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I. Introduction

The mycotoxin 3-nitropropionic acid (3NP) is an irreversible inhibitor that induces neuronal
damage by inhibiting mitochondrial complex Il. Neurodegeneration induced by 3NP, which is
preferentially induced in the striatum, is caused by an excess influx and accumulation of
calcium in mitochondria. Osteopontin (OPN) is a glycosylated phosphoprotein and plays a
role in the regulation of calcium precipitation in the injured brain. The present study was
designed to examine whether induction of OPN protein is implicated in the pathogenesis of
3NP-induced striatal neurodegeneration. We observed overlapping regional expression of
OPN, the neurodegeneration marker Fluoro-Jade B, and the microglial marker ionized
calcium-binding adaptor molecule 1 (Iba1) in the 3NP-lesioned striatum. OPN expression
was closely associated with the mitochondrial marker NADH dehydrogenase (ubiquinone)
flavoprotein 2 in the damaged striatum. In addition, immunoelectron microscopy
demonstrated that OPN protein was specifically localized to the inner membrane and matrix
of the mitochondria in degenerating striatal neurons, and cell fragments containing OPN-
labeled mitochondria were also present within activated brain macrophages. Thus, our study
revealed that OPN expression is associated with mitochondrial dysfunction produced by
3NP-induced alteration of mitochondrial calcium homeostasis, suggesting that OPN is
involved in the pathogenesis of striatal degeneration by 3NP administration.
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lar calcium leads to impairments in mitochondrial respira-

Mitochondrial disturbances, such as inhibition of the
mitochondrial respiratory chain and excessive oxidative
stress, are involved in many neurological disorders [23]. In
animal models of brain ischemia, an overload of intracellu-
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tion, followed by cell death [5, 15, 21, 35, 39, 46, 52].
Ultrastructural observations after administration of excito-
toxic drugs such as kainic or ibotenic acid show the
presence of calcium precipitates in the mitochondria of
damaged neurons [16, 34, 48].

3-Nitropropionic acid (3NP) is a natural mycotoxin
characteristic to fungi infecting leguminous plants which
causes disease in cattle and man [9, 28]. It is used to gener-
ate disease models of striatal neurodegeneration, particu-
larly Huntington’s disease (HD), with which it shares
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similar anatomical, histopathological, and neurochemical
changes [4, 7, 9, 24, 36]. When 3NP is directed into the
striatum of rodents, a specific lesion accompanied by stria-
tal neuronal loss and astroglial proliferation is produced.
This lesion closely resembles the above-mentioned patho-
logical features of HD [4, 8, 9, 22, 49, 53]. 3NP is an
irreversible inhibitor of mitochondrial complex II (i.e.,
succinate dehydrogenase), and thus directly impairs mito-
chondrial oxidative metabolism and causes subsequent neu-
ronal cell death [2, 4, 11]. Neurodegeneration induced by
3NP involves changes in mitochondrial permeability transi-
tion (MPT). These changes are caused by the accumulation
of excessive calcium in the mitochondria, which results in
swelling of the organelles, a decrease in transmembrane
potential, loss of ATP synthesis, and release of pro-
apoptotic factors such as cytochrome ¢ [3, 20, 26, 29, 30,
42, 54].

Osteopontin (OPN) is a secreted glycosylated phospho-
protein with an arginine-glycine-aspartate (RGD) motif that
binds to multiple integrin subunits and CD44 variants [51].
This phosphoprotein is involved in numerous pathophysio-
logical processes, including regulation of inflammation,
wound repair, cell-mediated immunity, and metastatic
spread of various cancers [14, 40]. Its expression has been
widely studied in various pathological conditions including
cancer and both ischemic and toxicant injuries in many tis-
sues and organs. In addition, recent evidence observed that
OPN is closely associated with calcium precipitation. By
binding to calcium deposits, OPN is involved in the mecha-
nisms by which such deposits are scavenged in the ische-
mic brain [44]. Thus, we hypothesize that following 3NP
administration, OPN would be associated with calcium
precipitation within mitochondria that could lead to selec-
tive degeneration of the caudate-putamen [19]. However, to
the best of our knowledge, there are no data on the in vivo
expression of OPN in 3NP models. Since the selective
impairment produced by 3NP may contribute to the under-
standing of OPN function in the central nervous system, we
assessed the cellular localization of OPN in the striatum
after 3NP injury via confocal and immunoelectron micros-

copy.

