indifference point of the unconditioned psychometric curve in
Eq. 11, that is, the stimulus value for which the rat chooses left or right with equal
probability, ψ(x= I)= 0.5 (Fig. 6a–b, solid black line).

For trials following an error, we first define the following psychometric curve:

ψ xT�2jFT�1 ¼ R; dT�1ð Þ ¼ lLT�2 þ 1� lLT�2 � lRT�2

� �
Φ xT�2jμT�2; σT�2; FT�1 ¼ R; dT�1

� �
where F(T−1)= R refers to an incorrect, right-ward response in the previous trial.
This expression corresponds to the psychometric curve for two trials back but
conditioned on the response and difficulty one trial back. We then define the
change in choice bias as:

ΔCf
b dT�1ð Þ ¼ 1

2
ΔCf

b FT�1 ¼ R; dT�1ð Þ � ΔCf
b FT�1 ¼ L; dT�1ð Þ

� �
ð13Þ

where

ΔCf
b FT�1 ¼ R; dT�1ð Þ ¼ ψ xT ¼ IjFT�1 ¼ R; dT�1ð Þ � ψ xT�2 ¼ IjFT�1 ¼ R; dT�1ð Þ

ΔCf
b FT�1 ¼ L; dT�1ð Þ ¼ ψ xT ¼ IjFT�1 ¼ L; dT�1ð Þ � ψ xT�2 ¼ IjFT�1 ¼ L; dT�1ð Þ

where I is the same indifference point as for choice biases after correct trials. We
here conditioned on two trials back to avoid biases introduced by long bouts of
incorrect trials. For correct trials, our results are qualitatively similar, irrespective of
whether we used Eq. 12 or Eq. 13. For error trials, the use of Eq. (13) over Eq. (12)
had a major impact on the bias estimates and revealed a win stay loose shift
strategy for our rats.

Model
Drift-diffusion model for decision-making. For a given stimulus with concentrations
cA and cB, we define the accumulated evidence at time t, e(t). The diffusion process
has the following properties: at time t= 0, the accumulated combined evidence is
zero, e(0)= 0; and the momentary evidence mi is a random variable that is inde-
pendent at each time step. We discretize time in steps of 0.1 ms and run numerical
simulations of multiple runs/trials. For each new time step t= nΔt, we generate a
new momentary evidence draw:

miðtÞ ¼ miðnΔtÞ ¼ N kcβi ; σ
� �

ð14Þ

that is, through a normally distributed random generator with a mean of kcβi , in
which we define k as the sensitive parameter, and β as the exponent parameter. σ
defines the amount of noise in the generation of momentary evidences. We set σ to

1, making kcβi equivalent to the signal to noise ratio for a particular stimuli and
respective combination of concentrations (cA, cB). Integrated evidences (s1, s2) are
simply the integration of the momentary evidences over time

siðtÞ ¼
Z t

τ¼0
miðτÞdτ ð15Þ

We translate this in our discretized version as a cumulative sum at all time
steps, effectively being:

siðnΔtÞ ¼
Xn
j¼0

miðjΔtÞ ð16Þ

We then define the decision variable accumulated evidence as:

eðtÞ ¼ w1s1ðtÞ þ w2s2ðtÞ þ b ð17Þ
or in its discretized version:

eðnΔtÞ ¼ w1s1ðnΔtÞ þ w2s2ðnΔtÞ þ b ð18Þ
where w1 and w2 are model-dependent combination weights on the accumulated
evidence, and b is an a priori decision bias (w1 ¼ 1=

ffiffiffi
2

p
;w2 ¼ �1=

ffiffiffi
2

p
; b ¼ 0 for

optimal decisions;
ffiffiffi
2

p
scaling ensures jjwjj ¼ 1). Together, these parameters define

slope and offset of the category boundary, which determines the mapping between
accumulated evidence and associated choices. We also define the (accumulation)
decision bound θ(t) and make it in most models collapsing over time through
either a linear or an exponential decay. Thus, at time step nΔt the bound is either

