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Abstract: Cabernet Sauvignon grapes in Chile, mainly grown between the 30◦ S and 36◦ S, account
for more than 30% of Chilean wine production, and yield wines with different characteristics which
influence their quality. The aim of this study was to apply a liquid chromatography—mass spec-
trometry (LC–MS)-based metabolomic protocol to investigate the quality differentiation in a sample
set of monovarietal wines from eight valleys covering 679 km of the north-south extension. All
samples were produced using a standardized red winemaking process and classified according to
a company categorization in two major groups: premium and standard, and each group in two
subcategories. The results pointed out that N-containing metabolites (mainly small peptides) are
promising biomarkers for quality differentiation. Moreover, the premium wines were characterized
by higher amounts of anthocyanins and other glycosylated and acetylated flavonoids, as well as
phenolic acids; standard quality wines, on the other hand, presented stilbenoids and sulfonated
catabolites of tryptophan and flavanols.

Keywords: Vitis; untargeted analysis; wine quality; pigments; tannins; sulfonation; indoles;
peptides; resveratrol

1. Introduction

The Cabernet Sauvignon grapevine cultivar produces iconic wines around the world
and therefore covers about 4% (341,000 ha) of the global vine-cultivated area [1]. This wine
grape variety was introduced in Chile around 1851 from Bordeaux before the phylloxera
attacks on French vines [2]. Nowadays, Chile is one of the top Cabernet Sauvignon
producers, with 13.6% of the global grape-growing area [3], which corresponds to 40%
(40,204 ha) of the Chilean red grape production where 38,950 ha (96%) are between the
Maipo and the Maule valleys [4]. The Chilean wine grape-growing area extends for
approximately 1300 km of longitude in a narrow country with an average extension of
170 km between the Pacific Ocean to the west and the Andes mountain range to the east.
Most of the vineyards are placed at a latitude of 30◦ S to 36◦ S, with the coastal range to the
west strongly influencing the topography. The unique Chilean geography encompasses a
wide range of different climatic conditions, from semi-arid according to the elevation in
the north-central zone, to a dominant Mediterranean-type in the central zone [5,6], where
variabilities in climate potential offer different characteristics for viticulture even in the
same wine valley [6].

Wine, the result of the complete or partial alcoholic fermentation of fresh grapes,
has an extraordinarily complex chemical profile, with innumerous metabolites that cover
almost all the chemical classes of the primary and secondary plant metabolism, such
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as amino acids, lipids, peptides, carbohydrates, phenolics, organic and inorganic acids,
indoles, amines, sulfur compounds, and volatile compounds [7]. These metabolites are
present in a very wide range of concentrations (from g/L to ng/L) and, unfortunately, many
of them are still unknown. The chemical diversity and complexity of the wine metabolome
is the result of several required production steps that impact and are reflected in each
bottle. More specifically, each wine metabolome is the result of many parameters, such as
the vintage [8], the terroir [8,9], the grape phenotype [10], the cultivar [8,9], the addition
of O2 and antioxidants such as SO2 [11–14], the fermentation process and yeast-related
compounds [15], and the packaging and storage conditions [16,17]. All these steps influence
the wine chemical signature and therefore its perceived quality. Indeed, by measuring the
chemical compounds in a wine it is possible to obtain information and understand and
explain its history, sensorial character, and quality.

Unraveling the association between the chemical composition (volatile compounds,
non-volatile compounds, or both) of wine and its perceived quality is challenging and not
straightforward. To pursue this objective, a few different targeted and untargeted research
strategies and chemometric models have been implemented in wine research [8,10,18–21].
Sáenz-Navajas et al. (2015), by using a targeted approach in red wines, associated overall
quality with higher levels of volatiles compounds such as norisoprenoids and lower
levels of whisky lactones and volatile phenols, whereas the non-volatile compounds
with astringent properties showed no correlation with quality [18]. For Italian Pinot
noir wines, a positive correlation with wine quality was found for caftaric acid, quercetin
3-glucuronide, and glycerol, whereas gallic acid and delphinidin 3-glucoside showed a
negative contribution to the overall wine score [21]. A reliable insight on wine chemistry
in relation to quality can be achieved by targeted methods and multivariate statistics, but
due to the high complexity of the wine metabolome, this is a limited approach, because
the relevant strategies miss a high number of metabolites. On the other hand, an unbiased
strategy with a holistic approach is more promising for discrimination purposes in terms
of quality [8,20].

Using a comprehensive analysis with an untargeted approach, the latest research on
commercial wines demonstrated that the non-volatile compounds could describe the wine
quality assessment by wine experts better than volatile compounds [20]. In commercial
monovarietal Chilean wines, it has been possible to discriminate according to quality score
using non-volatile compounds [8]. For Pinot noir wines, quality was positively associated
with dipeptides and unsaturated fatty acids, whereas N-(3-methylbutyl)-acetamide and
xanthine were negatively associated with quality using an untargeted approach [20]. The
chemical fingerprint from Pinot noir wines from three different grape clones was associated
to their sensorial properties and their quality. The results show associations between
non-volatiles compounds, such as anthocyanins and derivatives, with aroma perception
and between anthocyanins, flavonol, and flavanol compounds with sweetness, bitterness,
acidity, and astringency and their quality [10].

