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Antibody-drug conjugate therapy has attracted considerable attention in recent years. Since the selection of appropriate targets is a
critical aspect of antibody-drug conjugate research and development, a big data research for discovery of candidate targets per
tumor type is outstanding and of high interest. Thus, the purpose of this study was to identify and prioritize candidate
antibody-drug conjugate targets with translational potential across common types of cancer by mining the Human Protein
Atlas, as a unique big data resource. To perform a multifaceted screening process, XML and TSV files including
immunohistochemistry expression data for 45 normal tissues and 20 tumor types were downloaded from the Human Protein
Atlas website. For genes without high protein expression across critical normal tissues, a quasi H-score (range, 0-300) was
computed per tumor type. All genes with a quasiH − score ≥ 150 were extracted. Of these, genes with cell surface localization
were selected and included in a multilevel validation process. Among 19670 genes that encode proteins, 5520 membrane
protein-coding genes were included in this study. During a multistep data mining procedure, 332 potential targets were
identified based on the level of the protein expression across critical normal tissues and 20 tumor types. After validation, 23 cell
surface proteins were identified and prioritized as candidate antibody-drug conjugate targets of which two have interestingly
been approved by the FDA for use in solid tumors, one has been approved for lymphoma, and four have currently been entered
in clinical trials. In conclusion, we identified and prioritized several candidate targets with translational potential, which may
yield new clinically effective and safe antibody-drug conjugates. This large-scale antibody-based proteomic study allows us to go
beyond the RNA-seq studies, facilitates bench-to-clinic research of targeted anticancer therapeutics, and offers valuable insights
into the development of new antibody-drug conjugates.

1. Introduction

Much recent interest has centred around research on
antibody-drug conjugate (ADC) therapy as a promising tar-
geted therapy for cancer [1–3]. The targeted delivery of
highly potent cytotoxic agents to tumor cells makes possible

the ADC therapy as an attractive choice of cancer treatment.
However, despite considerable advances in the field, only few
ADCs have been currently approved by the FDA owing to the
lack of enough tumor response or excessive normal tissue
toxicity observed in clinical trials [3]. Therefore, the expan-
sion of effective and nontoxic ADCs is still a challenge for
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scientists and drug developers, and the discovery of novel
ADC targets is of high interest.

The selection of appropriate target antigens is the first
critical step of developing safe and effective ADCs [2, 4, 5].
There are only few large-scale studies which have identified
or prioritized ADC targets. In an mRNA-level study, Fauteux
et al. [6] aimed to identify and prioritize candidate ADC tar-
gets for breast cancer. Furthermore, in a data-driven prioriti-
zation study, only clinically relevant ADC targets were
prioritized across different tumor (sub) types, using
transcript-level evidence [7]. To the best of our knowledge,
no big data research based on the protein-level evidence still
exists for identification and prioritization of candidate ADC
targets across a wide range of tumor types.

The Human Protein Atlas (HPA), a large-scale antibody-
based proteomic resource, provides a unique opportunity to
perform systematic discovery and validation of targets for
different tumor types at the protein level [8–10]. The HPA
has combined the antibody-based approach with transcrip-
tomic data for an overview of global expression profiles
[11]. Thus, in this study, we aimed to identify and prioritize
candidate ADC targets per common tumor types by mining
of the HPA database, as the unique big data recourse.

2. Materials and Methods

2.1. Discovery Approach. To systematically identify and pri-
oritize candidate ADC targets across 20 tumor types, the fol-
lowing screening approach was applied:

(1) Among data from 19670 genes encoding human pro-
teins, the expression data for 5520 membrane
protein-coding genes were downloaded from the
HPA website (version 19) as an XML file (http://
www.proteinatlas.org/search/protein_class%
3APredicted+membrane+proteins)

(2) A total of 2131 genes without the protein level evi-
dence were excluded from the study, and remaining
3389 genes were monitored for their protein expres-
sion in the critical normal tissues

(3) The protein-coding genes that showed the high pro-
tein expression (n = 1735) in one or more critical
normal tissues including lung, gastrointestinal tract
(i.e., oral mucosa, esophagus, stomach, duodenum,
small intestine, colon, and rectum), liver, kidney,
heart muscle, skin, and bone marrow were excluded,
and remaining 1654 genes were retained in the data
mining process