θðtÞ ¼ θðnΔtÞ ¼ θt¼0 þ θslonΔt ð19Þ
where we define θt¼0 as the bound height at the starting point of integration t= 0
and θslo ≤ 0 as its slope, or

θðtÞ ¼ θðnΔtÞ ¼ θt¼0e
�nΔt=τ ð20Þ

where τ ≥ 0 is the bound height’s mean lifetime. The collapse parameters θslo and τ
define the level of urgency in a decision, the smaller it becomes, the more urgent a
given decision will become, given rise to more errors35,42. For models with non-
collapsing boundaries, we used θðtÞ ¼ θt¼0, independent of time. For models with
collapsing boundaries, they collapsed linearly, except for RL-DDM, where they
collapse exponentially.

Decisions are triggered once the accumulated evidence, e(t), crosses one of the
two decision boundaries θðtÞ;�θðtÞf g. To simulate these decisions, we first
simulated a one-dimensional diffusion model that directly uses e(t) as the diffusing
“particle”, and from this reconstructed the higher-dimensional accumulated
momentary evidences sðtÞ ¼ s1ðtÞ; s2ðtÞð ÞT . For the one-dimensional simulation,

we used a momentary Gaussian evidence with drift w1kc
β
1 þ w2kc

β
2 and diffusion

variance w2
1 þ w2

2 (both per unit time step), corresponding to the moments of e(t)
− b. We reintroduce the bias b by shifting the boundaries to θðtÞ � b;�θðtÞ � bf g.
For non-collapsing boundaries, we simulated accumulation boundary crossings
using a recently developed, fast, and unbiased method53. For collapsing boundaries,
we simulated these boundary crossing by Euler integration in Δt ¼ 0:001s time
steps, and set the final e(t) to lie on the crossed boundary to avoid overshooting
that might arise due to time discretization. In both cases, we defined the decision
time td as the time when crossing occurred, and the choice in trial k by

Ck ¼ choice ¼ left; eðtdÞ> 0 right; eðtdÞ< 0f g ð21Þ
To recover the higher-dimensional accumulated momentary evidences at

decision time, s(td), we sampled those from the two-dimensional Gaussian

sðtdÞjeðtdÞ; td � N ðcβ1 ; cβ2ÞT k t; I t
� �

(i.e., unbounded diffusion), subject to the

linear decision boundary constraint wT s tdð Þ~sþ b ¼ eðtdÞ, using the method
described in ref. 54.

In order to capture <100% accuracy in easy trials and systematic and consistent
choice biases, we introduced an additional “lapse” component with lapse rate lr and
bias b to the model. The lapse rate lr determined the probability with which the
choice is not determined by the diffusion model, but is instead drawn from a
Bernoulli distribution that chooses “right” with probability lr and “left” with
probability 1− lr. Model fits revealed small lapse rates close to 0.05 (Supplementary
Tables 1 and 2). These lapse rates are typically needed for this type of models and
have been hypothesized in the past to be due to effects of attention and/or
exploration55.

Lastly, the reaction time for a particular trial was simulated by adding a
normally distributed non-decision time variable with mean tND and standard
deviation 0.1td to the decision time arising from the diffusion model simulations2,

tr ¼ td þ tND þ ηND; ð22Þ
where ηNDjtd � Nð0; ð0:1 tdÞ2Þ models the stochasticity of the non-decision time.
Without weight and bias learning (that is, when fixing
w1 ¼ 1=

ffiffiffi
2

p
;w2 ¼ �1=

ffiffiffi
2

p
; b ¼ 0), the base model with a non-collapsing has the

following six parameters: sensitivity (k), exponent (β), non-decision time mean
(tND), initial bound height (θt=0), lapse rate (lr), and bias (b). A collapsing bound
introduces one additional parameter, which is the boundary slope (θslo) for linearly
collapsing boundaries, or the boundary mean lifetime (τ) for exponentially
collapsing boundaries.