Within this framework, a research project was designed to investigate the metabolome
of a sample set composed of 150 well-defined Chilean Cabernet Sauvignon single vineyard
experimental wine samples (50 × 3 biological replicates), originated from grapes harvested
from eight Chilean valleys and produced under the same semi-industrial standardized red
winemaking process. A robust LC–MS-based untargeted/metabolomics workflow was
chosen for the acquisition of their chemical fingerprint. The initial aim was to find tentative
metabolite markers of their quality classification based on a commercial categorization.
These markers should allow us to understand the Chilean Cabernet Sauvignon wine
(sub)qualities, find the biosynthetic pathways and chemical reactions that are responsible
for their differentiation/classification, make new hypotheses to be validated in future
projects, and create new knowledge for Chilean winemaking.
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2. Results
2.1. Standard versus Premium Wines

Grapes were harvested from eight different valleys (Limarí, Aconcagua, Maipo,
Cachapoal, Colchagua, Curicó, Maule, Itata) as represented in Figure 1. This sample
distribution in our experimental design allowed us to cover approximately 679 km of
longitudinal distance (Supplementary Material, Figure S1). Additional information on
grapes, grape musts, and the conduction trellis systems of the specific vineyards is available
in Table S1.
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Figure 1. Schematic representation of experimental design of the study, (A) grape distribution of sampled vineyards in
different Chilean valleys according to quality group, (B) winemaking and classification for experimental wine samples (P1:
super-premium, P2: premium, S1: standard plus, and S2: standard), (C) schematic data acquisition and analysis workflow.

The resulting grape must have an average of 23.3 ± 2.1 Brix, whereas the resulting
experimental wines had a mean pH of 3.4 ± 0.1, an alcoholic content of 13.2 ± 0.8%, a
concentration of total sulfur dioxide (TSO2) of 46.3 ± 5.4 mg/L, and a concentration of
free sulfur dioxide (FSO2) of 39.9 ± 5.3mg/L; the only difference between the wine groups
(p-value ≤ 0.05) was in the FSO2 concentration, where the standard wines had a higher
concentration (41.7 ± 5.3 mg/L) than that of the premium wines (38.3 ± 4.8 mg/L). All the
basic oenological analysis data are available in Table S2. Before performing further analyses,
the quality of the data must be assessed. The reliability and quality of the data acquired in
a single batch were assessed by a principal component analysis (PCA) for each ionization
mode. As shown in Figure 2, the QC injections, both for ESI+ and ESI−, clustered together,
as did the three biological replicates of each wine sample. This is fundamental in order to
guarantee the robustness of the data set and thus for the results and the tentative biomarker
discovery. The number of features registered in the unsupervised analysis was 9258 in ESI+
and 7633 in ESI− (Figure 2)
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According to the quality company categorization, 25 experimental wine samples were
classified as premium quality and 25 as standard quality (Table S2, Figure 1). To investigate
the differences between the metabolomic fingerprints of the wine groups, an ANOVA
analysis was performed. The putative biomarkers selected (features with p-value ≤0.01,
maximum fold rate ≥2) for each group were 343 compounds and 463 in ESI+ and ESI−,
respectively (Tables S3 and S4). As shown is Figure 3, the highest percentage of annotated
tentative biomarkers for both ionization modes, which allowed us to discriminate the stan-
dard from premium wine groups, comprised N-containing compounds, mostly short-chain
peptides. The other annotated tentative biomarkers belonged to other chemical classes,
mainly polyphenols, flavonols, anthocyanins, and hydroxycinnamic acids. Initially, we
were surprised by the high number of N-containing compounds that resulted as tentative
markers for both the ESI+ and ESI−mode. Nitrogen is an essential nutrient, able to affect
yeast cell growth and fermentation kinetics during wine alcoholic fermentation, and Sac-
charomyces cerevisiae, even though it prefers to use simple inorganic nitrogen as free amino
acids and ammonium, in some conditions is able to use amino acids, peptides, or oligopep-
tides and proteins as secondary nitrogen sources [22]. According to the basic oenological
analysis, the content of yeast assimilable nitrogen (YAN), primary amino nitrogen (PAN),
and ammonium (NH4

+) measured in the fresh grape musts of the Cabernet Sauvignon sam-
ples did not show significant differences between the premium and standard wine groups
(Table S7). Since all the wines were produced under the same winemaking semi-industrial
standardized procedure, with the yeast strain being the same for all fermentations, it
is highly probable that the differences in N-containing compounds were caused by the
starting material composition (grapes from different vineyards and valleys).
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Cabernet Sauvignon wines by ESI− and ESI+.

2.2. Super Premium versus Premium versus Standard plus versus Standard Quality Wine Groups

For a better understanding of the metabolomic differences in the Cabernet Sauvignon
experimental wines, we decided to continue the marker investigation based on four com-
mercial quality subclasses. The sub-classification of wine samples was made according to
the company categorization of the expected quality for a premium or standard Chilean
Cabernet Sauvignon wine (Table S2). The 25 premium samples were divided into super-
premium P1 (7 samples) and premium P2 (18 samples), whereas the 25 standard samples
were divided into standard plus S1 (15 samples) and standard S2 (10 samples).