II. Materials and Methods

Animals

All experimental procedures were conducted accord-
ing to the guidelines of the Institutional Animal Care
and Use Committee at Konkuk University, Seoul, Korea.
Female Sprague-Dawley rats (n=10) weighing 300-320 g
were used in this study. 3-nitropropionic acid (3NP; Sigma-
Aldrich, St. Louis, MO, USA) was dissolved in saline solu-
tion, and the pH was adjusted to 7.4 with NaOH. Animals
received a subcutaneous injection of 3NP (15 mg/kg) for 4
weeks, once every two days. Animals were anesthetized
with chloral hydrate (400 mg/kg, intraperitoneally) and sac-
rificed 2 days after the final injection. Control rats received

the equivalent volume of normal saline solution. To
evaluate tissue injury by 3NP, brains (n=3) were quickly
removed and were sliced at 1-mm thickness. Brain slices
were incubated at 37°C for 30 min in a 2% solution of
2,3,5-triphenyltetrazolium chloride (TTC; Sigma-Aldrich).

Double immunohistochemistry

Brain samples were cryoprotected and frozen in liquid
nitrogen. For immunofluorescence, semithin cryosections
(1 pm thick) were cut at —80°C on a Leica EM UC7 ultra-
microtome equipped with an FC7 cryochamber. For double
labeling studies, brain sections were first incubated in a
blocking buffer (1% bovine serum albumin; BSA) in phos-
phate buffered-saline (PBS) in a dark humidified chamber
for 1 hr at room temperature, and then incubated at 4°C
overnight with a mixture of mouse monoclonal anti-OPN
(American Research Products, Belmont, MA; dilution
1:150), plus one of either rabbit polyclonal antibodies to
ionized calcium-binding adaptor molecule 1 (Ibal; Wako
Pure Chemical Industries, Japan; dilution 1:500), or NADH
dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2;
Proteintech, USA; dilution 1:100). Sections were then
washed 3 times in PBS (5 min each), and incubated for
2 hr at room temperature with the following secondary
antibodies: Cy3-conjugated donkey anti-mouse (Jackson
ImmunoResearch, West Grove, PA, USA; dilution 1:2000)
and Alexa Fluor 488 goat anti-rabbit (Molecular Probes,
Eugene, OR, USA; 1:300) for OPN/Ibal double labeling,
and Cy3-conjugated donkey anti-rabbit and Alexa Fluor
488 goat anti-mouse for OPN/NDUFV2 double labeling.
Counterstaining of cell nuclei was carried out using 4',6-
diamidino-2-phenyindole (DAPI; Roche, Germany; dilu-
tion 1:1000) for 10 min. Slides were viewed and photo-
graphed using a confocal microscope (LSM 510 Meta; Carl
Zeiss Co. Ltd., Germany). Images were converted to TIFF
format, and contrast levels were adjusted using Adobe Pho-
toshop v7.0.

Fluoro-Jade B staining and osteopontin
immunohistochemistry

To simultaneously detect OPN protein and degener-
ating cells, we used immunohistochemistry for OPN and
Fluoro-Jade B (FJB; Millipore, Temecula, CA, USA) histo-
chemistry. After immunostaining for OPN, sections were
transferred to a solution of 0.06% potassium permanganate
for 10 min and then to a solution of 0.0004% FJB for 30
min. Sections were washed 3 times in distilled water, fully
dried, cleared in xylene, and examined under a confocal
laser scanning microscope.

Immunoelectron microscopy

For electron microscopy, pre-embedding immuno-
peroxidase and immunogold/silver staining methods were
used. For immunoperoxidase staining, 50 um thick vibra-
tome sections were incubated in 1% BSA in 0.01 M PBS,
and then incubated with mouse monoclonal anti-rat OPN
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antibody at 4°C overnight. Sections were washed 3 times (5
min each) with PBS, incubated for 2 hr with biotinylated
goat anti-mouse IgG in 0.01 M PBS at room temperature,
and then washed 3 times (5 min each) with PBS. The
immunoreaction was visualized using diaminobenzidine as
the chromogen. After postfixation in 1% glutaraldehyde
and 1% osmium tetroxide in phosphate buffer for 30 min
each, dehydration in a graded series of ethanols, and flat
embedding in Epon 812 resin, the areas of interest were
excised and glued onto resin blocks. Ultrathin sections (70
to 90 nm thick) were cut on an ultramicrotome, stained
with 1% uranyl acetate, and observed in an electron micro-
scope (JEM 1010, JEOL, Tokyo, Japan). For immunogold-
silver labeling, vibratome sections were incubated with the
primary antibodies as above. Sections were then incubated
with an anti-mouse secondary antibody conjugated to nano-
gold particles (1 nm) (Nanoprobes, Stony Brook, NY; dilu-
tion 1:100) for 2 hr. Silver enhancement was performed
using the HQ silver enhancement kit (Nanoprobes) for 3
min. Ultrathin sections were prepared as described above,
and observed using an electron microscope.

