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Introduction

Parkinson’s disease (PD) was first recorded clinically in 1817, and today, we recognize

both motor and non-motor symptoms as characteristic of PD. Unfortunately, to this

day, treatments for PD have not generally progressed beyond the symptomatic, relieving

symptoms but not targeting the underlying cause(s) of the disease. Furthermore, many

currently administered PD therapies yield unwanted side effects. The global prevalence

of PD (∼10 million) is set to increase, and therefore so has the urgency to develop novel

and effective treatments to slow or even reverse the progression of PD (1–3).

The classic neuropathologic features of PD are the degeneration of dopaminergic

neurons in the substantia nigra pars compacta (SNpc) and the appearance of

intraneuronal Lewy bodies, which are formed in part by aggregated pathologic forms of

α-synuclein, a presynaptic protein. Although originally thought to have minimal genetic

influence, research over the last two decades has established numerous genetic causes and

risk loci for PD (4, 5). Of the genetic variants that have been associated with PD, the most

common genetic cause of familial and sporadic PD is mutation in LRRK2 (PARK8) (6, 7).

Clinically and pathologically, PD caused by LRRK2mutations is largely indistinguishable

from idiopathic PD, except for lower risk of cognitive impairment and greater variation

in the type of intraneuronal inclusion.

Transcription and translation of LRRK2 yield a large (286 kDa) multi-domain

protein, LRRK2, a member of the Roco superfamily of proteins. LRRK2 is composed

of a tandem Ras complex (Roc) GTPase-domain linked to a kinase domain through

a carboxy-terminal (COR) sequence (Figure 1A). Outside of the characteristic Roco

family motifs, LRRK2 possesses four protein–protein interaction (PPI) domains: WD40,

armadillo repeats (ARM), ankyrin repeats (ANK), and the namesake leucine-rich
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repeats (LRR). These domains likely participate in the regulation

of LRRK2 localization (9–11) and LRRK2 kinase activity

(WD40) (12) as well as mediate changes in structural

conformation to active and inactive states (13–15). LRRK2

has been implicated in numerous cellular processes, including

vesicle trafficking, cytoskeletal maintenance, and autophagy,

reviewed in (16, 17). Although the precise physiological

function(s) disrupted by LRRK2 missense mutations is yet to

be identified, evidence to date suggests that altered activities

of its enzymatic domains—kinase and ROC-GTPase—are key

contributors (17, 18). These compelling genetic and biochemical

data have led to the hypothesis that eliminating aberrant

LRRK2 kinase or ROC-GTPase activity might be an effective

therapeutic strategy for people with PD who carry LRRK2

missense mutations.

Targeting the LRRK2 kinase domain

Several missense mutations of LRRK2 are dominantly

inherited causes of PD, including G2019S, I2020T, R1441C/G/H,

N1437H, and Y1699C, all of which occur in the catalytic

domains of LRRK2 (Figure 1). The most prevalent, G2019S-

LRRK2, accounts for 6% of familial and 2% of sporadic PD

(19). By far, most people with PD from G2019S-LRRK2 have

inherited one copy of the mutant allele, meaning that they also

possess a wild-type (WT) LRRK2 allele. G2019S-LRRK2 also

is reported to approximately double the risk of breast cancer

in women (20, 21). Less common LRRK2 missense mutations

also modulate kinase activity of LRRK2 by varying amounts

(22–24); these represent but a few of the almost 100 known

LRRK2 mutations, some of which also modulate risk of a form

of inflammatory bowel disease and a form of leprosy (25).

G2019S-LRRK2 appears in the kinase domain (Figure 1A),

specifically the DYG regulatory motif of the activation loop. As

a result, G2019S-LRRK2 possesses hyperactive kinase activity

defined by increased Kcat (but not Vmax) when compared to

wild-type (WT) LRRK2 (22). Altered LRRK2 kinase activity

is reliably observed in cells vs. in vitro (24, 26). The most

validated substrates of LRRK2 include several Rab GTPase

family members (24). Rab GTPases regulate the flow of

vesicular traffic within the cell, and their phosphoregulation

by LRRK2 modifies their membrane association and function

(27). Increased kinase activity by mutant LRRK2 results in

hyperphosphorylation and dysregulation of Rab substrates,

which can be resolved by inhibition of LRRK2 kinase activity

(24, 26). Lysosomal disruption and altered protein homeostasis,

as a result, is a major proposed mechanism of Parkinson’s

disease pathogenesis (28–31). The effect of LRRK2 activity in

idiopathic Parkinson’s disease is only now becoming understood

by examining post-mortem tissue as well as patient blood,

urine, and CSF samples (32, 33). Release of the lipid BMP

(22:6/22:6), an indicator of lysosome dysfunction, is increased

in rodents and patients harboring the LRRK2-GS mutation

and is reduced in LRRK2 knockout rodents, LRRK2 inhibitor

treated non-human primates, and patients treated with DNLI-

151/BIIB122 (8, 30, 34). These data suggest a connection

between lysosome function and LRRK2 kinase activity. BMP

levels and phosphoRab levels appear to be related and reliable

markers of LRRK2 inhibition for clinical trials. These, along with

the robust LRRK2 pSer935 upstream kinase phosphorylation site

(35), make pharmacodynamic detection of target engagement in

animals and humans possible (36).