700 features with a p-value ≤ 0.01 and max folder ≥ 2 in ESI− and 1563 in ESI+ were
putative biomarkers for the quality subgroups. From the selected features, 59 biomarkers
(p-value ≤ 0.01 and max folder ≥ 2) were annotated with different levels of confidence
(most of them at level 3). More than 90% of the selected features annotated for group
discrimination were unknowns, which demonstrates the wine metabolomic complexity.
The annotation was carried out semi-manually by using an internal library of chemical
references, analyzed under the same instrumental conditions (1st level annotation), and
external databases or literature [9,11,17,23,24]. Additionally, we included compounds with
enological importance (markers) with a p-value ≤ 0.05 in the annotated compounds list.
The biomarker discovery and annotation steps produced a list of 115 compounds tentatively
annotated as biomarkers and markers. The full list of these annotated compounds includes
amino acids, flavonoids, phenolic acids, cinnamates, sulfonates, lipids, vitamins, purines,
stilbenes, etc.

The next step was to turn back to the raw files and make a semi-manual peak inte-
gration of all the above tentative markers, and we included other metabolites that belong
to the same biosynthetic chemical group pathway as the biomarkers and were previ-
ously annotated with the same analytical protocol. The output of this process delivered
a table with 163 compounds with enological importance (Table S6), with the integrated
areas of annotated compounds (Table S7), which was uploaded to the online platform
at http://www.metaboanalyst.ca (accessed on 9 November 2021) for further statistical
analysis, and the information produced by the platform heatmaps was used to create the
pathway illustrations of Figures 4–7.

http://www.metaboanalyst.ca
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2.2.1. Amino Acids and Peptides

Generally, the subclasses P2 and S2 were less rich in free amino acids in comparison to
the P1 and S1 wines (Figure 4 and Table S11). More specifically, the P1 was characterized by
proline and leucine, and the levels of tryptophan, tyrosine, and phenylalanine were higher
in P1 and S1. The metabolomic pathway of tryptophan in grapes includes the biosynthe-
sis of the indole 3-lactic acids and their glucoside, and the biosynthesis of tryptophol in
yeasts [13,25]. All these tryptophan products can react with SO2 in wine, leading to the
formation of their sulfonated analogs [12,13]. The S1 wine group shows a higher concentra-
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tion of indole 3-lactic acid than the other wine quality groups. The concentration of indole
3-lactic acid glucoside may vary due to genetics [9,25] or wine style [13]. According to our
experiment, indole 3-lactic acid glucoside levels were influenced by the valley of origin
(Figure S2) but were not important in discriminating wine quality (Tables S6 and S11).
Moreover, we noticed that the sulfonated derivatives of tryptophol and indole 3-lactic acid
showed a significantly higher concentration in the two standard quality groups, S1 and S2.
Surprisingly, there were no significant differences between the four quality groups in terms
of measured levels of free or total SO2 (Table S10).

Glutathione, a tripeptide, antioxidant, and O-quinone scavenger with a characteristic
thiol moiety, is naturally present in wines [7]. One of the characteristic markers for premium
wines (P1 and P2) is the sulfonate analogue of glutathione: S-sulfonate glutathione, which
was firstly described in white wines and lately in red wines [12,17]. This short peptide is
a product of the sulfitolysis of oxidized glutathione, while the chemical reaction for their
formation is prompted by higher amounts of oxygen [17].

Other N-containing metabolites, such as α-aminoadipic acid, Leu-Leu-Leu, hydrox-
yproline, Gly-His, Tyr-Ala, and Pro-Thr (Figure 4), were annotated with the tentative
biomarkers. To the best of our knowledge, this is the first time that the Leu-Leu-Leu, Gly-
His, Tyr-Ala, and Pro-Thr peptides have been identified in red wines, and their annotation
was confirmed with their corresponding commercial reference (1st level annotation). The
metabolite α-aminoadipic acid was a characteristic marker for the premium groups (P1
and P2).

2.2.2. Non-Flavonoid Polyphenols

Figure 4 shows a schematic description of the shikimate pathway part that delivers
hydroxycinnamic acids, benzoic acids, and stilbenoids, and at the same time the behavior
of these metabolites in the various wine subclasses. The lower quality subclasses of wines
in our experiment design (S2) were characterized by high levels of stilbenoids (trans-
resveratrol, trans-piceid, trans-piceatannol, and pallidol); at the other end of the spectrum,
the higher quality wines (P1) were characterized by high concentrations of phenolic acids
(mono-, di-, and tri-hydroxybenzoic acids), ellagic acid, vanillic acid, and ferulic acid
derivatives. Two of the stilbenoids annotated in our study as quality markers—trans-
piceatannol and pallidol—did not show differences between valleys (Table S12).

In addition, the standard quality wines (S1 and S2) showed a tendency to be character-
ized by the not methylated hydroxycinnamate derivatives, such as caffeic acid and caftaric
acid. Another good biomarker for P1 groups in our experiment was tentatively annotated
as galloyl hexoside (Figure 4).