Co-localization analyses

To measure co-localization between OPN and
NDUFV2, three regions of interest in the 3NP-injured core,
from five sections per animal (n=5), were randomly cap-
tured at x400 magnification using the confocal microscope.
A statistical measure of the fluorescent ratio of colocaliza-
tion was conducted using ZEN2009 software (Carl Zeiss
Co. Ltd., Germany).

III. Results

Localization of osteopontin in the damaged striatum after
3NP-induced neurotoxicity

TTC staining revealed clear, bilateral striatal lesions
including the majority of the striatum, whereas no striatal
lesions were observed in control rats that received saline
instead of 3NP (Fig. 1). To verify whether 3NP-induced
neuronal damage in the striatum was closely associated
with OPN, we examined OPN immunoreactivity and FJB
staining, a fluorescent marker for neurodegeneration.
Double-labeling studies showed overlapping regional dis-
tribution of OPN and FJB staining in the striatum of 3NP-
treated rats. Both labels were confined to the lesion core,
resulting in a clear demarcation of the lesion core and the
lesion rim (Fig. 2A—C). At higher magnification, OPN
immunoreactivity in the lesion core appears in the FIB-
labeled cells, which were identified as degenerating neu-
rons lacking nuclear staining with DAPI (Fig. 2D-F). By
contrast, no significant immunoreactivity for OPN was
detected in the striatum of control rats (see Fig. 4A, B).

We also examined whether OPN labeling was present
in Ibal-positive microglia, which have been previously
reported to express OPN [43, 44]. As shown in Fig.
2D-F, overlapping regional expression of OPN and Ibal

Fig. 1.

Representative brain slice stained by 2,3,5-triphenyltetrazolium
chloride (TTC) in control rats that received saline (A) and 3-
nitropropionic acid (3NP)-injured rats (B). TTC staining revealed the
manifest bilateral striatal lesions including the majority of the striatum,
whereas no striatal lesions were observed in control rats that received
saline.

immunoreactivity was also observed in the core of the
3NP-lesioned striatum, where both antigens were highly
expressed.

Parallel distribution of osteopontin and NDUFV?2 immuno-
fluorescence in the damaged striatum after 3NP-induced
neurotoxicity

To identify the spatial relationship of OPN expression
in the mitochondria at the core of the lesion, we conducted
a double immunofluorescence labeling study. As shown in
Fig. 3A-D, most of the punctate OPN immunoreactivity
was colocalized with the mitochondrial marker NDUFV2
(76.2% on average). However, some relatively large OPN
clusters did not show NDUFV2 immunolabeling.

Ultrastructural localization of osteopontin in the damaged
striatum after 3NP-induced neurotoxicity

We conducted and immunoelectron microscopy sur-
vey to study the subcellular distribution of OPN in degener-
ated neurons in 3NP-lesioned rats. OPN protein was not
expressed in normal rat striatum (Fig. 4A), and normal
striatal mitochondria clearly showed cristac and the arche-
typal regular, round shape (Fig. 4B). OPN-immunoreactive
profiles, as revealed by electron-dense precipitate, were
observed scattered in degenerating neurons located
throughout the lesion core (Fig. 4C). At higher magnifica-
tion, the profiles could be identified as mitochondria with
recognizable internal cristae (Fig. 4D). In addition, cell
fragments containing OPN-labeled mitochondria were
phagocytized by activated microglia (Fig. 4E-H).

