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Abstract

Prolong walking is a notable risk factor for work-related lower-limb disorders (WRLLD) in

industries such as agriculture, construction, service profession, healthcare and retail works.

It is one of the common causes of lower limb fatigue or muscular exhaustion leading to poor

balance and fall. Exoskeleton technology is seen as a modern strategy to assist worker’s in

these professions to minimize or eliminate the risk of WRLLDs. Exoskeleton has potentials

to benefit workers in prolong walking (amongst others) by augmenting their strength,

increasing their endurance, and minimizing high muscular activation, resulting in overall

work efficiency and productivity. Controlling exoskeleton to achieve this purpose for able-

bodied personnel without impeding their natural movement is, however, challenging. In this

study, we propose a control strategy that integrates a Dual Unscented Kalman Filter

(DUKF) for trajectory generation/prediction of the spatio-temporal features of human walk-

ing (i.e. joint position, and velocity, and acceleration) and an impedance cum supervisory

controller to enable the exoskeleton to follow this trajectory to synchronize with the human

walking. Experiment is conducted with four subjects carrying a load and walking at their nor-

mal speed- a typical scenario in industries. EMG signals taken at two muscles: Right Vastus

Intermedius (on the thigh) and Right Gastrocnemius (on the calf) indicated reduction in mus-

cular activation during the experiment. The results also show the ability of the control system

to predict spatio-temporal features of the pilots’ walking and to enable the exoskeleton to

move in concert with the pilot.

Introduction

Overview

Recently, research on powered wearable exoskeleton technology have been directed towards

assisting workers in manual handling operations [1]. Manual handling operations involve

repetitive or prolong static and dynamic body movements such as walking, standing,
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squatting, bending, twisting, etc. These works are notable causes of work-related musculoskel-

etal disorders (WRMSD) affecting all parts of the body. Manual-handling works in some

industries like construction, agriculture, manufacturing, healthcare, hotels and retails involve

prolong walking (and intermittent standing) which put the workers at high risk of work-

related lower-limb disorders (WRLLD) [2]. Prolong walking can cause strain on the muscula-

tures of the lower-limb, sprain on ligaments and tendons, and swollen legs [2, 3]. Severe health

conditions such as osteoarthritis of the hip and knee, patellofemoral pain syndrome (PFPS),

and immobility have also been reported [3, 4], which result in a number of sick leaves. Other,

common consequences of prolong walking in the workplace are fatigue or muscular exhaus-

tion leading to poor balance and fall [2].

Global data on work-related injuries due to prolong walking are sparse. Statistics from the

EU nations and some Asian countries have however confirmed an increasing awareness of its

high prevalence. A study among young workers in the manufacturing sector across 27 EU

Member States indicated about 72.9% exposure rate to the risk of musculoskeletal disorder

(MSD) due to prolong walking (or standing) [2] (see Fig 1). In France, the national SUMER

survey revealed that about 74.9% of workers (in the surveyed industries) are frequently walking

from one place to the other, which represent the highest risk factor of MSD [2]. Similar reports

are found across the region. In Thai Public Hospital, a cross-sectional study conducted on 265

registered nurses associated prolonged walking to the risk of low back pain [5]. The conclusion

is the same in another narrative survey carried out by Stolt, et al. [6] integrating data from sev-

eral other countries across the globe.

Exoskeleton technology is a modern solution to assisting workers in manual handling jobs.

Exoskeletons can improve workers efficiency, endurance and agility by augmenting the lower

limb power, thus minimizing high muscular activation in prolong walking jobs. Deploying

exoskeleton technology for human walking assistance, especially for able-bodied persons, is

one of the challenging aspect of application of robotics [7, 8]. Human walking is dynamic and

diverse, and for able-bodied persons, the exoskeleton needs capability to cope with this diver-

sity for appropriate assistance. For obvious acceptability of exoskeleton suites in the industries,

the exoskeleton should be capable of assisting its wearer to walk normally without impeding

the wearer’s natural movement nor forcing the wearer into unintended motion [9]. A control

technology that will enable the exoskeleton to learn or predict a wearer’s movement for syn-

chronous walking assistance can be seen as one of the important requirement in exoskeleton

technology for industrial manual handling applications [10–12].

Related works

Several exoskeleton control techniques have been proposed for human walking assistance in

the recent past. The techniques are often tailored to their intended application (and usually

modified from a low-level position or force control). For medical and rehabilitation applica-

tions, there have been three popular techniques: the pre-define trajectory-based control tech-

nique, the assist-as-needed (AAN) control, and the intention-based control technique. These

techniques have been applied to assist disabled (or neurologically impaired) patients and

elderly subjects needing physical assistance for walking. For example, the pre-define trajectory

based control [8]have been adopted to correct abnormal gait in patients with limb pathologies.

The control technique mandates the subjects to follow a reference physiological gait trajectory

(either similar to their own or) obtained from gait records of healthy subjects, which could

normally contradict their own natural motion. Notable exoskeleton systems that have incorpo-

rated this technique for patients’ gait re-learning are the Lokomat [13] treadmill gait trainer,

the ANdROS [14]gait rehabilitation system, the WalkTrainer [15] gait re-education system,
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and the Lower extremity powered system (LOPES) [16]. The assist-as-needed (AAN) control

technique [17] on the other hand have been adopted to encourage subjects’ active participation

in physical therapy. The technique is particularly useful at a later stage of patients’ gait rehabili-

tation to enhance motor function recovery. It enables exoskeleton assistance only when the

subject is unable to carry-out the desired motion. AAN was applied in Active Assisted Leg

(ALEX) exoskeleton [18]and LOPES [16]to assist only desired gait motion and to resist unde-

sirable ones.

The third popular technique which can be refered to as intention-based control technique

integrates sensors system (e.g. electromyogram (EMG) sensor, force/torque sensors, etc.) to

the control framework to extract human intention for walking assistance or gait re-learning.

Human intention based on EMG signal was extracted and used in HAL-3 [19, 20]exoskeleton

system to assist the elderly and handicap in walking; and a 6-axis force/torque handle sensors

was used in Intelligent Cane Robot [21]system to detect human intention for walking

assistance.

These control techniques have been mainly developed for lower-limb disabled subjects with

difficulty in walking (e.g. the elderly, the neurologically impaired, paraplegics, etc.). With

regards to power or strength amplification applications for able-bodied walking assistance

(such as industry workers engaged in prolong walking, or military personnel in long endur-

ance trek, etc.), control requirement emphasizes natural (or synchronous) walking assistance

since the able-bodied subjects can mainly walk normally on their specific gait. Four popular

control techniques that tend to encourage natural walking or user-specific gait adaptation are

identifiable from several reported studies. These include the sensitivity amplification control

(SAC), the dynamic movement primitive, the adaptive frequency oscillator, and the EMG

Fig 1. Risk factors for MSDs, percentage of workers being exposed a quarter of the working time in EU-27 member states [2].

https://doi.org/10.1371/journal.pone.0200193.g001
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feedback control technique. For the purpose of this study, we provide some elaboration on

these control techniques.

The sensitivity amplification control (SAC) was initially adopted for heavy load carrying

while enabling the wearer to walk freely [22, 23]. SAC allows exoskeleton’s movement to over-

shadow wearer’s movements by increasing the closed loop system sensitivity to the wearers’

input force and torque, without any measurement from the wearer. Kazerooni, et al. [24]

reported that SAC algorithm, implemented on BLEEX, could aid a wearer in carrying a pay-

load (of 34kg) while walking on level ground at an average speed of 1.3m/s. The major limita-

tion of SAC method however is its poor robustness to parameter variation. The method relies

heavily on the accuracy of the exoskeleton model thus a slight parameter variation or distur-

bance can move the system to instability. Some improvements on SAC method using neural

network algorithm have been recently reported by Long, et al. [25] and Yang, et al. [26].