2.2.3. Flavonoids

Figures 5–7 provide a general overview of the comparison of the four wine quality
groups based on the concentration and synthesis of flavonols, monomeric and oligomeric
flavan-3-ols, and anthocyanins and related pigments, a set of phenolic compounds with
paramount importance in the description of wine quality, sensorial character, and bioactivity.

The premium groups were characterized by the highest concentration in almost all
flavonols (quercetin, kaempferol, myricetin, syringetin, laricitrin, luteolin, and isorham-
netin). In particular, the P1 wine group was characterized by the highest levels of flavonol
derivates such as acetylated flavonols or glycoside (Figure 5 and Table S13). Three acety-
lated flavonols are promising markers for wine with the highest quality and were tentatively
annotated as isorhamnetin 3-O-(6′-acetyl)-glucoside, laricitrin 3-O-(6′-acetyl)-glucoside,
and syringetin 3-O-(6′-acetyl)-glucoside (Figure 5), according to their MS fragmentation
patterns (Table S5) as identified by Favre et al. [26]. To our knowledge, this is the first time
this kind of compound has been detected in Chilean wines.

Regarding the anthocyanins, it is possible to identify a pattern for premium wines in
the B-ring substituted cyanidin and peonidin series (3-O-glucoside, 3-(6′-acetyl)-glucoside
and 3-O-(6′-p-coumaroyl)-glucoside); this anthocyanin trend does not apply to the delphini-
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din, petunidin, and malvidin series (Table S13), with the exception of the biomarker for
the premium wines: delphinidin 3,5-O-diglucoside (Table S3). The group with the poorest
anthocyanins profile was also the poorest in flavonols, namely, S1.

During winemaking and aging, anthocyanins react with other metabolites and deliver
various new pigments, such as the direct or ethyl-bridge-linked flavanol-anthocyanins
(F-A), the pyranoanthocyanidins, the carboxypyranoanthocyanidins, and the hydrox-
yphenylpyranoanthocyanidins [7]. Such reactions are very important for color stability
or loss during aging, and are fundamental to explaining wine quality. Figure 6 includes
several of these red pigments, highlighting that the P1 group was by far the richest one in
this metabolite group. This trend should be a key parameter to explain why historically
the P1 wine group is categorized with the highest quality in comparison to the other three
quality groups. Of course, we need to underline that the two hydroxyphenylpyranoantho-
cyanidins with a characteristic yellow-orange nuance included in Figure 6 do not follow
this trend: malvidin 3-glucoside-4-vinylphenol has not shown any difference between the
various quality groups, while pinotin A is present in higher concentrations in the S2 group
and lower in the S1. Finally, the directly linked F-A pigments had similar concentrations in
all groups, apart from the S1 group, where it was much lower.

Figure 7A is dedicated to the monomeric and oligomeric flavanols (dimer and trimer).
The premium P1 group had the highest concentration in most of this polyphenolic class,
and the two premium groups (P1 and P2) had higher concentrations in epicatechin than
standard quality wines.

The monomeric flavan-3-ol hexoside (Figure 7A and Table S6) was also tentatively an-
notated in the Chilean Cabernet Sauvignon wines. The fragmentation pattern in ESI−mode
for the compound annotated as 451.1246 m/z flavan-3-ol hexoside [M-H]−, had a loss of
glucoside moiety (162 m/z) with the formation of 289 m/z and a subsequent loss of 44 Da
(CO2) by decarboxylation, generating 245 m/z, which clearly indicated catechin/epicatechin
in the structure core (Table S5). This kind of monomer with hexoside substitution has been
reported in different wine varieties [27]. The levels of flavan-3-ol hexoside compounds
were higher in P1 wines and thus are a characteristic marker for premium wines in general.
To the best of our knowledge, this is the first time the flavan-3-ol hexoside monomers have
been reported in Chilean wines.

The group with the lowest quality (S2), had the highest content of sulfonated tannins
(Figure 7A). This class of tentative marker metabolites includes both monomeric (epicate-
chin 4-sulfonate) and dimeric (proanthocyanidin sulfonate, procyanidin B2 4-sulfonated,
and prodelphinidin sulfonate) sulfonated flavonols. On the opposite end of the spectrum,
the wine group with the highest quality (P1) was the poorest in sulfonated flavonols. It
was recently demonstrated that this sulfonation reaction is promoted by high temperatures
and low pH, and that their synthesis in wine involves the depolymerization of tannins [28].
The wine samples in the present study had the same industrial winemaking protocol, aging
time, and storage conditions, so the reaction with bisulfite in the S2 wine group must
be promoted or triggered by another unknown factor, which could be related to the raw
material and its geographical origin.