Silver-enhanced immunogold labeling allowed further
analysis of ultrastructural characteristics of OPN-labeled
mitochondria. Silver-enhanced gold particles used for the
detection of OPN were primarily localized to the inner
membrane and matrix of mitochondria in degenerating neu-
ritic profiles (Fig. SA, B). There seemed to be a noticeable
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Fig. 2. Relation between osteopontin (OPN) expression and 3-nitropropionic acid (3NP)-injured striatum demonstrated using confocal microscopy. (A—
C) Double labeling for OPN and Fluoro-Jade B (FJB) staining showing that OPN and FJB staining is restricted to the lesion core. The broken line
indicates the border between the lesion core and the rim of the lesion (asterisks). (D-F) Higher magnification views of the boxed area in A—C. These
images show OPN (D) and FJB (E) immunoreactivity, as well as a merged image of both immunolabels (F) and degenerating neurons (arrow in D-F).
(G-I) Double labeling for OPN and Ibal in the 3NP-lesioned striatum. A number of Ibal-positive microglial cells appear in areas that present OPN
immunolabeling. The broken line indicates the border between the lesion core and the rim of the lesion (asterisks). Bars=100 pm (A—C); 30 um (D-I).

increase in the number of gold particles present in swollen
mitochondria compared to normal-appearing mitochondria,
suggesting that OPN protein was preferentially localized to
damaged mitochondria. The accumulation of immunogold
particles was usually observed inside mitochondria (Fig.
5C, E), while gold particles were occasionally localized
along the surface of, but not within mitochondria, in cases
where the mitochondria themselves appeared to be small
and relatively electron-dense (Fig. 5D).

IV. Discussion

The present study demonstrates for the first time that
OPN protein was localized to the mitochondria of degener-

ating neurons in the core of the 3NP-induced lesion. OPN
expression was induced in the lesion core after systemic
administration of 3NP, while at the same time we replicated
previous findings demonstrating that the undisturbed
striatum does not express OPN [43, 44]. Double immuno-
labeling showed that OPN was closely associated with
the NDUFV2 mitochondrial marker in the 3NP-lesioned
striatum. Furthermore, using immunogold-silver electron
microscopy we confirmed that OPN was localized to the
inner membrane and matrix of the swollen mitochondria
found in degenerating neurons in the lesion core. It is inter-
esting that when the mitochondria appeared to be small and
highly condensed, OPN protein was occasionally localized
along the surface of, but not within the mitochondria (com-
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Fig. 3.

Relation between osteopontin (OPN) expression and mitochondrial marker demonstrated using confocal microscopy. (A) Image showing double

immunofluorescence labeling for OPN and mitochondria labeled with NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2) in the 3NP-
injured core. (B-D) High magnification of the boxed area in A. These images show OPN (B) and NDUFV2 (C) immunoreactivity, as well as a merged
image of both immunolabelings (D). Most (but not all) OPN labeling co-localized with NDUFV2 (arrowheads). Bars=10 um (A); 5 pm (B-D).

pare Fig. 5D with 5E). These findings indicate that OPN
protein is closely associated with degenerating mitochon-
dria in the 3NP-exposed brain.

Neurodegeneration after systemic administration of
3NP selectively occurs in the striatum [4, 7, 32]. It is well
known that mitochondria in 3NP-injured neurons present
deficits in energy production and failures in calcium buffer-
ing because of the inhibition of complex II of the mitochon-
drial electron transport chain [4, 29, 37, 42], and that MPT
leading to the loss of transmembrane potential is caused by
uptake and accumulation of calcium in the mitochondria
after complex II inhibition [42]. This chain of events causes
mitochondrial swelling and the release of cytochrome c,
which is an intramitochondrial pro-apoptotic factor [27].
Mitochondria of striatal neurons are particularly vulnerable
to MPT induced by a large influx of calcium [10, 32], after
which this intracellular calcification then disrupts the struc-
tural and functional integrity of the organelles [31, 34].
This is similar to Huntington’s disease, in which severe
atrophy of the striatum is accompanied by extensive neuro-
nal loss and reactive gliosis [50]. Striatal neuronal loss
differs depending on the subpopulation. For example,
medium-sized GABAergic spiny neurons are more vulnera-
ble, whereas large cholinergic neurons are less vulnerable
in HD [1, 41, 50]. 3NP induced shrunken, dark neurons in