Dynamic movement primitive is another strategy reported in literatures for walking assis-

tance. DMPs are a set of nonlinear dynamic systems for generating discrete and periodic

movement behaviors [27, 28]. They can be used as building blocks (similar to motor pattern

generator (MPG) in neurobiology [29, 30] to generate/reproduce complex trajectories or con-

trol signals based on a learning signal (e.g. sensor signals). DMPs have been applied for imita-

tion learning on humanoid robots [31] and for adaptive learning of joint torque profile in

periodic task with an arm exoskeleton [32]. For able-bodied locomotion, Huang, et al. [33]

reported an implementation of DMPs (combined with a locally weighted regression (LWR))

on a Human-powered Augmentation Lower Exoskeleton (HUALEX) system to learn and pre-

dict in real time the walking gait of human pilots. The authors indicated that HUALEX could

follow pilots’ motion after one gait cycle’s correction. Standard DMPs are rich for encoding

trajectories, however their main limitation is robustness to generate accurate movements in

dynamic interaction situation. For improved performance, Gams, et al. [34] suggested an

effective learning framework (e.g. LWR, reinforcement learning, etc.) that can deal with vari-

able interaction dynamics from different wearers. A potential factor that also limit application

of DMPs is the requirement of the knowledge of an appropriate -starting point- control policy

(i.e. sets of nonlinear dynamic equations) that fit a particular movement behavior. This may be

difficult to obtain except with expertise [28]. There is evidence of ongoing research with

DMPs [35].

Adaptive frequency oscillator (AFO) is another powerful technique developed by Righetti,

et al. [36] for reproducing cyclical movements e.g. periodic walking. AFO is basically a move-

ment primitive with limit cycle attractor landscape [36, 37], capable of synchronizing with a

periodic signal and extracting its features (like frequency, amplitude, envelop, etc.) in dedi-

cated states variables [37]. AFOs have capabilities of predicting future joint positions of a pilot

based on patterns learned during preceding cycles [38]. Just like DMPs, robotic assistance is

then provided by attracting the subject’s joints to this future position using a force field [38],

or a controller [39]. Lenzi, et al. [40] applied AFO on ALEX II exoskeleton [41] to assist

human walking (to provide hip torque) and proved that the system could reduce hip muscle

effort of the pilots. Ronsse, et al. [42] also applied adaptive oscillators to infer temporal deriva-

tives (velocity and acceleration) of the human gait from noisy position signal of a pilot wearing

LOPES lower-limb exoskeleton [16]. Traditional AFOs are mainly suitable for cyclical or peri-

odic movements, which makes them less attractive for dynamic walking behavior typical in

industrial operations. Matsubara, et al. [43] reported a simulation study to improve traditional

AFOs by separating the gait pattern adaptation into style and phase parameters to account for

diversity (style) in human walking. Practical implementation may still be required.

During walking, the muscles in the lower limb activates in a rhythmic pattern which corre-

sponds to the walking pattern. The electrical activity, i.e. the electromyogram (EMG) signal,
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generated by the muscles therefore provides a basis for understanding or predicting a subject’s

walking behavior or gait. This phenomenon has been exploited by a number of researchers to

directly control lower-limb exoskeletons for walking assistance. Kawamoto, et al. [44] applied

EMG feedback to control a HAL-3 robot to provide direct joint torque assistance (for walking)

to subjects with gait disorder. Sawicki and Ferris [45] employed same proportional myoelectric

control on a pneumatically powered ankle exoskeleton to provide ankle joint assistance with

the aim to reduce metabolic cost of walking. Aguirre-Ollinger [46] adopt an indirect EMG

feedback control approach by learning the muscle activation pattern via an AFO and thereafter

apply the learned activation profile to provide direct torque command for the exoskeleton.

EMG signal contains several information which however makes it difficult to precisely predict

the motion of a pilot [47]. There are also inconsistencies in the estimated EMG signals from

different subjects or from a particular subject [46, 47] in repeated trials since it is affected by a

number of factors such as noise, location, placement of electrodes, user skin condition, etc.

Our contributions

In this study, we propose a dual unscented Kalman filter (DUKF) to predict and generate

human joint trajectories (spatio-temporal features of the human gait) based on a partial model

of the coupled human-exoskeleton, and partial observation from noisy position sensors. We

then attract the exoskeleton motion to this trajectory using an impedance controller integrated

in a supervisory control architecture. The controller has capability to allow the exoskeleton to

follow the human movement to enable synchronous dynamic walking, atypical in manual han-

dling operations. The main motivation of this study is the need to provide lower-limb locomo-

tion (walking) assistance to able-bodied subjects such as the manual-handling industry

workers (or military personnel, nurses, etc.) who are routinely engaged in prolong walking.

Exoskeleton technology can benefit these working personnel by reducing their lower-limb

muscle activation or the onset of fatigue of the lower-limb (i.e. from the Quadriceps muscles,

calf muscles etc.), and the risk of WRLLD due to prolong walking. Since exoskeleton assistance

for able-bodied personnel needs to be flexible and natural (or synchronous) to facilitate

dynamic walking, we propose the control technique based on Kalman filter that can predict/

generate the human dynamic walking motion. The Kalman filter is popular in several fields

including aerospace [48], SLAM [49] etc. for its accurate states prediction (or generation) in

highly nonlinear, partially observed, dynamic systems, using its extended [50] or unscented

versions [51]. It works fundamentally as a state observer, like the DMPs or AFOs, that can pre-

dict future estimates of states from current observations (poor or noisy signals from sensors).

The dual estimation approach of Kalman filter exceptionally enhances its robustness to states

prediction by concurrently estimating the model parameters (in a form of supervised learning

approach) to improve state predictions. Thus, enhancing the overall system to model parame-

ter variations such as can be found in dynamic (human-exoskeleton) walking situation.

The rest of the paper is organized as follows: Section II presents the modelling and descrip-

tion of the human-exoskeleton dynamic system. Section III introduces the design of the

DUKF. Section IV presents the control architecture. Section V discusses the experiment design

and result; and Section VI gives the discussion, conclusion, and recommendations.

Human-exoskeleton system

Human walking biomechanics

Knowledge of the biomechanics of the human walking is an important requisite for the devel-

opment of exoskeletons. It is useful in planning appropriate torque and power requirements

for exoskeleton drives and actuation systems. A number of literatures have given
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comprehensive analysis of the biomechanics of human walking [52, 53]. Two important aspect

of the human biomechanics is the gait cycle and the joint kinematics and kinetics (i.e. joint

angles, torques, and power).

Gait cycle. Based on the duration between one heel strike (foot-strike) to the next heel-

strike, the human walking is commonly divided into two cycles or phases: the stance and the

swing (Fig 2). The stance phase is the foot-in-contact with ground duration. It dominates the

walking by 62% whereas the swing phase- the foot off ground duration- takes the remaining

38%. The stance phase is also commonly divided into three stages [54]: initial double limb sup-

port (i.e. initial contact), single limb support (loading response, mid-stance, and terminal

stance), and second double limb support (pre-swing). The swing phase on the other hand is

sub-divided into three phases: initial swing (foot-off to foot clearance), mid-swing (foot clear-

ance to tibia vertical) and terminal swing phase (tibia clearance to foot-strike).

During early stance, the hip extensors (hamstring muscle group etc.) contract to stabilize

the hip while the quadriceps and tibialis anterior contracts eccentrically to support the heel

strike. The ankle also dorsiflexes (tibialis anterior) eccentrically to control plantar flexion

moment while the quads contract to stabilize the knee and counteract the flexion moment. At

late stance, the toe flexors, the tibialis posterior, and the hip flexors (Quadriceps, sartorius,

etc.) contract to propel the advancing limb. For the swing movement, the hip flexors contract

concentrically to advance the swinging leg. This is followed by ankle dorsiflexion to ensure

foot clearance (at mid-swing). Finally, in late swing, the hamstring muscles decelerate forward

motion of the thigh preventing the leg from over-extending. The knowledge of the phases of

human walking is extremely useful in developing exoskeleton control algorithms for human

walking assistance.

Joint angles, torque, and power. The human body can be divided into three planes: sagit-

tal, coronal (frontal), and horizontal (transverse) planes [8]. The dominant plane is the sagittal

plane where most of the walking takes place. The other planes may be useful to study patholo-

gies in walking or resolving balance problems [54]. Walking have a cyclic nature on the sagittal

Fig 2. Walking phases.

https://doi.org/10.1371/journal.pone.0200193.g002
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plane as can be seen from results of motion study in [52, 53]. The joint angles -hip, knee, and

ankle joints- vary in quasi-sinusoidal manner. From a peak at heel strike (0% of gait cycle), a

low at about mid-way (50%) of the cycle, to another peak at the next heel strike (100%). The

flexion and extension range of motion of the hip joint on the sagittal plane can reach about 40

degrees for a normal adult male during level or loaded walking. The knee joint may extend up

to 60 degrees, while the ankle dorsiflexes and plantarflexes over a relatively small range of

about 29 degrees on the sagittal plane.