Some sulfonated analogs of procyanidins and indoles were negatively correlated
with pyranoanthocyanidins, carboxypyranoanthocyanidins, and ethyl bridge anthocyanin-
flavanols (Figure S3). The premium wines which had the higher levels of ethyl bridge
anthocyanin-flavanols, pyranoanthocyanidins, and methylpyranomalvidin 3-O-glucoside
also had the lowest levels of sulfonated procyanidins and tryptophol sulfonate, and the
opposite trend was shown for standard wines in our study (Figures 6 and 7A). This strongly
suggests a different oxidative status for the semi-industrial experimental wines, underlining
a possible reaction(s) indirectly promoted by the availability of O2 and/or SO2 in the
winemaking phase or the wine environment and, consequently, the release/accumulation
of acetaldehyde or hydroxyethyl sulfonate which in turn may modify the initial wine
profile. Undoubtedly, it is necessary to obtain a deeper understanding of the key conditions
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or factors impacting the grapes as a raw material and promoting this reaction(s), in order
to better understand their impact on wine quality.

2.2.4. Other Compounds

Figure 7B includes some annotated tentative markers that do not belong to any of the
above-described classes. Hypoxanthine was positively correlated with standard quality
wines (S1 and S2) and xanthine with the S2 and P2 groups, the lowest quality for each
category. Other tentative markers, which characterized the premium wines, were uridine
monophosphate and D-pantothenic acid.

3. Discussion

Our results indicated that the N-containing compounds annotated as peptides were
highly important tentative biomarkers to differentiate premium from standard Chilean
Cabernet Sauvignon wine quality. This is not the first time that N-containing compounds
and especially small peptides have been found to be responsible for the quality differences
in wines [20]. In addition, peptides in fermented foods are taste-active (some are also
bioactive) compounds [29–31], promoting healthy effects and being highly susceptible to
modifications during food processing due to the presence of exposed active groups in
their amino acidic residues [32]. In wine they are tentatively associated to certain sensorial
attributes, such as sweetness [33], bitterness, and sourness, and γ-glutamyl peptides
contribute to the umami taste in fermented foods [31,33,34]. More recently, dipeptides have
been reported to contribute to the perceived quality of commercial Pinot noir [20] and N-
and S-containing compounds similarly contribute to Chardonnay wines [35]. The results of
our research underline the need to investigate further the role of peptides in wine quality
and in their perception.

Indoles are markers for standard wines groups (Figure 4) and might have an influ-
ence on wine quality, as they are associated with off-flavors or “atypical aging” by indole
degradation products [36]. In addition, indole 3-lactic acid, a biomarker for the S1 wine
group, was recently identified as an important metabolite for quality prediction in Pinot
noir wine [20].

One marker for premium wines is the α-aminoadipic acid; this metabolite is a
ketoglutarate-derived intermediate of lysine biosynthesis [37] or a product of lysine oxi-
dization when exposed to reactive oxidative species (ROS), which can affect susceptible
amino acids in food production, processing, or storage [38]. In grape must in fermentation,
α-aminoadipic acid is suggested as a possible second source of nitrogen for yeast strains
with a different assimilation mode when other preferred nitrogen sources are depleted;
this is related to the uptake of glutamate-rich peptides by oligopeptide transport under
physiological control modulation [37].

Recently, one of the metabolites associated with the spice attribute in Chilean Pinot
noir wine was tentatively annotated as galloyl hexoside [10], which also turned out to be
a tentative biomarker for the P1 group in our experiment (Figure 4). A marker for the
S2 group was annotated as xanthine. This metabolite was identified as a marker in two
untargeted LC–MS based projects, the first on Sangiovese wines oxidation [11] and the
second related to low-quality Pinot noir wines [20].

The sulfonation reaction mechanism(s) is the key for the subdivision of wine groups
according to quality. The results show that sulfonated flavanols as well as sulfonated
tryptophol catabolites are characteristic in standard wines (S1 and/or S2), while in the case
of premium wines, glutathione is preferred to bisulfite anion as a substrate (Figures 4 and 7).
The sulfonated tryptophan catabolites were described for the first time in white wines
and were positively correlated with high oxygen levels in the headspace [12] but were
later detected in red wines as well [9,12,17]. Their impact on the wine sensorial character
and its perceived quality is still unknown but could be correlated first with the formation
of 2-aminoacetophenone (2AA), a compound indicated as being mainly responsible for
the off-flavor [36], and second with the bitter taste in wine [39,40]. Regarding sulfonated
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proanthocyanidins which are markers for the S2 wine group, they are associated with
“in house” sub-optimal storage [16], anoxia [17], wine style and aging time [13,14], and
origin [9]. The possible correlation between the sulfonated flavanols and a wine’s astringent
character was recently hypothesized in a study that included both chemical and sensorial
analysis in a large sample set of red wines [9,41]. It was strongly suggested that tannin
sulfonation may influence the declination of astringency perception in red wines, probably
by reducing the binding of tannin-protein in salivary proteins [14]. S-sulfonated glutathione
is a biomarker for premium wines; glutathione is known as antioxidant and “kokumi”
compound, a flavor enhancer for umami, a sweet and salty taste in foods [7,34]. There is
lack of information on whether S-sulfonated glutathione preserves the antioxidant or flavor-
enhancing properties of glutathione. In our experimental design the oxygen level was not
a variable in aging and the wines were opened in a N2-inert environment for analysis. This
suggests that there are more mechanisms or unknown factors related to grapes and their
geographical origin that promote the sulfonation and affect the wine quality. A possible
oxidation mechanism triggered by unknown or not-well-characterized factors in wines
with different qualities is suggested, due the negative correlation between sulfonated
procyanidins and tryptophol catabolites and compounds reacting with acetaldehyde, a
main oxidative byproduct.