(4) In the next step, the protein expression levels for
remaining genes were monitored across 20 tumor
types based on data extracted from the pathology
TSV file, downloadable from the HPA website
(http://www.proteinatlas.org/about/download).
After calculating a quasi H-score (range, 0-300) per
tumor type, as a proxy for the protein expression,
745 genes with a score ≥ 150 for at least one tumor
type were included in the next step

(5) In order to discriminate the target antigens localized
on the cell surface from nonsurface membrane pro-
teins, a file containing predicted set of human surfa-
ceome (Supplementary Table S1), recently identified
by Bausch-Fluck et al. [12], was downloaded from a
public resource (http://wlab.ethz.ch/surfaceome).
Consequently, a number of 332 potential target genes
encoding surface proteins were extracted and
included in an HPA-based validation process

(6) After the three-step nonexperimental validation pro-
cess, 23 candidate ADC targets were identified and
prioritized across 20 tumor types

The C# programming language was used to extract and
summarize the required data from the XML and TSV files
during the screening process. The workflow methodology
of target discovery and validation is indicated in Figure 1.
The study methodologies were approved by the ethics com-
mittee of Shahid Beheshti University of Medical Sciences.
The informed consent requirement was waived. All proce-
dures performed in the study involving human samples were
in accordance with the 1964 Helsinki Declaration and its
later amendments.

2.2. HPA-Based Validation Approach.A total of 332 potential
targets were selected to be included in an extensive validation
process for their level of expression based on the HPA data-
base. We combined data at the protein level with transcript
data to validate identified potential targets. Since the support-
ive evidence for the protein expression is often sought by
mRNA profiling [13], the consistency between immunohis-
tochemistry (IHC) data and RNA-seq data, retrieved from
the HPA, was used as the first step of the validation. In addi-
tion to RNA consistency, literature conformity and verifica-
tion of membrane localization were considered for
expression validation of potential targets. Notably, the confir-
mation of membrane localization was previously stated as a
critical step of target validation [13]. The IHC images and
description of the staining pattern (available at the HPA
database) for each antibody in cancer tissues were considered
for verification of membrane localization. A predominant
membranous staining in IHC samples was required for each
potential target to pass the validation process. Only potential
targets that passed three HPA-based validation steps were
considered as candidate targets. Detailed methods regarding
the strategy of antibody validation, accessible at the HPA
website (http://www.proteinatlas.org), are provided in Sup-
plementary Methods S1. Finally, for further comparison
and validation of our quasi H-score, as a new method to dis-
cover ADC targets, we have investigated the correlation of
target H-scores for different tumor types with corresponding
FPKM (fragments per kilobase of transcript, per Million
mapped reads) values of the TCGA (The Cancer Genome
Atlas) datasets extracted from the HPA (http://www
.proteinatlas.org).

2.3. Experimental Validation Approach. In addition to the
HPA-based validation, a restricted experimental validation
was applied. In order to logistical limitations, such as dataset
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accessibility for 20 tumor types and also 23 antibodies
required for IHC examinations, only protein expressions of
NECTIN4 and ERBB2, as two FDA-approved ADC targets
for solid tumors, were experimentally validated in tissue
microarray (TMA) samples of patients with urothelial carci-
noma by using the IHC technique.

2.4. TMA Construction. The TMAs were assembled as previ-
ously described for the HPA project [14]. All hematoxylin
and eosin- (H&E-) stained slides were reviewed by a pathol-
ogist with subspecialty expertise in urologic pathology to
determine the best area for preparing the TMA of each sam-
ple. Tissue arrays were constructed by placing 1mm diameter
cores in recipient paraffin blocks. From each tumor, three tis-

sue cores were extracted to account for intratumoral hetero-
geneity. First, reference histological slides with the specific
area marked by the pathologist were aligned with the respec-
tive donor block. Second, three cores were extracted per
tumor and assembled in recipient paraffin blocks using a tis-
sue arrayer (Galileo TMA CK3500 Tissue Micro arrayer;
ISETMA Software, Integrated System Engineering, Milan,
Italy). Then, consecutive sections (with a thickness of 3μm)
were cut from each TMA block, mounted on microscope
slides, and immunohistochemically assayed (Supplementary
Figure S1).