The torque and power profile on the hip, knee, and ankle are also quasi sinusoidal during

level walking [52]. The three joints however exhibit unique kinetic properties for synergy in

walking. The hip driving torque (�0.6Nm/kg peak on sagittal plane [55]) and power is gener-

ated by tendon and muscle groups (gluteus maximus, psoas major, Iliacus, biceps femoris,

etc.) connected at the hip and extending to the thigh. Hip torque is positive in the stance sup-

port phase as the hip support the stance leg and propel the leg forward [52, 56]. It goes nega-

tive, at terminal swing, as the tendons and muscles stretch to absorb energy, decelerating the

leg prior to heel strike. The hip power exhibit both positive and negative peaks, but the average

power transfer is found positive [56, 57]. This fact (positive and negative transfer of torque and

power) suggests the prescription of bi-directional, back-drivable actuators when designing

exoskeleton to assist hip sagittal motion. Hip abduction/adduction and internal/external

motion on the coronal and transverse plane, on the other hand, are relatively small, thus can

be assisted by passive elements like linear springs which can capture the negative power and

release it during the positive driving phase for walking comfort [57].

The knee joint also exhibits positive energy phase (for torque generation) and a negative

dissipative phase (for energy absorption). The average knee power (�0.2Nm/kg peak torque

on sagittal plane [55]) is however negative which indicates that the knee function more as a

shock absorber dissipating energy during the walking cycle. During early stance, the knee

transfers a region of negative energy to a region of positive energy (behaving like a spring),

and thereafter it functions like a variable damper to control the leg in the swing motion [52].

The driving torque for flexing the knee joint is generated from the quadriceps femoris and sar-

torius. The extension is controlled by the hamstring muscles (e.g. biceps femoris, semitendino-

sus, and semimembranosus muscles). The behavior of the knee joint suggests the use of back-

drivable actuators in conjunction with passive elements such as springs and dampers when

designing knee joint of exoskeletons.

The ankle joint also exhibit positive and negative power transfer phase, however the average

torque is almost entirely negative [52, 57]which indicate the functionality of the ankle as

mainly dissipative absorbing the energy of walking. Under loaded walking, however, the ankle

can generate more driving torque extending the phase of positive torque. For exoskeleton

design, passive devices (spring and damper etc.) absorbing energy during negative power

transfer and releasing it for positive work may be beneficial for ankle design of exoskeletons

for walking assistance.

Mechanical system

The prototype exoskeleton system (Fig 3) is a lower-limb anthropomorphic device with four

degrees of freedom (DOF) on each leg: one active DOF at the hip and knee respectively, and 2

passive DOFs at the ankle for motion on the sagittal plane. The active hip and knee DOFs are

actuated by back-drivable, bi-directional brushless DC motors with rated torques 38Nm and

17Nm respectively. The joints are equipped with sensors for torque and position measure-

ment. The feet of the exoskeleton are designed into a dedicated pair of shoes for the pilot

which enable the weight and bulk load of the exoskeleton to be directed to the ground. The
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insoles of the shoes are embedded with GRF sensors that are used to detect the pilot’s move-

ment intention and phases of walking.

To ensure firm coupling between the pilot and the exoskeleton, there is provision of four

soft braces attached at the thigh and shank links. These also facilitate compliance in coupled

motion. Upper-body rigid support for the exoskeleton is partly provided by a backpack worn

around the shoulder of the operator. Embedded in the backpack is a fairly thin aluminum

plate attached on one end to a rigid mechanical bar around the hip, which serve as the torso of

the exoskeleton.

The exoskeleton communication unit (i.e. the interface between the exoskeleton and the

PC) is housed in the backpack to allow ease of movement. The communication unit consist of

motor drivers, signal conditioning shields for the torque sensors, and a data acquisition system

from National Instrument.

Dynamic model of human-exoskeleton system

The dynamic model of the coupled human-exoskeleton system for walking is derived by ana-

lyzing the kinematic configuration of the lower limb in each gait cycle. During the swing phase

(single support phase), if a single leg model approach is adopted, it is possible to model the

Fig 3. Exoskeleton prototype.

https://doi.org/10.1371/journal.pone.0200193.g003
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swing leg as a 3-DOF serial link mechanism pivoted to the hip joint and supporting only its

weight, as adopted in the control of BLEEX [24]. For the stance leg, since it moves with a rela-

tively small velocity and acceleration while carrying all the body weight, the effect of centripetal

and Coriolis forces are minimal and therefore can permit flexibility in simplifying the dynamic

model. It is possible to approximate it as a simple 1-DOF rigid link pivoting about the ankle

joint as adopted in [58], however, in this study, we adopt a 3-DOF serial link model for both

the swing and the stance leg of the coupled lower-limb human exoskeleton system (Fig 4).

We make some assumptions to obtain the partial model of the coupled system. The thigh,

shank, and foot links of the exoskeleton are assumed lumped up firmly with corresponding

segments of the human leg such that a new mass, and moment of inertia parameters can be

obtained as approximate values. We also assume that their centers of mass are taken from the

same references.

Swing leg. For the swing leg, the dynamics of coupled system for motion on the sagittal

plane can be written in the general Euler-Lagrange form as:

MðqÞ€qþ Cðq; _qÞ _q þ GðqÞ þ tf ðq; _qÞ ¼ ta þ th ð1Þ

where q = [θ1, θ2, θ3]T are the joint angles (Fig 4) and M is a 3 x 3 inertia matrix of the coupled

human-exoskeleton leg and a function of q. C is a centripetal and Coriolis matrix and a func-

tion of q and _q. G is a 3 x 1 vector of gravitational torque and a function of q. τf is a vector of

frictional torque. τa = [0, τ2, τ3]T are the joints actuator torques respectively with the first ele-

ment set to zero since there is no actuation for the ankle joint, θ1. τh is the 3 x 1 vector of joint

human torque.

Stance leg. Similar to the model adopted in [23, 24], for stance phase, the dynamics of the

prototype exoskeleton can be written as:

MðqÞ€qþ Cðq; _qÞ _q þ GðqÞ þ tf ðq; _qÞ ¼ ta þ th � JTF ð2Þ

where all terms are as define in Eq (1), but this time, the torso mass mtor is added to the thigh

mass m3 = mthigh + mtor. It affects the moment of inertia of the thigh link modifying the inertia

Fig 4. Schematic view of coupled human-exoskeleton walking motion in the sagittal plane.

https://doi.org/10.1371/journal.pone.0200193.g004
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matrix M, the centripetal and Coriolis matrix C, and the gravitational torque G. F is the 3x1

vector of ground reaction forces with Cartesian coordinates: Fx, Fy, and Fz (Fig 4); and J is the

Jacobian matrix. Notice that, when the stance leg goes into swing in the next gait cycle, the

torso mass no longer has influence on the swinging leg.

Joint friction and stiffness torque model. To minimize model uncertainties and to

ensure an accurate relationship between the actuating torque and motion of the exoskeleton,

an appropriate model of joint friction and stiffness torque is required. Our friction and stiff-

ness torque model is given by [23, 59]:

tf ðq; _qÞ ¼

b0 q ¼ 0; _q ¼ 0

b1sgnð _qÞ þ b2ð _qÞ _q 6¼ 0

tsðqÞ q 6¼ 0; _q ¼ 0

ð3Þ

8
>>><

>>>:

where b0 is the static friction torque; b1sgnð _qÞ is the coulomb or kinetic friction torque: a

signed function of the joint angle velocity; and b2ð _qÞ is the damping friction torque: a function

of the joint velocity. τs(q) is the stiffness torque which is a function of joint angle position. We

present the estimation of the friction and stiffness torque parameters by a system identification

method in the Result section.