Benzoic acids and hydroxycinnamates were more characteristic of premium wines
(Figure 4), while the lowest quality standard wines in our study were well characterized by
stilbenoids. Phenolic acids are associated with the enhancement of the astringency when
they are mixed with other sensorial active astringency compounds, such as flavanols [42].
Stilbenoids gained attention when the “French paradox” was published, correlating mod-
erate wine consumption with a low incidence of cardiovascular disease, despite a diet rich
in high saturated fatty acids [43]. The stilbenoids concentration in grapes can be affected
by genetic, biotic, and abiotic factors (cultivar, clone, micro- and macro-climate, viticul-
ture practices, etc.), or can be produced by the plant in response to attacks by pathogens,
such as Botrytis cinerea, Plasmopara viticola, and Aspergillus spp. [44]. Therefore, a possible
explanation of the high content in stilbenoids for the S2 group could be that they were
produced by the vine as a response to a biotic or abiotic stress, or a combination of both.
The information regarding a direct effect of stilbenoids on the wine sensorial character is
very limited and is mostly focused on the trans-resveratrol monomer. It is reported that
in Cabernet Sauvignon wines enriched with trans-resveratrol, there is no alteration of the
flavor or aromatic attributes [45], whereas in the Blaufränkisch wine variety fortified with
trans-resveratrol, the intensity of the odor and color improved [46]. Very recently, piceid
was associated with coffee/chocolate attributes in Pinot Noir wines [10]. Certainly, the
stilbenoids are relevant biomarkers in our research to describe the wine groups, but further
research is needed to understand the role of stilbenoids as quality markers.

Regarding flavonoids, the glycosylated and acetylated glycoside flavonol and some
anthocyanins such as cyanidin and peonidin series are biomarkers or markers for premium
wine (Figures 5 and 6). This result can highlight a different acetyl and glycosyl trans-
ferase activity in the raw material between quality wine groups which influences the wine.
The premium group P1 had the highest level of anthocyanins and anthocyanin pigments.
Recent research suggests the anthocyanins and anthocyanin pigments profile is relevant
beyond the color stability in wines [10,42,47]. Anthocyanin showed a role in the mouthfeel
sensorial “bitter” and “dryness” dimension, but this effect can be masked by other wine
metabolites [47]. Additionally, the anthocyanins in particular glycosides and pyranoan-
thocyanins can have an indirect astringent sensorial effect via protein precipitation, due to
their affinity for salivary proteins [42,48], and glycosides are associated with contributing
to aroma attributes in Pinot noir wines despite being described as odorless compounds [10];
these properties can have an impact on wine quality, but the sensorial effect of anthocyanin
is chiefly indirect and probably wine matrix-dependent [47]. The super-premium group
had the richest anthocyanin profile by far, but further research is necessary to obtain a
deeper understanding of the anthocyanins’ role in the perceived wine quality and their
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interactions according to the wine metabolomic profile beyond the attractiveness of color
in premium wines.

It is possible the conditions of the vineyards in different valleys producing premium
wines favor the biosynthesis of all the above-mentioned metabolites, which are crucial for
the color and the taste of the produced wines. On the other hand, the Chilean vineyards
that produced standard quality Cabernet Sauvignon were characterized by wines rich in
stilbenoids, sulfonated indoles, and sulfonated flavanols. A possible explanation could
be that the biotic and abiotic conditions of these vineyards pushed the vine to produce
more stilbenoids over the production of other polyphenols (tannins, flavonol, flavanol,
anthocyanins, etc.), and later the produced wines are more sensitive to the reactions with
SO2 in winemaking or aging, which can directly impact the wine quality.

One research limitation is the fact that all samples came from the same vintage (2018).
Due to the metabolomic complexity, further research on wines from other vintages is needed
to prove our hypothesis and obtain better insights of the Chilean Cabernet Sauvignon wine
fingerprint profile according to wine quality.

4. Materials and Methods
4.1. Winemaking Procedure

The winemaking process to produce experimental monovarietal wines was performed
using a standardized red winemaking protocol in the experimental winery of the Center
for Research and Innovation (CRI)—Viña Concha y Toro, Pencahue, Chile. The Cabernet
Sauvignon grapes were harvested from different Chilean valleys in 2018. The basic oeno-
logical characteristics and geographic information of the vineyards are available in the
Supplementary Information section (Table S1).