the damaged striatum that were positive for GABA immu-
noreactivity in a series of reports. In addition, several stud-
ies suggested that the ‘dark’ neurons may be associated
with phagocytosis, according to OPN expression in various
ischemic injuries [13, 17, 18, 25, 43]. In this study, OPN
immunoreactivity appearing in the striatal neurons can be
classified into two groups. In the first group, OPN protein
was expressed in the cell debris of dead neurons or in the
mitochondria of degenerating neuron after 3NP induced
injury. Based on this, it could be hypothesized that OPN
may be expressed in the damaged GABAergic neurons in
the striatum, but not in the intact cholinergic neurons. In the
second group, OPN was closely associated with calcium
precipitation within the mitochondria of degenerating neu-
rons in the 3NP-treated brain. In support of this, Shin et al.
[44] reported that binding of OPN to the surface of cell
fragments is closely associated with calcium precipitation.
In the present study, we observed two different types
of OPN immunoreactivity in the mitochondria using
immunoelectron microscopy. OPN protein was expressed
in the inner membrane and matrix of swelling mitochondria
of degenerating neurons, and on the surface of the
mitochondria. OPN expression in the degenerated mito-
chondria was expected to represent calcium precipitates on
the mitochondria, although the precise features characteris-
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Fig. 4. Electron micrographs showing osteopontin (OPN) labeling using immunoperoxidase immunocytochemistry in the 3-nitropropionic acid (3NP)-
injured lesion core. (A) OPN expression in the normal striatum is absent. (B) Higher magnification of the boxed area in A shows normal mitochondria
(arrows). (C) OPN expression in the 3NP-injured core region appears as strong punctate labeling. (D) Higher magnification of the boxed area in C
shows that OPN is prominently located in the mitochondria (arrowheads) surrounding the nucleus (n) in degenerating neurons. (E-H) Microglia are one
of the cell types presenting OPN labeling in the 3NP-injured core region. (F) Higher magnification of the boxed area in E. Note that the microglia
demonstrate phagocytic vesicles (asterisk) containing OPN-labeled mitochondria. (H) Higher magnification of the boxed area in G shows two OPN-
labeled mitochondria were engulfed by microglia. Bars=3 pm (A); 0.5 pm (B, F, H); 2 uym (C, E, G); 1 um (D).

tic of this OPN immunolabeling still remain unclear. Our
results revealed that OPN expression possibly relates to
more diverse changes in the mitochondria than just calcium
precipitation. We also tried to detect calcium in the OPN-
immunogold labeled mitochondria using electron probe
microanalysis (data not shown). A previous study reported
that calcium signals were not detected using electron probe
microanalysis in a weakly-labeled OPN accumulation site
[44]. Tissue preparation for transmission electron micros-

copy, such as fixation and epon infiltration, alters ionic
content and distribution [6, 12, 33]. Therefore, we were
unable to detect calcium signals, most likely because the
calcium signal was below the threshold for its detection.
Immunoelectron microscopy demonstrated that cell
fragments containing OPN-labeled mitochondria were also
present within activated brain macrophages. Previous stud-
ies showed that OPN is involved in phagocytosis of cell
debris in the infarction area after transient focal cerebral
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Fig. 5. Electron micrograph showing osteopontin (OPN) labeling using immunogold immunocytochemistry in the 3-nitropropionic acid (3NP)-injured
lesion core. (A, B) Swelling mitochondria (black arrows) present a larger accumulation of OPN immunogold particles in the inner membrane and the
matrix compared to relatively normal-appearing mitochondria (white arrows). (C—E) Immunogold particles demonstrate two types of OPN labeling. (D)
Higher magnification of the boxed area in C. OPN immunogold particles are found at the surface of the mitochondria that appear to be small and highly
electron-dense. (E) Higher magnification of the boxed area in C. Immunogold particles are observed in the inner membrane and matrix of swelling

mitochondria. Bars=0.4 pm (A, B); 0.5 pm (C); 0.2 pm (D, E).

ischemia [43], and calcium precipitation by binding OPN
leads to OPN-mediated phagocytosis by brain macrophages
[44]. Strong expression of OPN following ischemic injury
contributes to the recruitment of macrophages [51] and
OPN has an opsonization function that leads to the facilita-
tion of phagocytosis by macrophages [38]. Thus, our data
suggest that OPN protein is closely associated with calcium
precipitation within mitochondria in degenerating neurons,
and this process is involved in phagocytosis of neuronal
debris in 3NP-induced lesions. In addition, taking into
account that OPN inhibits mineralization and controls
ectopic calcification [45, 47], OPN may have neuroprotec-
tive effects on striatal neurons by inhibiting mitochondria
dysfunction initiated by mitochondrial calcium overload.

In conclusion, our data showed the spatial relationship
between OPN expression and mitochondria in the damaged
striatal neurons using confocal and immunoelectron micro-
scopic methods. OPN expression was correlated with the
swollen mitochondria of the damaged neurons and brain
macrophages after 3NP administration, suggesting that
OPN may be involved in the pathogenesis of striatal neuron
degeneration, or possibly have neuroprotective effects in
3NP-induced injured striatal neurons by limiting calcium
accumulation within the mitochondria.
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