Drift-diffusion model with Bayesian reward bias and stimulus learning—
Bayes-DDM. The following provides an overview of the Bayesian model that
learns stimulus combination weights, reward biases, or both. A complete
description of the model and its derivation can be found in ref. 32. We first focus on
weight learning, and then describe how to apply the same principles to bias
learning. The model assumes that there are true, latent combination weights w*

that the decision-maker cannot directly observe, but aims to infer based on feed-
back on the correctness of his/her choices. To ensure continual learning, these
latent weights are assumed to slowly change across consecutive trials k and k+ 1
according to a first-order autoregressive process,

w*ðkþ1Þjw*ðkÞ � N γww
*ðkÞ; σ2wI

� �
; ð23Þ

with weight “leak” 0≤ γw<1, ensuring that weights remain bounded, and weight
diffusion variance σ2w, ensuring a continual, stochastic weight change. This process
has zero steady-state mean and a steady-state variance of σ2w=ð1� γ2wÞ for each of
the true weight components, which we used as the decision-maker’s prior pðwÞ
over the inferred weight vector w.

For each sequence of trials that we simulated, the decision-maker starts with
this prior in the first trial and updates its belief about the weight vector in each
subsequent trial in two steps. We describe these two steps in light of making a
choice in trial k, receiving feedback about this choice, updating one’s belief, and
then moving on to the next trial kþ 1. Before the first step in trial k, the decision-
maker holds the “prior” belief p wðkÞjall past information

� � ¼ p wðkÞ� �
that is

implicitly conditional on all feedback received in previous trials 1; � � � ; k� 1. The
decision-maker then observes some sensory evidence, accumulates this evidence,
commits to choice Ck with decision time tk and accumulated momentary evidences
sðtdÞ. After this, the correct choice C*

k 2 �1; 1f g (-1 for “left”, 1 for “right”) is
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revealed, which, in our 2-AFC setup is the same as telling the decision-maker if
choice Ck was correct or incorrect. The Bayes-optimal way to update one’s belief
about the true weights upon receiving this feedback is given by Bayes’ rule,

p wðkÞjC*
k ; sðtdÞ; td

� �
/ p C*

k jwðkÞ; sðtdÞ; td
� �

p wðkÞ
� �

: ð24Þ
Unfortunately, the functional form of the likelihood p C*

k jwðkÞ; sðtdÞ; td
� �

does
not permit efficient sequential updating of this belief, but we have shown
elsewhere32 that we can approximate the above without considerable performance
loss by assuming that the posterior (and, by induction, also the prior) is Gaussian.

Using prior parameters p wðkÞ� � ¼ NðwðkÞ μðkÞW

			 ;ΣðkÞ
w Þ and posterior parameters

p wðkÞjC*
k ; sðtdÞ; td

� � ¼ NðwðkÞjμþðkÞ
w ;Σ0ðkÞ

w Þ yields the update equations

μþðkÞ
w ¼ μðkÞw þ αw sðtdÞ; tdð ÞC*

kΣ
ðkÞ
w sðtdÞ ð25Þ

Σ0ðkÞ
w ¼ ΣðkÞ

w þ αcov sðtdÞ; tdð Þ ΣðkÞ�1

w þ~s~sT
� ��1

�ΣðkÞ
w

� �
; ð26Þ

with learning rates

αw sðtdÞ; tdð Þ ¼ N gj0; 1ð Þ
ΦðgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ~sTΣðkÞ