For the winemaking process, 600 kg of harvested grapes were received in the exper-
imental winery. The winemaking process was performed in 5 days. The grapes were
destemmed, crushed, and transferred to a 1-ton fermentation bin, stabilized with 5 g of
SO2 per hL, and adjusted to 23.5 ◦Brix and a pH of 3.45. For alcoholic fermentation, yeast
was added (20 g/hL, Maurivin PDM, AB Biotek, Peterborough, UK), together with di-
ammonium phosphate. The fermentation was conducted at 24–26 ◦C. In this step, a second
dose of diammonium phosphate (60 mg/L) was added. On the third day of fermentation,
8 mg/L of O2 was added, and the measure density was 1060 g/L (densimeter Alla France,
Chemillé, France). The end of alcoholic fermentation on the fifth day was confirmed by
measuring the residual sugar with an enzymatic D-glucose/D-fructose reagent kit in a Y15
automatic analyzer (Biosystem, Barcelona, Spain). The alcoholic fermentation process con-
cluded with a level of residual sugar of <2 g/L. The wine was transferred to stainless steel
tanks of 100 L, and pH was adjusted to 3.5 before malolactic fermentation was conducted
at a temperature of 20–22 ◦C (MF, 4 g/HL, Viniflora CH 16, Christian Hansen, Hoersholm,
Denmark). Wines were kept in the tanks under 1.5 bar N2 for approximately one month
more, and were thereafter filtered, had their SO2 levels adjusted to 35 mg/L, were bottled
in dark green glass, and were stored at 12 ◦C until further analysis.

4.2. Chilean cv. Cabernet Sauvignon Wines Samples

Fifty monovarietal experimental wines (produced in triplicate for a total of 150 samples
bottles), vinified as described in the above section, were used in the study. The wines were
classified according to the company categorization, based on the historical quality of the
specific vineyard and the sensory evaluation performed by winemaking experts [49] in two
main categories: 25 wines were classified as premium (P) and 25 wines as standard (S). The
basic oenological information on the wines is provided in the Supplementary Information
section, in Table S2. The premium category was divided in to “super-premium” quality
(P1), with 7 wine samples and “premium” quality (P2), with 18 samples, whereas the
standard category was divided into “standard plus” quality (S1), with 15 samples, and
“standard” quality (S2), with 10 wine samples. The number of samples according to origin
were as follows: 2 samples from Limarí, 8 samples from Maipo, 10 samples from Colchagua,
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6 samples from Cachapoal, 15 samples from Maule, 7 samples from Curicó, 1 sample from
Itata, and 1 sample from Aconcagua (Figure 1).

4.3. LC–MS-Based Metabolomics Analysis

A previously described and robust protocol was used for the acquisition of the wine
metabolomic space [50]. The wine bottles were opened in April of 2019 in a N2-environment
to avoid triggering or promoting undesired reactions, and 1 mL of each wine sample was
pooled for the quality control (QC) sample. The 150 wine bottles were aliquoted in 10 mL
dark vials by completely filling the vial. The sequence, as well the preparation order of the
samples, was according to a randomized list. A total of 2 mL of sonicated Milli-Q water
was added to 1 mL of the wine samples (including the QC), which was then filtered with
0.22 µm PVDF filters into a dark LC–MS vial.

The UPLC-QToF MS analysis was conducted according to the published protocol [9]. A
Waters Acquity UPLC (Waters, Manchester, UK) was used in tandem with a Synapt HDMS
QTOF MS (Waters, Manchester, UK) controlled by MassLynxTM 4.1 software (Milford, MA,
USA). An Acquity UPLC 1.8 µm, 2.1 × 150 mm, HSS T3 column (Waters) was used for
the chromatographic separation at 40 ◦C with a flow of 0.28 mL/min for 5 µL of injected
sample. The mobile phases were 0.1% of formic acid in water (mobile phase A), and in
methanol (mobile phase B), respectively. The gradient was as follows: for the first minute,
0% of B; then 0–10% of B (1–3 min); 10–40% of B (3–18 min); 40–100% of B (18–21 min);
100% of B kept for 4.5 min (until 25.5 min of gradient); then 100–0% of B (25.6–28 min). The
MS data were acquired in positive (ESI+) and negative (ESI−) mode, in W mode in a mass
range of 50–2000 amu in centroid mode, with a scan duration of 0.4 s. The transfer collision
energy and trap collision were settled with the values of 6 V and 4 V, respectively. For the
source parameters the capillary for ESI+ and ESI− was slightly different, 3 kV for ESI+ and
2.5 kV for ESI−; meanwhile, for each mode scan the values were the same for the sampling
cone (25 V), extraction cone (3 V), source temperature (150 ◦C), desolvation temperature
(500 ◦C), and flow for the nebulizer (50 L/h) and desolvation gas (1000 L/h). A leucine
enkephalin solution was used (0.5 mg/L in 50:50 of methanol water with 0.1% of formic
acid) at 0.15 mL/min for lock mass calibration, whereas a sodium formiate solution (0.1 M
of NaOH/10% formic acid/in acetonitrile at a ratio 1:1:8) was used for external calibration,
with the objective of controlling the mass accuracy from 40 to 2000 m/z (<5 ppm) and mass
resolution (>14,000 FWHM). The external calibration was performed prior to starting the
analysis, followed by five consecutive injections of QC to reach the initial equilibrium. A
QC was injected for every 6 wine samples in the randomized sequence, resulting in a total
of 408 raw files acquired for each data set (175 in ESI+ and ESI− mode, with 29 QC). In the
data acquisition, the rack temperature for vials was settled at 4 ◦C. The raw files obtained
by UPLC-QToF MS analysis are available for download from the MetaboLights [51] public
repository (https://www.ebi.ac.uk/metabolights/MTBLS2413), accessed on 30 November
2021 and tentatively release in February 2022.