Human-body segment mass. The human lower limb can be divided into six body seg-

ments: the right thigh (RT), the right calf/shank (RC), the right foot (RF), the left thigh (LT),

the left calf/shank (LC), and the left foot (LF). The mass, centre of mass, and moment of inertia

of these segments influence the dynamics of walking. They are important factors in estimating

the joint driving torques and in deriving dynamic models of human walking. Techniques exist

for estimating these segment parameters to some degree of accuracy. Based on cadaver aver-

ages, the segment masses can be estimated as a fraction of the body mass, while the segment

centre of mass can be estimated as a fraction of their length to the proximal or distal end [52].

Geometric and anthropometric data from cadavers can also been used. The thigh and calf can

be geometrically represented by cylinders, and the foot as a right pyramid [53]. Table 1 give

the body segment parameters for the lower extremity of a normal adult male (as a fraction of

the total body mass) estimated based on the technique of Vaughan, et al. [53]. The regression

equations for estimating segment mass and moment is given as follows:

Segment mass ¼ C1ðTotal body massÞ þ C2ðSegment LengthÞ
3
þ C3

ð4Þ

Segment moment of inertia ¼ C4ðTotal body massÞðLengthÞ
2
þ C5

ð5Þ

where C1, C2, C3, C4, and C5 are the regression coefficients.

Table 1. Body segment parameters of an adult male, adapted from [53].

Body Segments

Segment Parameter RT RC RF LT LC LF

Mass (kg/kg) 0.1057 0.0505 0.0119 0.1051 0.0505 0.0117

CoM (m/m) 0.39 0.42 0.44 0.39 0.42 0.44

Moment of Inertia (sagittal Flex/Ext)(Nm/Nm) 0.1238 0.0490 0.0035 0.1257 0.0490 0.0035

https://doi.org/10.1371/journal.pone.0200193.t001
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The dual unscented Kalman filter design algorithm

The well-known Kalman filter is an optimal estimator for generating maximum-likelihood

estimate of states of a linear, discrete-time, dynamic system [60]. It provides a more efficient

recursive solution to the estimation problem in the sense that each updated estimate or predic-

tion of states of a linear system is computed from previous estimate and new observation (sen-

sor data), without need to compute estimates over an entire past observation data. It optimally

combines noisy input observation with predictions from a known dynamic model.

Aside states estimation, an important extension of the Kalman filter is for supervised learn-

ing or parameter identification of a partially known dynamic model given noisy observation.

This important feature has motivated several applications in adaptive control involving the

dual estimation of states and parameters. The dual estimation method works heuristically by

alternating between estimate of states using the model, and estimate of the model using the

states (Fig 5). If the model improves, so do the states.

The standard Kalman filter is however limited to linear systems. An extension to nonlinear

systems necessitated the formulation of the Extended Kalman filter (EKF) [50] which involves

first-order linearization of the nonlinear dynamic model. The linearization is done at every

time step around the most recent estimate of states. The first order linearization and approxi-

mation by a Gaussian random variable GRV introduces large error in the true posterior mean

and covariance of the transformed GRV which sometimes leads to divergence of the filter. A

more superior approach to the EKF is the unscented Kalman filter (UKF) which solves the lin-

earization problem using a deterministic sampling approach. UKF applies a minimal set of

carefully chosen sample points, called sigma points, that completely capture the true posterior

mean and covariance of the Gaussian random variable to a second order accuracy when prop-

agated through the true non-linear system [51].

Fig 5. Dual estimation.

https://doi.org/10.1371/journal.pone.0200193.g005
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We apply the dual unscented Kalman filter approach in this study for dual estimation of hip

and knee joints trajectories and model parameters update using the partial model of the cou-

pled human-exoskeleton.

States estimation

Consider the Exoskeleton dynamics given in Eqs (1) and (2), if transformed into stochastic

non-linear states variable representation, we can write the non-linear state transition equation

and measurement equation of the coupled system, respectively as

xkþ1 ¼ Fðxk; uk;wÞ þ vk ð6Þ

yk ¼ Hðxk;nkÞ ð7Þ

where xk ¼ ½qT _qT �T denote the unobserved states of the system, and k 2 ½0; 1; 2; . . .1�

denotes discrete time. yk represent the noisy position observation from sensors. w stands for

the system parameters (e.g. link masses). H is the measurement function. v represents the pro-

cess noise which is assumed additive with covariance matrix given as Pv, and n denotes the

measurement noise, non-additive, with covariance matrix given as Pn. Both the process and

measurement noise are assumed white and Gaussian, with zero mean ðE½v� ¼ E½n� ¼ 0Þ.

The non-linear term Fð�Þ is derived as

Fð�Þ ¼
_q

� M̂ � 1ðq;wÞ þ Ĉðq; _q;wÞ _q þ Ĝðq;wÞ þ t̂ f ðq; _qÞ

2

4

3

5þ
0

� M̂ � 1ðq;wÞ

" #

u ð8Þ

where u = τa+τh − JT F. The hat symbol^on the non-linear terms stands for the estimates. In

the ensuing derivation, we adopt the notations used by Wan and Van Der Merwe [51].

Given the noisy observation yk from sensor, at kth sampling time, our goal is to generate

optimal estimates of states, xk. The UKF does the estimation, much the same way as the EKF,

using the following recursion [51]:

x̂k ¼ ðprediction of xkÞ þ Kk½yk � ðprediction of ykÞ� ð9Þ

where x̂k represents the optimal minimum mean-squared error (MMSE) estimate for xk

assuming that the prior estimate x̂k� 1 and the current observation yk are Gaussian Random

Variables (GRV). If the (optimal) prediction of xk is denoted x̂ �k , and the (optimal) prediction

of yk is denoted ŷ �k , their expectations can be expressed as:

x̂ �k ¼ E½Fðx̂k� 1; vk� 1Þ� ð10Þ

ŷ �k ¼ E½Hðx̂ �k ; nkÞ� ð11Þ

where vk−1 (process noise) and nk(measurement noise) are also random variables (GRV). The

optimal Kalman gain on the other hand is given by

Kk ¼ Pxkyk
P� 1

~yk~yk ð12Þ

It is expressed as a function of the posterior covariance matrices Pxk yk and P~yk~yk
(with ~yk ¼

yk � ŷ �k Þ which also requires computation of the expectation of a nonlinear function of the

prior state estimates. The UKF computes these expectations or optimal terms (x̂ �k , ŷ �k , and Kk)

by generating a set of 2L + 1 sigma vectors χk−1 (where L is the dimension of the state vector)
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symmetrically distributed around the prior (true) mean estimate x̂k� 1.

wk� 1 ¼ ½x̂k� 1; x̂k� 1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ lÞPk� 1

p
; x̂k� 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ lÞPk� 1

p
� ð13Þ

where, λ = α2(L + κ) − L is a composite scaling parameter. The constant α determines the

spread of sigma points around x̂k� 1, and is usually set to a small positive value in the range

1e−3. The constant κ is a secondary scaling factor, which is usually set to zero (or 3 − L). Pk� 1 ¼

E½ðxk� 1 � x̂k� 1Þðxk� 1 � x̂k� 1Þ
T
� is the state covariance matrix.

The generated sigma points χk−1 are propagated through the non-linear system in Eqs (6)

and (7), see Eqs (14)–(16), to obtain the optimal predictions x̂ �k , ŷ �k and the prior covariance

P̂�k for the recursion in Eq (9) to a 3rd order accuracy (of the Taylor series expansion), see

Eqs (17)–(19).

w�
ðkjk� 1Þ

¼ Fðwk� 1;uk� 1;wÞ ð14Þ

wðkjk� 1Þ ¼ ½w
�
ð0;kjk� 1Þ

; w�
ð0;kjk� 1Þ

þ g
ffiffiffiffiffi
Pv
p

; w�
ð0;kjk� 1Þ

� g
ffiffiffiffiffi
Pv
p
� ð15Þ

y
ðkjk� 1Þ

¼ Hðwkjk� 1Þ ð16Þ

x̂ �k ¼
X2L

i¼0

WðmÞ
i w�

ði;kjk� 1Þ ð17Þ

P̂�k ¼
X2L

i¼0

WðcÞ
i ðw

�

ði;kjk� 1Þ
� x̂ �k Þðw

�

ði;kjk� 1Þ
� x̂ �k Þ

T
þ Pv ð18Þ

ŷ �k ¼
X2L

i¼0

WðmÞ
i yði;kjk� 1Þ ð19Þ

where Wð�Þ

i are the generated weights alongside the sigma points given by

WðmÞ
i ¼WðcÞ

i ¼
l

ð2ðLþ lÞÞ
; i ¼ 1; . . . ; 2L ð20Þ

with initial values, WðmÞ
0 ¼ l

ðLþlÞ
, and WðcÞ

0 ¼
l

ðLþlÞ
þ 1 � a2 þ b. The constant β is used to incor-

porate prior knowledge of the distribution. For Gaussian distribution, β = 2 is optimal [51].