Substantial PD drug discovery efforts over the last two

decades have focused on the development of brain-penetrant

LRRK2 kinase inhibitors, yielding multiple small molecules fit

for this purpose. Notable and efficacious examples of LRRK2

inhibitors widely deployed in the field include MLi-2 (1),

DNL-201 (previously known as GNE-0877) (2), and PF-360

(not shown) developed by Merck (37), Genentech/Denali

(38), and Pfizer (39), respectively (Figure 1B). Despite these

successes in medicinal chemistry, few lead compounds

have reached clinical trials, often because of initial safety

concerns (8).

Typically, kinase inhibitor programs geared toward cancer

therapeutics involve short-term doses until remission of tumors.

The envisioned medical management of LRRK2-GS carriers

would be different. In LRRK2-GS Parkinson’s disease, there

is a long preclinical stage where a carrier could be identified

by genetic testing decades before he or she was symptomatic.

Transition to a prodromal stage might be estimated by family

history of age of onset or assessed by changes in biomarker

or neuroimaging screening that signify brain injury and herald

the pending onset of the clinical stage of Parkinson’s disease.

Ideally, treatment with kinase inhibitors would be considered at

the prodromal stage or perhaps earlier, balancing the benefits

of starting treatment before onset of symptoms against the

risk of likely treatment for the remainder of one’s life. Indeed,

in this scenario, exposure to drug may include decades of an

older individual life, highlighting the importance of safety and

tolerability (40).

Phase 1b clinical trials of two candidates, DNL-201 (2)

and DNL-151/BIIB122 (a likely structurally related type I,

ATP-competitive kinase inhibitor), reported that short-term

administration did not cause adverse events (30, 41). Of the

two, DNL-151/BIIB122 was selected to progress into further

clinical trials due to its preferred pharmacokinetic properties

(30, 42). The clinical trial NCT05348785 sponsored by Biogen

with their collaborator Denali will test BIIB122 in a phase

2b multicenter, randomized, double-blind, placebo-controlled

study to determine the efficacy and safety in participants

with early clinical stage PD (30–80 years old). BIIB122 will

also be assessed in a Phase 3 clinical trial NCT05418673,

a multicenter, randomized, double-blind, placebo-controlled

study of symptomatic Parkinson’s disease patients carrying the

LRRK2-GS mutation.
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FIGURE 1

(A) LRRK2 domain organization and location of pathogenic mutations. (B) Chemical structures of some known brain-penetrant LRRK2 kinase

inhibitors, including G2019S-selective compounds. (C) An expanded view (center) of (3) docked to a GS-LRRK2 kinase active site homology

model (8), including locations of the known pathogenic mutations G2019S and I2020T. Compound 3 is proposed to interact uniquely with

G2019S-LRRK2 through glycine-rich P-loop Van der Waals (vdw) and hydrogen bonding interactions.

It is important to note that the compounds being tested

in the above clinical trials are non-selective LRRK2 kinase

inhibitors, equivalently inhibiting both mutant and WT kinase

and potentially causing untoward on-target effects from

suppression ofWT kinase activity. Most preclinical data indicate

that pharmacologic inhibition of LRRK2 kinase results in

pathologic changes to the lung in rodents and non-human

primates; however, no associated changes in respiratory function

were observed. Furthermore, the major structural change in the

lung, hypertrophy of type II pneumocytes, washed out after

drug withdrawal. Clinical trials of DNLI-201 NCT03710707

and DNL-151/BIIB122 NCT04056689 included pulmonary

monitoring and observed no adverse events in the time frame of

the trial (30). It remains to be determined in animal models and

humans if all pathologic changes in the lung revert upon drug

withdrawal, especially after prolonged exposure.

In an effort to avoid these potential on-target side effects,

we and others recently have undertaken the development

of brain-penetrant, highly selective G2019S-LRRK2 kinase

inhibitors to test the hypothesis that such precision therapeutics

might bring similar benefits with less side effects—especially

when administered over years to decades—to people with PD

driven by G2019S-LRRK2 (43–46). Moreover, related non-

brain-penetrant inhibitors might find application in G2019S-

LRRK2 mutation carriers at increased risk for breast cancer as

a potential anti-cancer agent acting solely in the periphery.