w ~s
q ; ð27Þ

αcov sðtdÞ; tdð Þ ¼ αw sðtdÞ; tdð Þ2þαw sðtdÞ; tdð Þ g; ð28Þ

g ¼ C*
kμ

ðkÞT
w ~sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ~sTΣðkÞ
w ~s

q ; ð29Þ

~s ¼ sðtdÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
td þ σ�2

e

p ; ð30Þ

where Φð�Þ is the cumulative function of a standard Gaussian, and where σ2e is a
variance that describes the distribution of decision difficulties (e.g., odor intensities)
across trials, and which we assume to be known by the decision-maker. In the
above, g turns out to be a quantity that is closely related to the decision confidence
in trial k. Furthermore, both learning rates, αw and αcov are strongly modulated by
this confidence, as follows: they are small for high-confidence correct decisions,
moderate for low-confidence decisions irrespective of correctness, and high for
high-confidence incorrect choices. A detailed derivation, together with more
exploration of how learning depends on confidence is provided in ref. 32.

Once the posterior parameters have been computed, the second step follows.
This step takes into account that the true weights change across consecutive trials,
and is Bayes-optimally captured by the following parameter updates:

μðkþ1Þ
w ¼ γwμ

þ ðkÞ
w ; ð31Þ

Σðkþ1Þ
w ¼ γ2wΣ

0ðkÞ
w þ σ2wI: ð32Þ

These parameters are then used in trial k+ 1. Overall, the Bayesian weight
learning model has two adjustable parameters (in addition to those of the base
decision-making model): the assumed weight leak (γw) and weight diffusion
variance (σ2w) across consecutive trials.

Let us now consider how similar principles apply to learning the bias term. For
this, we again assume a true underlying bias b* that changes slowly across
consecutive trials according to

b*ðkþ1Þjb*ðkÞ � N γwb
*ðkÞ; σ2b

� �
; ð33Þ

where the leak γw is the same as for w*, but the diffusion σ2b differs. As we show in
ref. 32, the bias can be interpreted as a per-trial a priori bias on the correctness on
either choice, which brings it into the realm of probabilistic inference. More
specifically, this bias can be implemented by extending the, until now two-
dimensional, accumulated momentary evidences sðtdÞ in each trial, by an
additional, constant element. An analogous extension of w adds the bias term to
them, until now two-dimensional, weight vector. Then, we can perform the same
Bayesian updating of the, now three-dimensional, weight vector parameters as
described weights, to learn weights and the bias simultaneously. The only care we
need to take is to ensure that, in the second step, the covariance matrix elements
associated with the bias are updated with diffusion variance σ2b rather than σ2w.
Overall, a Bayesian model that learns both weights and biases has three adjustable
parameters: the assumed weight and bias leak (γw), the weight diffusion variance
(σ2w), and the bias diffusion variance (σ2b). A Bayesian model that only learns the
bias has two adjustable parameters: the assumed bias leak (γw), and the bias
diffusion variance (σ2b).

Drift-diffusion model with heuristic reward bias and stimulus learning—RL-
DDM. Rather than using the Bayesian weight and bias update equations in their
full complexity, we also designed a model that captures their spirit, but not their
details. This model does not update a whole distribution over possible weights and
biases, but instead only works with point estimates, which take values wðkÞ and bðkÞ

in trial k. After feedback C*
k 2 �1; 1f g (as before, −1 for “left”, 1 for “right”), the

model updates the weight according to

wþðkÞ ¼ wðkÞ þ α C*
k �

eðtdÞ
θt¼0

� �
sðtdÞ; ð34Þ

where α is the learning rate. Note that, for rapid decisions (i.e., td � 0), we have
jeðtdÞj � θt¼0, such that the residual term in brackets is zero for correct choices,
such that learning only occurs for incorrect choices. For slower choices and col-
lapsing boundaries, we will have jeðtdÞj<θt¼0, such that the residual will be non-
zero even for correct choices, promoting weight updates for both correct and
incorrect choices. Considering that decision confidence in the Bayesian model is
generally lower for slower choices, this learning rule again promotes learning rates
weighted by confidence: fast, high-confidence choices result in no weight updates
for correct choices, and large weight updates for incorrect choices, whereas low,
low-confidence choices promote moderate updates irrespective of the correctness
of the choice, just as for the Bayes-optimal updates. To ensure a constant weight
magnitude, the weights are subsequently normalized by