Notice that the superscripts (m) and (c) implies weighting factors for states and covariances

respectively. The terms w�
ði;kjk� 1Þ

(augmented as χ(i, kjk−1)), and y(i, kjk−1) denote the posterior

(propagated) sigma vectors of the process and observation functions respectively.

The posterior covariances for computing the optimal gain are thus given as

P~yk~yk
¼
X2L

i¼0

WðcÞ
i ðyði;kjk� 1Þ � ŷ �k Þðyði;kjk� 1Þ � ŷ �k Þ

T
ð21Þ

Pxkyk
¼
X2L

i¼0

WðcÞ
i ðwði;kjk� 1Þ � x̂ �k Þðyði;kjk� 1Þ

� ŷ �k Þ
T

ð22Þ
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Eqs (17), (19), (21) and (22) are used in the recursion (during the measurement update phase)

to generate the optimal estimate of states xk. Details of the UKF procedure for states estima-

tion/generation can be found in [51].

Parameter estimation

For system identification of the parameters of the model in Eqs (1) and (2), we define a new

state-space formulation given as

wkþ1 ¼ wk þ rk ð23Þ

dk ¼ Yðxk;wkÞ þ ek ð24Þ

where wk ¼ ½mT
1
;mT

2
;mT

3
�
T

corresponds to the partially known model parameters: represented

here as a stationary process with identity state transition matrix, driven by the process noise rk

with covariance E½rkrTk � ¼ Prk
. The parameters m1, m2, and m3 represent the link masses

(Fig 4). The model parameters wk are assumed constant only perturbed by the process noise.

The output dk corresponds to a nonlinear observation on wk(in this case, a torque output); and

ek corresponds to the error in the non-linear model. We define Yð�Þ from Eqs (1) and (2) as

Mð�Þ€qþ Cð�Þ _q þ Gð�Þ þ tf ð�Þ ¼ Yð�Þ ð25Þ

The UKF also estimates the model parameters wk using the recursion given in Eq (9) and

by propagating a set of generated sigma points. As an optimization approach, the UKF attempt

to minimize the prediction error cost on every time step (similar to the EKF) using the cost

function given by

JðwÞ ¼
Xk

t¼1

½dt � Yðxt;wÞ�TP� 1

ek
½dt � Yðxt;wÞ� ð26Þ

where Pek
is the estimation error covariance E½ekeTk �. In this study we chose the innovation

covariance Prk
based on the recursive least square algorithm [61] define as:

Prk
¼ ðl

� 1

RLS � 1ÞPwk
ð27Þ

where lRLS 2 ð0; 1Þ is the forgetting factor. The rate of convergence and tracking performance

of the UKF filter is influenced by the innovation covariance Prk
. The constant λRLS provides an

exponentially weighting on past data which makes it possible to emphasize the most recent

data. Notice that this feature is useful to enable tracking of the complex motion dynamics of

human walking.

The control architecture

In the preceding section, we presented the method of trajectory generation and prediction of

the human walking based on dual unscented Kalman filter. The only input to the filter is the

noisy position data from sensor and the output is the predicted joint kinematics, x̂k (i.e. joint

spatio-temporal variables). In this section, we introduce an impedance control law under a

supervisory controller to achieve reference tracking of the generated trajectory and coupled

interaction control with regards the human walking biomechanics.
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Impedance control

Given the exoskeleton dynamics in Eqs (1) and (2), we define the impedance based computed

torque control law, τc

tc ¼ MðqÞua;q þ Cðq; _qÞ _q þ GðqÞ � th ð28Þ

where,

ua;q ¼ €qd þM� 1
r ½Brð _qd � _qÞ þ Krðqd � qÞ� ð29Þ

The variables qd, _qd, and €qd are the reference joint kinematics: 3x1 vectors of joint position,

velocity and acceleration respectively which are predicted from the DUKF. The constants Mr,

Br, and Kr are the controller impedance parameters (inertia, viscous damping, and stiffness

parameters respectively).

Supervisory control

To synchronise the movement of the exoskeleton with the pilot motion, we developed an

outer-loop supervisory controller. The supervisory controller implements the intention detec-

tion system and gait phase detection in a 4-state hybrid automaton (Fig 6). Three events are

used to detect the pilot’s intention and to enable transition between the swing and the stance

phase: the heel-off, the heel-strike, and heel-flat. These events are captured by the insole

ground reaction force sensors (GRF). The heel-off event detects the pilot intention to initiate

swing motion while the heel-strike gives indication of the beginning of stance phase. The heel-

flat event (at mid-stance) for one leg allows the alternate leg to move from pre-swing to swing,

and/or from swing to heel-strike. The automaton captures a gait cycle as the period between

one heel-off event to the next, or heel-strike to the next, while the switching from swing to

stance mode is indicated by the alternation from heel-off to heel-strike. For the purpose of

Fig 6. 4-state hybrid automaton for swing to stance transition.

https://doi.org/10.1371/journal.pone.0200193.g006
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switching the hybrid automaton or detecting the events, we compute a fractional index, P, of

the ground reaction force for each leg as

P ¼
a1F1 þ a2F2

F1 þ F2

ð30Þ

where F1 is the force measure from the insole GRF sensor placed at the heel (rear), and F2 is

the force measure from the sensor placed at the ball of foot (front). The constants α1 = 1, and

α2 = −1 are chosen arbitrary, thus P is computed in the range [-1, 1]. An approximate positive

P value of 1 (P � 1) indicates a heel-strike, while an approximate negative P value of -1

(P � � 1) indicates heel-off. An approximate zero value of P (P � 0) gives the indication of

heel-flat (mid-stance).

Based on the computed P value (for the left and right leg), the 4-state hybrid automaton is

transited to coordinate and synchronize the motion of the left and right leg. Each state thus

enables the trajectories of the hips and knees. Table 2 gives summary states transition logic of

the finite state automaton and Table 3 presents the events logic. Fig 7 shows the overall con-

troller architecture.

Experimental setup

In this section, we present the experimental setup and evaluation of the control strategy on the

exoskeleton system. Three aspects of the system are evaluated: the capability of the system to

minimize subjects’ lower limb muscle activation during walking, the capability to predict sub-

jects’ gait trajectory, and the controller performance for reference tracking.

Table 2. States transition logic.

Trajectories

States Right Leg Mode Left leg Mode

S1 Right-leg-Preswing Swing left-leg-stance Stance

S2 Right-leg-swing Swing Left-leg-stance Stance

S3 Right-leg-stance Stance Left-leg-Preswing Swing

S4 Right-leg-stance Stance Left-leg-swing Swing

https://doi.org/10.1371/journal.pone.0200193.t002

Table 3. Events logic.

Events

Right Leg Left leg Transition (P)

Default (initial position) Default (initial position) p0

Heel-off (P � � 1) Heel-flat (P � 0) p1

Heel-strike (P � 1) Heel-flat (P � 0) p2

Heel-flat (P � 0) Heel-off (P � � 1) p3

Heel-flat (P � 0) Heel-strike (P � 1) p4

https://doi.org/10.1371/journal.pone.0200193.t003
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Ethics clearance

Participants gave their written informed consent to participate in the experimental study. The

ethics clearance for the experiment was granted by the University of Malaya Research Ethics

Committee (UMREC).

Note: the individual in this manuscript (Fig 8) has given written informed consent (as out-

lined in PLOS consent form) to publish these case details.

Participants

Four subjects with average age of 25 ± 5 years, average height of 169 cm ± 2cm and average

weight of 77kg ± 7kg participated in the experiment. Two of the subjects were recruited in Sep-

tember, 2017 from the Centre of Product Design and Manufacturing (CPDM), Department of

Mechanical Engineering and the other two subjects were recruited in April, 2018 from the

Mechanical Engineering Workshop, Department of Mechanical Engineering. Initially five sub-

jects from the Mechanical Engineering Workshop consented to participate in the experiment,

however, three drop-out and only two were available for the experiment. All the subjects who

participated have no history of musculoskeletal disorders or neurological diseases. The physio-

logical features of the participants such as height were considered in their selection to ensure

fitness with the exoskeleton suite.