2.5. Immunohistochemistry. IHC was performed on the TMA
slides with a standard technique as previously defined with
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Figure 1: Methodology workflow.
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some modifications [14, 15]. Briefly, tissue slices were depar-
affinized at 55°C for 10 minutes, cleared in xylene, and were
then rehydrated by incubating in solutions with decreasing
alcohol content. Antigen retrieval was conducted by boiling
the samples in Tris-EDTA buffer (pH9.0) for 34 minutes in
a standard microwave. The endogenous peroxidase was
blocked with 3% H2O2 for 10 minutes. Samples were immu-
nostained at 4°C in blocking solution with primary antibod-
ies, anti-PVRL4/NECTIN4 (1 : 200 dilutions; HPA010775,
Sigma-Aldrich, USA) and anti–ERBB2/HER2 (ready to use;
MAD-000308QD, master diagnostica, Spain). After washing
with PBS (3 times/5min), the sections were incubated with
appropriate secondary antibody (anti-rabbit) for 45 minutes.
Then, the TMA slides were visualized with 3,3′-diamino-
benzidine (DAB) substrate as chromogen for 10 minutes at
the room temperature. The sections were counterstained
with haematoxylin, dehydrated in alcohol, cleared with
xylene, and mounted for examination. All tumors and nor-
mal tissues were scored by a pathologist.

2.6. Statistical Analysis. In the experimental validation pro-
cess, the mean H-scores obtained for two selected proteins
were compared with their HPA-derived quasiH-scores using
one-sample t-test. The lack of statistically significant differ-
ences might be considered as the experimental validation of
HPA-derived quasi H-scores for the two FDA-approved tar-
gets. Moreover, the correlation of target H-scores with corre-
sponding FPKM values was assessed by Pearson correlation
coefficient for 17 tumor types with available FPKM data on
the HPA website. Data were analyzed using the IBM SPSS
Statistics for Windows, V.23.0 (IBM Corp., Armonk, NY,
USA). A p value of <0.05 was considered as statistically
significant.

2.7. H-Score Calculation. The H-score is a semiquantitative
scoring system that calculates an IHC expression score from
0 to 300 according to both the intensity of staining (0, not
detected; 1, low; 2, moderate; 3, high) and the percentage of
cells stained. H-scores reflecting the protein expression were
calculated by multiplying the intensity in the percentage of
the positive cells. In this study, the average of three cores
per tumor resulted in a final H-score for each tumor ranging
from 0 to 300. A score of 0 indicates no expression, and a
score of 300 indicates the maximum possible expression.

2.8. Quasi H-Score Calculation. The percentage of samples
with low, medium, and high protein expression for the
HPA datasets was determined (only for genes without high
protein expression across the critical normal tissues), and
the quasi H-score was calculated per tumor type based on
the following formula (1):

QuasiH − score ðrange, 0 − 300Þ = ð1 × percentage of
patients with low protein expressionÞ + ð2 × percentage of
patients withmedium protein expressionÞ + ð3 × percentage
of patients with high protein expressionÞ(1)

All surface protein-coding genes with a quasi H-score
above the threshold (≥150) in at least one tumor type were
considered as potential ADC targets. The cut − off ≥ 150

was defined based on the previous studies utilizing the H
-score [16–18].

3. Results

3.1. Identified Candidate Targets. As shown in Figure 1,
among 19670 protein-coding genes, only membranome
genes (n = 5520) were included in our study. The IHC-
based expression data for 3389 membrane protein-coding
genes were available in the HPA. Among these, 1735 genes
with high protein expression across 13 critical normal tissues
were excluded. Then, a quasi H-score was calculated for
remaining 1654 genes. The list of 745 genes with a quasiH
− score ≥ 150 and their protein expression profile are listed
in Supplementary Table S2. As the goal of this study was to
identify cell surface proteins which were differentially over-
expressed in common cancers, only 332 predicted surface
proteins with a quasiH − score ≥ 150 were considered as
potential ADC targets. At the end, only 23 final targets passed
the entire validation process including the RNA consistency,
literature conformity, and verification of the membrane
localization. The list of 332 potential targets and their valida-
tion status are indicated in Supplementary Table S3.

Among 20 tumor types, the largest number of candidate
targets (n = 8) was interestingly identified for pancreatic can-
cer, with currently lack of effective treatment options. At least
one candidate target (up to six) was also identified for
remaining cancer types.