Precision medicine for
PD—Targeting the G2019S-LRRK2
kinase domain

From amedicinal chemistry perspective, design of a G2019S-

selective kinase inhibitor would seem exceedingly challenging

as a single amino acid differentiates WT from G2019S-

LRRK2. This would suggest that the kinase domain of the

two variants would be near identical. Indeed, recent Cryo-EM

data support this assumption, with the authors suggesting that

hyperactive G2019S-LRRK2 kinase activity may be kinetic in

nature rather than structural (47). In contrast to these findings,

kinetic and computational studies involving type II kinase

inhibitors (preferentially binding the DYG-out, “inactive” kinase

conformation) show LRRK2 activation loop variants, that is,

G2019S and I2020T, more readily stabilize the “active,” DYG-

in kinase conformation in solution when compared to WT-

LRRK2 and thus do not bind type II kinase inhibitors effectively.

This observation was rationalized with computational modeling,

revealing Ser2019 of G2019S-LRRK2 directly forms an H-

bonding network in the kinase active site involving key catalytic

residues (48, 49). If indeed G2019S-LRRK2 exists as DYG-in

stabilized in solution, then the kinase domain architecture may

be distinctly different to that of WT-LRRK2, which can readily

access both DYG-in and DYG-out conformations. Interestingly,
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crystallographic surrogates (CHK1 mutants) of the G2019S-

LRRK2 kinase active site revealed a DYG-in conformation, at

least in the presence of type I kinase inhibitors. Such CHK1-

LRRK2 surrogates have been used effectively in the pursuit

of novel LRRK2 kinase inhibitors, although these were not

disclosed as G2019S-selective (50–52). In the design of G2019S-

selective compounds, the situation is less clear.

Although molecular modeling efforts based on such

G2019S-LRRK2 surrogates have resulted in extremely selective

compounds, such as (3) (44) and (4) (45), selectivity toward

G2019S appears to be amplified in the whole organism

(43–45); thus, specific assay techniques may be required to

ascertain true compound selectivity. The combined forces

of molecular modeling, screening, and iterative compound

synthesis have allowed for the successful design of selective

G2019S-LRRK2 kinase inhibitor(44, 45). Thus, far, the structure

of published selective G2019S-LRRK2 compounds supports the

aforementioned hypothesis established using type II compounds

(48, 49) that G2019S kinase provides a unique binding site,

not accessible in WT-LRRK2, where Van der Waals interactions

are possible between appropriately designed small molecules

and the G2019S kinase glycine-rich loop (Figure 1C) (44, 45).

Beyond the aforementioned challenges in designing G2019S-

LRRK2 selective kinase inhibitors, it is an essential requirement

for a successful PD therapeutic to be brain-penetrant; few

reported examples of these exist, for example (3) (44). However,

highly selective G2019S-LRRK2 kinase inhibitors that do not

efficiently access the brain may find applications in other

diseases to which mutation carriers have increased risk, such as

breast cancer.

Conclusion

The preponderance of evidence has identified the G2019S-

LRRK2 hyperactive kinase function as pathogenic in the context

of PD. Searching for inhibitors of this enzymatic function should

therefore be considered a worthwhile target that may bring

benefit to G2019S-LRRK2 carriers in the first instance, with the

potential for downstream therapeutic benefits as well. At the

very least, a clinically useful G2019S-selective, brain-penetrant

inhibitor could be used to elucidate the complex molecular

biology of mutant LRRK2 and thus be enormously beneficial

to PD precision medicine development. How this mutation

affects LRRK2 the cellular functions remains unclear. To date,

we have observed that this single amino acid mutation creates

a structural effect impacting kinase kinetics, conformation, and

substrate preference. The challenges involved in developing a

selective G2019S-LRRK2 kinase inhibitor perhaps have led to

more emphasis on non-selective inhibitor development, even

while questions still remain regarding the safety and efficacy

of non-specific LRRK2 inhibitors. As described herein, data-

driven approaches utilizing both computational modeling and

medicinal chemistry have overcome some of these challenges to

identify potent, selective, and brain-penetrant G2019S-selective

kinase inhibitors. Ultimately, G2019S-LRRK2 has been shown

to be a valid therapeutic target, with established links to PD

pathogenesis and extensive evidence suggesting inhibitors of the

mutant LRRK2 kinase domain may yield powerful, precision

therapeutics. As the first LRRK2 kinase inhibitors (non-selective

for genetic variants) are progressing through clinical trials, time

will tell whether such compounds are able to fulfill the unmet

medical need for safe and effective PD treatments. Including

more precise, mutant-selective LRRK2 inhibitors to our arsenal

will potentially provide safer medications for mutation carriers

who face an increased risk of PD and beyond.
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