Experimental design procedure

The participants were guided generally on the functionalities of the wearable exoskeleton suit

and how to use the power-down switch to shut-down the system for safety in case of

Fig 7. Control architecture.

https://doi.org/10.1371/journal.pone.0200193.g007
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discomfort and emergency. Preliminary tests were also conducted to further acquaint the par-

ticipants with the operation of the exoskeleton. One EMG sensor from Shimmer Sensing

Technology is firmly attached at the location of the Right Vastus Intermedius (Quadriceps

muscles on the right thigh) and another one attached at the location of the Right Gastrocne-

mius (calf muscles on the right leg) to monitor/record each participants’ muscle activity level

during walking. MATLAB software is used for rectification, low pass filtering, and analysis of

the recorded EMG signals. Fig 8 shows participant 1 undergoing walking and carrying

experiment.

The task of the experiment was to carry an object/load weighing 2.0kg while walking on

horizontal ground a distance of 10m in three different modes: load carrying without wearing

the suite, load carrying with suite in passive mode, and load carrying with suite in active mode.

Mode 1: Load carrying without suite. In this mode, the participants are to carry the load

of mass to the stated distance, walking freely without wearing the exoskeleton suite. This pro-

cedure was repeated three times. The subjects were instructed to walk at their normal speed

levels with a 2 minutes rest interval between each trial. The subjects’ EMG signals from the two

lower limb muscles were recorded to evaluate subjects’ average muscle activation level during

load carrying and walking.

Mode 2: Load carrying with suite in passive mode. The second mode was carried out

mainly to compare the lower limb muscle activation level when carrying the same load, walk-

ing, fully-dressed, on the exoskeleton suit. The same procedure in the first was also repeated.

The exoskeleton is operated in passive mode (unactuated) in this procedure. The driving tor-

que to move exoskeleton thus come from the wearer.

Mode 3: Load carrying with suite in active mode. In this mode, the participants repeated

the same procedure in Mode 2 but with active motor assistance from the exoskeleton. The

muscle activity on the two lower limb muscles and the controller performance for trajectory

generation, tracking and parameter estimation were evaluated.

Fig 8. Load carrying operation within 10m walking distance by one of the participants.

https://doi.org/10.1371/journal.pone.0200193.g008
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Results

Muscle activity

The lowpass filtered EMG signals taken from the 1st participant’s Right Vastus Intermedius and

the Right Gastrocnemius for the three modes: carrying a load while walking freely (without

suite), walking in passive mode with suite, and walking in active mode with suite are shown in

Fig 9. We present the muscle activity plot for one participant for the sake of brevity. Generally,

the analysis of result is to compare the mean values of the root mean square (RMS) of the EMG

signals (which give the measure of the amount of muscle activity) recorded for each participant

in the three separate modes of performing the task. Since we performed repeated trials, a one-

way ANOVA with repeated measures was adopted to determine the mean RMS value for each

task mode and to determine whether there is any statistical significance between these means.

Summary of findings is presented in Table 4. Pairwise Comparisons of the differences between

the means is computed based on estimated marginal means, at 95% confidence interval for dif-

ference, see Table 5. Table 6 gives the percentage reduction in muscle activity for each partici-

pant computed from the differences in mean between the active mode and free walking mode.

We define statistical parameters as: M is mean, MD is mean difference, SD is standard deviation

from the mean, SE is standard error of the mean, and p is the confidence level. The average

recorded muscle activity, for all the participant, during the active mode experiment (Right Vas-

tus intermedius- M = 0.0250mV, SD = 0.011mV; and Right Gastrocnemius- M = 0.0173mV,

SD = 0.00667) was found to be significantly less than the average muscle activity recorded dur-

ing the free walking mode (Right Vastus intermedius: M = 0.0465mV, SD = 0.0220mV; and

Right Gastrocnemius: M = 0.0447mV, SD = 0.0121). The highest muscle activity is recorded

during the passive mode experiment (Right Vastus intermedius: M = 0.0842mV, SD =

0.0421mV; and Right Gastrocnemius: M = 0.0782mV, SD = 0.0151). The bar chart in Fig 10

shows the comparison plot of muscle activity for the three modes, for participant 1.

Overall, the mean difference in muscle activation between the free walking mode (mode 1)

and the active mode (mode 3) for all participants was found to be statistically significant at

95% confidence interval for difference: MD = 0.024mV, SE = 0.004mV, p<0.05 (see, Table 5).

This shows net positive reduction in muscle activity on the two muscles during the active

mode as can be seen also from Table 6 (Right Vastus intermedius − 43.4% and Right Gastroc-

nemius − 60.4%). The mean difference between the passive mode (mode 2) and the active

mode is also statistically significant at 95% confidence interval for difference (MD = 0.060mV,

SE = 0.006mV, p<0.05) indicating reduction in muscle activity. Between the free walking

mode and the passive mode, the difference is also statistically significant (MD = -0.036mV, SE

= 0.004mV, p<0.05) indicating however a net increase in muscle activation level.

The DUKF robustness analysis: Simulations and validation

The extensive Monte Carlo simulations [62, 63] was applied to test (and validate) the robust-

ness of the constructed DUKF for states generation before deployment on the actual prototype

exoskeleton. These simulations test the variations in the process and measurement noise reali-

zation, the initial states guess, and states covariance guesses. Generally, the key signal of inter-

est for validating the states estimation/generation is the residuals (or innovations),

~yk ¼ yk � ŷ �k Þ, which should satisfy three criteria:

1. Should have small magnitude

2. Zero mean and

3. No autocorrelation, except at zero lag.
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Fig 9. Lowpass filtered EMG signals recorded at the right vastus intermedius and right Gastrocnemius of participant 1. (a) free walking

experiment, (b) walking in passive exoskeleton mode and (c) walking in active exoskeleton mode.

https://doi.org/10.1371/journal.pone.0200193.g009
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Prior to validating the robustness of the DUKF for state estimation/generation, we make

our initial guess of states and covariance matrices. For both simulation and experiment, our

initial states guess is given as xk = [84, −175, 0, 0, 0, 0]T; where the first three elements (joint

angles, qT) are taken experimentally from the position sensors on the hip, knee, and ankle in

double stance phase, and the last three elements (joint velocities, _qT) are arbitrarily assumed

zero since the velocities are small in this phase. Our initial guess of process noise covariance is

Table 6. Muscle activity reduction during level walking.

Muscle Activity Reduction (%)�

Muscle Participant 1 Participant 2 Participant 3 Participant 4 Avg.

R. Vastus Intermedius 58.9% 59.7% 39.3% 15.6% 43.4%

R. Gastrocnemius 77.6% 64.3% 42.4% 57.1% 60.4%

� Muscle Activity Reduction(%) = (rmsEMGfree walking − rmsEMGactive mode)/rmsEMGfree walking × 100.

https://doi.org/10.1371/journal.pone.0200193.t006

Table 4. Recorded EMG signal of four participant taken over three trials.

Muscles Vastus-Intermedius RMS (mV) Gastrocnemius RMS (mV)

Participant 1 M SD M SD

Free walking 0.0591 0.0101 0.0548 0.00477

Suite in passive mode 0.1136 0.0147 0.0827 0.00881

Suite in active mode 0.0243 0.00514 0.0123 0.00237

Participant 2 M SD M SD

Free walking 0.0722 0.00537 0.0378 0.00568

Suite in passive mode 0.1193 0.02108 0.0919 0.00525

Suite in active mode 0.0291 0.00969 0.0135 0.00230

Participant 3 M SD M SD

Free walking 0.0313 0.00789 0.0434 0.0148

in passive mode 0.0631 0.03477 0.0635 0.0174

Suite in active mode 0.0190 0.01064 0.0250 0.00384

Participant 4 M SD M SD

Free walking 0.0276 0.00981 0.0429 0.01714

Suite in passive mode 0.0406 0.03516 0.0748 0.01365

Suite in active mode 0.0233 0.01851 0.0184 0.00862

All participants M SD M SD

Free walking 0.0465 0.0220 0.0447 0.0120

Suite in passive mode 0.0842 0.0421 0.0782 0.01506

Suite in active mode 0.0250 0.0110 0.0173 0.00667

https://doi.org/10.1371/journal.pone.0200193.t004

Table 5. Pairwise comparisons of mean RMS across different modes.