The UPLC–MS/MS data acquisition was performed using the same conditions de-
scribed above, but in V mode, using leucine enkephalin as lock mass and performing an
external calibration with sodium formiate solution; the data were acquired in centroid
mode with a scan duration of between 0.2 and 0.5 s. The source parameters for each
mode (ESI+ and ESI−) were constant, but the transfer collision energy was in the range of
5 to 30 kV.

4.4. Data Analysis

For the untargeted analysis, the raw files were processed with Progenesis QI software
(version 2.4, nonlinear Dynamics) for the principal component analysis (PCA) during
the data acquisition, with the purpose of controlling the clustering of QC injections. The
parameters for the data processing are as follows: software default mode for the alignment,
maximum level for pick picking. By default, the Progenesis QI software considers a group
of isotopic and adduct features coming from the same metabolite as a “compound” [9,17,23].

https://www.ebi.ac.uk/metabolights/MTBLS2413
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Putative biomarkers were considered the “compounds”/features that, according to analysis
of variance (ANOVA), had a p-value ≤ 0.01 and maximum fold range of ≥2. The statistical
analysis also considered the q-value, a maximum discovery rate (FDR)-adjusted p-value
threshold of 0.01 for all the putative biomarkers.

The annotation was performed manually with a mass accuracy of 5 ppm, taking
into account the isotopic pattern and in accordance with the four levels described by
Sumner et al. [52]. An external database, as well as an internal wine metabolome database
which includes more than 500 metabolites from different class chemical groups, were
used for this purpose [9,12,16,17,23,24]. For a few compounds, a higher tolerance (less
than 10 ppm) was accepted, due to an instrument limitation (intensity or m/z values
registered for the compound as too high or too low) [24]. A semi manual integration of the
annotated compounds (biomarkers and well-known wine metabolites) by the TargetLynx
tool from MassLynx 4.1 software was performed. The parameters of the integration were
0.08 Da for the chromatogram mass window, 0.2 min for the retention time window,
and smoothing iterations of 1 and width of 2. The integrated data were uploaded to
the MetaboAnalyst online platform (https://www.metaboanalyst.ca), version 5.0 [53]
(accessed on 18 February 2021). The data were treated for the heatmap plot without
normalization, data transformation, and missing value estimation and with the Pareto
scale. The visualization of the heat map was obtained by means of the Ward clustering
algorithm, Euclidean distance, and using the group average option and is available in
the Supplementary Information of this paper. Additionally, some figures and statistical
analysis using the integrated data (correlation, one-way ANOVA, and the subsequent
Tukey’s honestly significant difference test) were performed using R version 3.6.0 and R
studio version 1.4.1717. The following packages were used for figures: “leaflet”, “viridis”,
“ggplot2”, “magrittr”, “corrplot”,” moonBook”,” webr”, and “multcomp”.

The management of all data and metadata was made according to the FAIR guidelines
for grapevine and wine studies [54].

5. Conclusions

The wine metabolomic fingerprint characterization makes it possible to gain new in-
sight into the Chilean Cabernet Sauvignon chemical profile, according to a categorical com-
pany quality classification. The results highlighted the relevance of diverse chemical groups
which characterized premium and standard wines. Small peptides are relevant to discrim-
inate between quality groups. The standard wines had higher levels of stilbenoids and
sulfonated compounds, while the premium wines were better characterized by polyphenols
(flavanols, flavonols, anthocyanins) and phenolic acids. Some metabolites, such as flavan-3-
ol hexoside and acetylated flavanols, were described for the first time in Chilean Cabernet
Sauvignon wines. The results shed light on a possible sulfonation mechanism/reaction(s)
not related to aging, and probably grape matrix-dependent. Further research is needed on
Cabernet Sauvignon wines from other vintages to prove this hypothesis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11120829/s1, Figure S1: valley geographic distribution of wine samples, Figure S2:
schematic representation of tryptophan catabolites, stilbenoids and cinnamic acids according to the
valley, Figure S3: Correlation plot clustered between sulfonated metabolites and anthocyanidins-
pigments compounds in premium and standard Cabernet Sauvignon wines, Figure S4: The Heatmap
used for the Figures 3–7 for quality groups, Table S1: Metadata information and basic enological
analysis for the grape must and vineyards, Table S2: Metadata information and basic enological
analysis for experimental wines, Table S3 and S4: biomarkers for the Premium and Standard Quality
groups in LC–MS in ESI+ and ESI−, Tables S5 and S6: data analysis (p-value and q-value) and
raw data integration for biomarkers, markers, and compounds with oenological relevance for sub-
quality groups (P1, P2, S1 and S2), Tables S7–S10: Basic enological comparison between premium
and standard wine groups and subgroups, Tables S11–S15: mean and standard deviation for semi-
quantification metabolites from raw files by quality or valley.

https://www.metaboanalyst.ca
https://www.mdpi.com/article/10.3390/metabo11120829/s1
https://www.mdpi.com/article/10.3390/metabo11120829/s1
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