wðkþ1Þ ¼ wþ kð Þ

kwþðkÞk ; ð35Þ

to form the weights for trial kþ 1.
Bias learning takes a similar flavor, using the update equation

bðkþ1Þ ¼ bðkÞ þ αb C*
k �

bðkÞ

θt¼0

� �
; ð36Þ

where αb is the bias learning rate. In contrast to weight learning, this update
equation does not feature any confidence modulation, but was nonetheless
sufficient to capture the qualitative features of the data. Overall, this learning model
added two adjustable parameters to the base decision-making model: the weight
learning rate (α), and the bias learning rate (αb).

Alternative learning heuristics. To further investigate whether a confidence-
modulated learning rate was required, we designed models that did not feature
such confidence weighting. For weight learning, they used the delta rule

wþ kð Þ ¼ wðkÞ þ α C*
k � Ck

� � θðtdÞ
θt¼0

sðtdÞ; ð37Þ

where α is the learning rate, and whose weight updated is, as before, followed by the
normalization wðkþ1Þ ¼ wþðkÞ=kwþðkÞk. Here, we assume the same encoding of
make choice Ck and correct choice C*

k , that is, Ck 2 �1; 1f g (−1 for “left”, 1 for
“right”), such that the residual in brackets is only non-zero if the choice was
incorrect. In that case, the learning rate is modulated by boundary height, but no
learning occurs after correct choices.

The bias is learned similarly, using

bðkþ1Þ ¼ bðkÞ þ α C*
k � Ck

� � θðtdÞ
θt¼0

: ð38Þ
Overall, this results in one adjustable parameter in addition to the base

decision-making model: the learning rate (α).

Drift-diffusion model with reward bias and stimulus weight fluctuations. To
test whether random weight and bias fluctuations are sufficient to capture the
across-task differences, we also fit a model that featured such fluctuations without
attempting to learn these weights from feedback. Specifically, we assumed that, in
each trial, weights and biases where drawn from

wðkÞ � N ð1;�1ÞT=
ffiffiffi
2

p
; σ2rwI

� �
; bðkÞ � N 0; σ2rb

� �
; ð39Þ

which are normal distributions centered on the optimal weights and bias values,
but with (co)variances σ2rwI and σ2rb. We adjusted these (co)variances to best match
the data, leading to two adjustable parameters in addition to those of the base
decision model: the weight fluctuation variance (σ2rw) and the bias fluctuation
variance (σ2rb).

Leaky, competing accumulator model—LCA. To test whether a non-learning
two-component race model with mutual inhibition is able to fit both tasks with the
same set of parameters, we implemented a leaky, competing accumulator model49.
In this model, two accumulators, s1 and s2 accumulate evidence according to