Mode MD(mV) SE(mV) p<0.05

Free walking (vs) Active 0.024 0.004 0.000

Passive (vs) Active 0.060 0.006 0.000

Free walking (vs) Passive -0.036 0.004 0.000

https://doi.org/10.1371/journal.pone.0200193.t005
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specified as v = diag([0.8, 1, 1, 1, 1, 1]) to account for model inaccuracies and the effect of

unknown disturbances on the plant. The higher values of process noise covariance reflect the

knowledge that the states are more impacted by modelling errors. We also provided our

knowledge (initial guess) of (sensor) measurement noise covariance as n = diag([0.8, 0.8, 0.8,

0.8, 0.8, 0.8]). The DUKF generated states (simulation results) using recorded hip and knee

gait trajectory as sensors’ input to the filter is shown in Fig 11. The mean values of the residuals

are found to be 0.0229 degrees and -0.4968 degrees respectively, which are small relative to the

magnitude of the residuals, indicating no divergence in states estimation, and good filter per-

formance. See Fig 12 for a plot of the residuals and the autocorrelation of the residuals. The

mean correlations of the residuals are also close to zero (0.0011 for hip and 0.0362 for knee).

They are found to be small for all lags except 0 and does not show any significant non-random

variations. Ideally, the mean correlation of residuals is also required to be small, zero mean,

and uncorrelated with less variance within filter error covariance estimate. These characteris-

tics increase the confidence in filter performance and an indication of the robustness of the fil-

ter. Refer to Table 7 for summary of the filter performance.

The error between the estimated states x̂k and the true states xk (just as with the residuals) is

also found to be small and uncorrelated with approximately zero mean, indicating bounded-

ness of the states’ estimation errors. Fig 13 shows the states estimation error and the 1 − σ
uncertainty bounds from the filter error covariance estimate. The σ (sigma) uncertainty

bounds indicate the confidence interval around the best estimate. Less than 30% of the errors

exceeding the 1-sigma uncertainty bound implies good estimation. The first states estimation

(i.e. joint positions) errors for hip and knee exceed the 1-sigma uncertainty bound by approxi-

mately 0 percent and 27.81% (less than 30%) respectively of the time steps which indicate good

confidence and robustness in the filter performance. The second states estimation (i.e. joint

velocities) are slightly higher than 30% (Refer to Table 7). However, the mean values of the

errors are small relative to the value of states which suggest overall confidence in filter perfor-

mance. Fig 14 shows the autocorrelation plot of state estimation error which give little non-

random variations for small lag values.

Fig 10. Bar chart showing mean muscle activation levels of one participant during walking movements.

https://doi.org/10.1371/journal.pone.0200193.g010
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Joint friction and stiffness torque estimation

We estimated the parameters of the friction and stiffness torque experimentally using a combi-

nation of static ð _q ¼ 0; €q ¼ 0Þ and dynamic ð _q 6¼ 0; €q 6¼ 0Þ experiments. For analysis, the

actual joint angles and torques are measured from joint angle sensors and torque sensor

respectively. In the static experiment, the exoskeleton joints (active hip and knee DoF) are con-

trolled to fixed positions. The kinetic and damping friction are thus zero. We operated each

joint in a closed-loop current (or torque) control mode such that the joints can be driven by a

Fig 11. UKF simulation performance: Comparison between generated states and measured states.

https://doi.org/10.1371/journal.pone.0200193.g011
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Fig 12. The residuals of the innovation and normalized autocorrelation of the residuals.

https://doi.org/10.1371/journal.pone.0200193.g012

Exoskeleton robot control for synchronous walking assistance in repetitive manual handling works

PLOS ONE | https://doi.org/10.1371/journal.pone.0200193 July 12, 2018 24 / 36

https://doi.org/10.1371/journal.pone.0200193.g012
https://doi.org/10.1371/journal.pone.0200193


reference torque (or current) value. The static friction torques for the hip and knee joint are

estimated by driving a positive and negative ramping signal (see Fig 15A and 15B) and locating

the threshold where the joints begins to move. We compute the average of the two signals as

the static friction torque (Table 8). The stiffness torque on the other hand is estimated by driv-

ing the joints to fixed static positions around the zero reference angles using a simple propor-

tional controller u = −Kp(q − qd) where u is the voltage sent to the actuators, qd is the desired

joint angles and Kp is the proportional gain. The stiffness torque parameters are then com-

puted from a regression plot of actuating torques versus static joint positions, after subtracting

the effect of static friction torque and gravitational torque, see Fig 15C.

In the dynamic experiment, the joints are driven on a reference trajectory by same propor-

tional controller u = −Kp(q − qd). The joint static friction torques are zero in this case since the

joints are in motion. The joint kinetic and damping friction torque are computed by a regres-

sion analysis of actuating torques versus joint angular velocities (from motor rpm) after sub-

tracting the effect of stiffness and gravitational torques (Fig 15D). Our estimate of kinetic (or

coulomb) friction torque in this experiment is zero, only the damping friction torques are sig-

nificant. Table 8 presents summary of the joint stiffness and friction estimates.

Gait prediction and trajectory tracking: Experiment

The DUKF real time predicted wearers’ (hip and knee) joint trajectory from joint position sen-

sors serves as the reference trajectory to the controller during the walking experiment. Fig 16

shows the generated walking trajectory. For the sake of brevity, we present performance for

the left knee and left hip respectively for one participant. Fig 16 also present a comparison

between the predicted gait and the actual exoskeletons movement. The exoskeleton system is

seen to achieve synchronous walking with the participant. Table 9 gives the root mean square

error of the motion tracking.

Online parameter estimation

The DUKF online estimated model parameters are shown in Fig 17. The model parameters are

the link masses: m1, m2, and m3. The parameter m3 (i.e. the mass of thigh) is influenced by the

torso mass during the stance phase. More parameter variations are thus noticed for m3 during

stance to swing transition. Parameter variations for the other links are somewhat straight.

Discussion

The results of the experiment show that the exoskeleton control method can be applied for

walking assistance in prolong walking conditions. There is significant reduction in the level of

muscle activation recorded at the two muscles (on the right leg) when assisted with the exo-

skeleton. On the average, 43.4% (Right Vastus intermedius) and 60.4% (Right Gastrocnemius)

reductions in muscle activity (Table 6) was found across the participants during active

Table 7. Summary of DUKF performance/robustness analysis.

Joint Mean Value of Residuals (degrees) Mean correlation of Residuals (degrees) Mean states estimation error (degrees) 1-sigma uncertainty bounds(%)

Hip 0.0229 0.0011 State 1: -0.7490 State 1: 0

State 2: -0.7490 State 2: 39.72

Knee -0.4968 0.0362 State 1: -0.5792 State 1: 27.81

State 2: -0.5792 State 2: 46.29

https://doi.org/10.1371/journal.pone.0200193.t007
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Fig 13. The states estimation error and the 1-σ uncertainty bound from the filter error covariance estimate.

https://doi.org/10.1371/journal.pone.0200193.g013
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assistance (compared to free walking) which gives indication of its potential benefit and health

saving if the technology is applied to more than one workplace personnel. For all participants,

the percent reduction in muscle activity are comparatively significant (Participant 1: Right

Vastus intermedius = 58.9%, Right Gastrocnemius = 77.6%; Participant 2: Right Vastus inter-

medius = 59.7%, Right Gastrocnemius = 64.3%; Participant 3: Right Vastus interme-

dius = 39.3%, Right Gastrocnemius = 42.4%; and Participant 4: Right Vastus

intermedius = 15.6%, Right Gastrocnemius = 57.1%), see Table 6. Reduction in muscle activity

from other connected muscles (not monitored in the experiment) for walking is also expected.

In passive mode, the burden of the exoskeleton on the wearer is apparent. More muscle

activity was required by the user to walk with the exoskeleton during the swing phase (Fig 9).

The intrinsic rotational stiffness from the unactuated motor bearings may have accounted for

Fig 14. The normalized autocorrelation of states estimation error.

https://doi.org/10.1371/journal.pone.0200193.g014
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Fig 15. Friction and stiffness torque estimation.

https://doi.org/10.1371/journal.pone.0200193.g015
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the resistance to the wearers’ swinging leg. This fact has been noted for future design improve-

ment. In stance phase, the contact with the ground minimizes this burden since the exoskele-

ton’s weight is driven to the ground through the foot contact and also since little movement is

needed for stance. The burden of the exoskeleton on the wearer in both passive and active

mode is generally not required to be significant so as not to dissuade acceptability of the suite

in industries. The findings from this implementation suggests the need for appropriate choice

of materials and motor characteristics in the design of exoskeleton suites.

Table 8. Summary of joint friction and stiffness torque estimates.

Torque Left Hip Joint Left Knee Joint Right Hip Joint Right Knee Joint

Avg. Static Friction b0 = 3.830Nm (0.06A�) b0 = 6.035Nm (0.074A�) b0 = 2.130Nm (0.045A�) b0 = 5.318Nm (0.065A�)

Stiffness torque τs(q) = (0.20Nm/deg)q
− 0.18Nm

τs(q) = (0.061Nm/deg)q
− 0.39Nm

τs(q) = (0.31Nm/deg)q
− 0.042Nm

τs(q) = (0.015Nm/deg)q
− 0.058Nm

Damping/kinetic

friction

b2ð _qÞ ¼ ð� 21:909Þ _qNm b2ð _qÞ ¼ ð� 10:609Þ _qNm b2ð _qÞ ¼ ð� 28:009Þ _qNm b2ð _qÞ ¼ ð� 6:7238Þ _qNm

� Actuator current at static torque.

https://doi.org/10.1371/journal.pone.0200193.t008

Fig 16. Generated left hip and left knee walking trajectory for participant 1.

https://doi.org/10.1371/journal.pone.0200193.g016
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With regards trajectory generation, the performance of the controller is evident from results

in Fig 11, Fig 16, and Table 9. The dual UKF demonstrated capability for trajectory generation

and estimation of the unobserved states i.e. the spatio-temporal features (i.e. joint position,

velocity and acceleration) of the human walking. These figures compare favorably with some

generated gait trajectories found in literatures [52, 53]. Similar to many other applications of

Kalman filter, for experiment, the filter relies on the signal (noisy) from position sensors

installed at the hip and knee flexion/extension rotational axis; and on the partially estimated

model of the human-exoskeleton system. The predicted hip and knee joint angle and velocity

trajectories are also compared with the actual exoskeleton movement as shown in Fig 16. The

exoskeleton (actual) velocity for comparison purpose is calculated from the motor rpm. We

found some limitation in synchronous walking (slightly high RMSE of 0.2420 degrees and

0.3181 degrees/s respectively for the knee joint angular position and velocity, see Table 9)

Fig 17. Estimated model parameters during walking movement.

https://doi.org/10.1371/journal.pone.0200193.g017

Table 9. Trajectory tracking performance.

Joint Position Trajectory RMSE (degrees) Angular Velocity Trajectory RMSE (degrees/s)

Hip 0.0201 0.0849

Knee 0.2420 0.3181

https://doi.org/10.1371/journal.pone.0200193.t009
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which is adduced to the hardware response rate. The impulsiveness of the human nature and

the computer communication rate are observed to have possible influence on the exoskeleton

response rate.

The dual estimation approach of the UKF was also found useful in this experimentation to

improve the model parameters and states estimates concurrently. There is some variation in

the model mass parameter between the stance and swing phase, especially for the thigh mass.

The thigh mass m3 increases significantly during the stance phase which can be ascribed to the

loading effect of the torso mass on the thigh (Fig 17). Notice that variations in model mass

parameters can be caused by external loads on the links in different postural configuration

during stance or swing. The real time estimation of the model mass parameters thus captures

these variations in the different phases. Consequently, feedback of these parameters in the exo-

skeleton model improves the accuracy of the model for each respective phase and ensures that

the model is more accurate for states estimation.

Our current system can enable a pilot to walk at an average human (normal) walking speed

(1.3m/s) while lifting and carrying a payload of 2.0kg on level ground. This is an applicable

speed range for manual handling industry operations. Higher speed levels are possible how-

ever our current system has not been rigorously tested for higher speed walking. In compari-

son, HUALEX system by Huang, et al. [33] has been reported to support walking at human

speed range of 0.4m/s to 1.2m/s using DMP algorithm, but can only attain synchronous walk-

ing after one gait cycle correction. The authors have suggested a proactive learning framework

for future work. BLEEX [24] on the other hand can enable pilot walking up to the average nor-

mal human speed of 1.3m/s using SAC algorithm (while supporting a load of 34kg), however

the system is unstable with SAC algorithm. Moreover, the system is highly powered relatively,

and uses a harness at the back to support the heavy load. Our system does not use a harness, its

application is mainly intended for lower limb locomotion in manual-hand lifting and carrying

of medium size loads (<25kg) as typically done in manual handling industry works. With

respect to the amount of muscle activity reduction, comparison of our system with the afore-

mentioned exoskeleton systems could hardly be possible since limited information (in this

regard) has been reported about them. Meanwhile, more experimental procedure and future

work would be required for proper comparison of our system with some existing powered exo-

skeleton systems.

To the best of the authors knowledge, this study is a novel application of dual unscented

Kalman filter (in a supervisory control framework) for trajectory generation (and control) of

the dynamic human walking (typical in industrial manual handling operations) using a partial

model of the coupled human-exoskeleton system and noisy signal from position sensors.

Other closely related technique like the traditional adaptive frequency oscillators (AFOs) have

been quite useful and popular for gait trajectory generation however they are mainly suitable

for generating uniform (or pseudo-uniform) walking trajectory from sensor signal. Dynamic

movement primitive (DMPs) on the other hand encompass AFOs to allow dynamic walking

generation, but their robustness to dynamic interaction situation may be an issue. Moreover,

they require considerable expertise knowledge or experience to derive an appropriate policy or

non-linear equation to represent the dynamic human walking. EMG Feedback control are also

very useful and popular however the inconsistencies in EMG estimation and the modality of

application in feedback control are critical issues to consider.

Conclusion

In the study we proposed an exoskeleton control strategy for synchronous walking assistance

in manual handling works that involve prolong hours of walking. The strategy of assistance is

Exoskeleton robot control for synchronous walking assistance in repetitive manual handling works

PLOS ONE | https://doi.org/10.1371/journal.pone.0200193 July 12, 2018 31 / 36

https://doi.org/10.1371/journal.pone.0200193


based on real time trajectory generation of the spatio-temporal features of human walking, i.e.

hip and knee joints position, and velocity, and acceleration, for control of the human-exoskele-

ton system. By this, we adopt the notion to movement primitive which suggests representation

of dynamic movement behavior such as walking using kinematic representation. Kinematic

representation of movement primitive is thought to offer more flexibility for workspace plan-

ning of complex movements than direct motor command. Our proposed strategy is an integra-

tion of dual unscented Kalman filter for trajectory generation and an impedance controller for

trajectory following. To enable synchronous walking between the human and exoskeleton sys-

tem we implemented a supervisory hybrid automaton which coordinate the coupled move-

ment based on the detected human intention and walking phase.

The effectiveness of the controlled system to reduce lower limb muscle activity has been

evaluated on four participants in a mimicked load carrying industrial scenario. There is more

than 40% reduction in muscle activity recorded at the Right Vastus Intermedius and Gastroc-

nemius muscle of the participants during the walking trials. The controller is also able to syn-

chronize the movement of the exoskeleton with that of the participants using the generated

walking trajectory from the dual unscented Kalman filter. One potential limitation in the

experimental setup however is the response time of the exoskeleton to the control signal which

can be adduced to the communication layers from the host model on Simulink to the exoskele-

ton actuation system. The experimental findings presented in this study have nonetheless indi-

cated that this strategy could be deployed to benefit workers engaged in prolong walking in

dynamic working environment where movement behaviour may be non-uniform and

complex.

Supporting information

S1 Data. Minimal dataset. The dataset is in .sav format (SPSS) and consist of EMG signal val-

ues taken from two muscle groups (of each participant): R. Vastus Intermedius and R. Gas-

trocnemius, in three walking trials and three mode of exoskeleton assistance.
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