dsi ¼ kcβi � τ�1si � winhs3�i

� �
dt þ dWi; ð40Þ

where τ is the leak time constant, winh is the mutual inhibition weight, and Wi is a
Wiener process. The accumulators start at s1 0ð Þ ¼ s2 0ð Þ ¼ 0, are lower-bounded
by s1 tð Þ≥ 0 and s2 tð Þ≥ 0, and accumulate evidence until the first of the two reaches
the decision threshold θðtÞ, triggering the corresponding choice. The model was
simulated by Euler integration in 0.1 ms time steps, and lapses and biases were
implemented as for the other model. We fitted two variants, one with a time-
invariant boundary, θ tð Þ ¼ θ0, with a total of eight parameters, and one with a
time-variant boundary, θ tð Þ ¼ θ0 þ θslot, with nine parameters.
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Model fitting. We found the best-fitting parameters for each model by log-
likelihood maximization2. Due to collapsing bounds and (for some models)
sequential updates of weights and biases, we could not directly use previous
approaches that rely on closed-form analytical expressions19 for fitting diffusion
models with non-collapsing boundaries. Instead, for any combination of para-
meters, we simulated the model responses to a sequence of 100,000 trials with
stimulus sequence statistics matching those of the rodent experiments for the
conditions that we were interested in fitting. Please see “Drift-diffusion model for
decision-making” for details on how these simulations were performed. The
simulated responses were used to compute summary statistics describing model
behavior, which were subsequently used to evaluate the log-likelihood of these
parameters in the context of the animals’ observed behavior. We computed the
log-likelihood in two ways, first by ignoring sequential choice dependencies,
and second by taking such dependencies into account. All model simulations
were performed as described further above. We did not explicitly simulate the
stochasticity of the non-decision time, but instead included this stochasticity
as an additional noise-term in the likelihood function (not explicitly shown
below).

To describe how we computed the likelihood of model parameters ϕ without
taking sequential dependencies into account, let index m denote the different task
conditions (i.e., a set of odor concentrations for odors A and B), and let nm be the
numbers of observed trials for this condition in the rodent data that we are
modeling. For each condition m, we approximate the response time distributions
by Gaussians, using tm and σ2t;m to denote the mean response time and variance
observed in the animals’ behavior (across trials). Furthermore, let Pc;m be the
observed probability of making a correct choice in that condition. The
corresponding model predictions for parameters ϕ, extracted from model
simulations, are denoted �tmðϕÞ and �Pc;mðϕÞ. With this, we computed the likelihood
of responses times by

Lt;mðϕÞ ¼ N �tmðϕÞjtm;
σ2t;m
nm

� �
; ð41Þ

which is the probability of drawing the predicted mean reaction time from a
Gaussian centered on the animals’ observed mean and with a variance that
corresponds to the standard error of that mean. The likelihood of the choice
probabilities was for each condition computed by

Lc;mðϕÞ ¼ �Pc;mðϕÞPc;mnm 1� �Pc;mðϕÞ
� �ð1�Pc;mÞnm

; ð42Þ

which is the probability of drawing the animals’ observed number of correct and
incorrect choices with the choice probabilities predicted by the model. The overall
log-likelihood is found by summing over the per-condition log-likelihoods,
resulting in

LLðϕÞ ¼
X
m

logLt;mðϕÞ þ logLc;mðϕÞ
� �

: ð43Þ

To evaluate the log-likelihood that takes into account sequential choice
dependencies, we computed the reaction time likelihoods, Lt;mðθÞ, as before, but
changed the choice probability likelihood computation as follows. For trials
following correct choices, we computed the choice probability likelihood
separately for each stimulus combination given the previous and the current
trial, thus taking into account that psychometric curves depend on the stimulus
condition of the previous trial (Fig. 6a, b). Due to the low number of incorrect
trials for certain conditions, we did not perform this conditioning on the
previous trial’s condition when computing the choice probability likelihoods
after incorrect choices, but instead computed the likelihood across all trials
simultaneously.

For both ways of computing the log-likelihood, we found the parameters that
maximize this log-likelihood by use of the Subplex algorithm as implemented in
the NLopt library (Steven G. Johnson, The NLopt nonlinear-optimization package,
http://ab-initio.mit.edu/nlopt). In some cases, we performed the fits without taking
into account the sequential choice dependencies, and then predicted these
sequential choice dependencies from the model fits (e.g., Fig. 6c, d). In other cases
(e.g., for some model comparisons), we performed the model fits while taking into
account sequential dependencies. The specifics of the model fits are clarified in the
main text. The best model fits and respective parameters can be found in
Supplementary Tables 1 and 2.

Model comparison. For comparison between different models with different
number of parameters, we use Bayesian information criterion (BIC) for model
selection56. For each model, we calculate the BIC57:

BIC ¼ �2ln ðLÞ þ qΔlnðnÞ ð44Þ
where q is the number of free parameters fitted by the model and n the number of
trials that we fitted. Each model has a BIC associated to it. We compared different
models by first converting the BIC score into a log10-based marginal likelihood,
using �0:5BIC=lnð10Þ, and then compared models by computing the log10-Bayes
factor as the difference between these marginal likelihoods. These differences
dictate the explanatory strength of one model in relation to the other. The model

with the larger marginal likelihood is preferred and the evidence in favor is decisive
if the log10 difference exceeds 2.

To ensure that our analysis is not driven by the strong parameter number
penalty that BIC applies, we performed the same analysis using the Akaike
information criterion (AIC) and its corrected version (AICc), but found
qualitatively no change in the results. All different model comparisons can be
found in Supplementary Fig. 4.

In Supplementary Fig. 4, we compared the following models. Models denoted
simply “DDM” were diffusion models with optimal weights, w1 ¼ 1=

ffiffiffi
2

p
;

w2 ¼ �1=
ffiffiffi
2

p
. Models denoted “Bayes-DDM” learned their weights as described

in the Bayes-DDM section. The “Random weights” models used weights that
were stochastically and independently drawn in each trial (see Stimulus weight
fluctuations section). The “Delta rule” models learned their weights by the delta
rule. The “Full RL-DDM” model used the learning rules described in the RL-
DDM section. Only “lapse” variants of these models included the lapse model
components. Decision boundaries were constant except for the “collapsing
boundary” model variants. The bias was fixed to b ¼ 0, except for the “Full RL-
DDM” model and “bias” variants. In these bias variants, the biases (but not
necessarily the weights, depending on the model) were learned as described in
the Bayes-DDM section, except for the “Delta rule” models, for which bias
learning was described in the Alternative learning heuristics section. In
Supplementary Fig. 4, all models are compared to the Bayes-DDM model that
learns both weights and the bias, includes a lapse model, and has collapsing
boundaries.

Weights fluctuation analysis. As the Bayes-DDM model reaches a decision, it has
access to two variables, amount of evidence at the bound and the decision time td.
For better understanding the dynamics immediately before the multiplication of
the weights, we looked at the combination of sensory evidence (s1, s2) for each
simulated trial. For each trial j, there is a noisy sensory evidence trajectory (inte-
gration layer from Fig. 6). This means that by the end of trial j, we can compute the
mean drift rates that gave to rise to a decision:

hμjii ¼
sji

tjd � tr
ð45Þ

Each group in Fig. 8a, b has been segregated taking into account the
Mahalanobis distance, as each line represents the distance of D= 1 for a particular
stimulus set.

Considering the integrated evidence of Eq. 13 and combined with the choice
function of Eq. 21 we see that

w1s1ðtÞ þ w2s2ðtÞ þ b ¼ 0 ð46Þ
Should represent the separation line between the two stimuli, and thus we can

rewrite Eq. 46 as:

s2ðtdÞ ¼ �w1

w2
s1ðtdÞ þ

b
w2

ð47Þ
Considering the straight-line equation y ¼ mx þ i, we see that in our integrated

evidence plots the boundary separation can be drawn with slope m ¼ � w1
w2

and

intercept i ¼ b
w2
.

Stimulus weight fluctuation should then have an impact in the slope of the
boundary line separating the classification between left and right stimuli, and b
should influence the origin intercept on that stimulus representation (Fig. 8).
Considering the data points simulated for 100,000 trials, we analyzed the effect of
slope fluctuation in error rates. That is, how many errors would the model create by
having a particular value of m, for both the identification and categorization task
(Fig. 8).

Analysis. All the behavioral and statistical analysis, as well as all fitting, were
performed in Matlab®. The different models were implemented and fitted in Julia
v1.0.4.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code that support the findings of this study are available from the corresponding
author upon reasonable request.
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