3.2. Prioritized Targets Based on the Expression in Tumor
Types. The quasi H-score, as a proxy of the tumor overex-
pression, for 23 candidate ADC targets across 20 tumor types
is indicated in Figure 2 as a heat map. Of 23 candidate targets,
the highest quasi H-score was specified to MS4A1 (score,
291.7) for its expression in lymphoma. Also, a quasiH −
score ≥ 200was identified for 13 candidate targets. Moreover,
a score ≥ 150 across 13 tumor types was observed for CD276,
a clinically relevant ADC target. For five additional candidate
targets including ITGA3 (n = 11), PCDH7 (n = 6),
SLC39A10 (n = 6), ATP2B2 (n = 5), and HTR2B (n = 5), a
quasiH − score ≥ 150 in at least 5 tumor types was also
found.

3.3. Prioritized Targets Based on the Expression in Normal
Tissues. To provide information for prediction of on-target
off-tumor toxicity per each candidate target, the level of the
target expression across 45 different normal tissues is shown
in Figure 3 as a heat map. In order to exclusion of genes with
high protein expression across 13 critical normal tissues dur-
ing the screening process, no high level expression in the crit-
ical tissues was expectedly observed. Also, no medium
expression across the critical tissues was observed for six can-
didate targets including AQP5, ATP2B2, CD79B, MSLN,
MUC16, and SLC2A14. Besides, seven other candidate tar-
gets including CDCP1, ERBB2, GPBAR1, ITGA3, NECTIN4,
PCDH7, and SLC39A10 showed no high expression across
45 normal tissues. Moreover, the high/medium expression
in ≤5 normal tissues was observed for 10 candidate targets
(Figure 3).
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3.4. Clinical ADC Targets. As verification of the results, our
list of candidate targets interestingly contains three pioneer
targets, ERBB2 (HER2), NECTIN4 (PVRL4), and CD79B
for which registered ADCs are currently in clinical use.
Moreover, it contains four additional clinically relevant tar-
gets, CD19, CD276, MSLN, and MUC16, for which some
ADCs are in clinical trials.

3.5. Experimental Validation. The paraffin blocks from 72
cases of urothelial cell carcinoma, including 68 tumors and
4 normal urinary bladder tissues, were retrospectively col-
lected and assembled in TMAs. The characteristics of
patients are summarized in Table 1.

The samples were immunohistochemically examined for
the protein expression of NECTIN4 and ERBB2. Tumor tis-
sue cores containing no tumor cells were excluded from the
analysis. Membranous and cytoplasmic positivity was
observed for both NECTIN4 and ERBB2. The IHC results
confirmed the protein expression and localization of the
NECTIN4 and ERBB2 in the bladder urothelial carcinoma
(Figure 4).

Furthermore, the mean H-scores of these selected
markers were compared with their quasi H-scores calculated
from the HPA samples (Table 2). The lack of statistically sig-
nificant differences shown in Table 2 might be considered as
the experimental validation of HPA-derived quasi H-scores
for the two FDA-approved targets in the urothelial cell carci-
noma. As expected, intermediate staining was observed for
NECTIN4 in the normal urinary bladder tissues. Also, low
and intermediate ERBB2 immunoreactivity was detected in
the normal bladder tissues.

3.6. Quasi H-Score Validation. For validation of the quasi H
-score, the correlation of target H-scores with corresponding
FPKM values, as a proxy of gene expression level, was
assessed for different tumor types. The FPKM values for 23
ADC targets across 17 tumor types are indicated in Supple-
mentary Figure S2 as a heat map. Interestingly, a significant
correlation was found for 12/17 (70.5%) of tumor types with
available FPKM values in the HPA database (Table 3).

4. Discussion

Increasing attention has been focused on ADC therapy due
to the potential capacity of this type of targeted therapy to kill
cancer cells [1, 2]. However, despite excessive efforts for
development of effective drugs, most ADCs still have rela-
tively narrow therapeutic index and limited clinical success
[19]. The proper target identification is the first success factor
for ADC development [4]. It should be noted that the identi-
fied target is a particular component of ADC development
that is immutable and beyond the reach of the developer to
refine or manipulate. Namely, if an ADC target is inappropri-
ately selected, the development project is doomed to failure
despite spending extensive time, effort, and money to refine
the antibody, drug, or linker [5].

Recently, many efforts have been made in the discovery
of molecular targets and prediction methods [20–23]. The
accessibility of extensive open access biological data in the
postgenomic era has revolutionized the field drug discovery.
Since the identification of drug targets by computational
methods saves a lot of financial resources, several computa-
tional approaches have been developed to complement
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ABCB1 0.0 75.0 0.0 141.7 0.0 41.7 0.0 160.0 25.0 8.3 33.3 0.0 54.5 0.0 16.7 0.0 41.7 27.3 0.0 41.7

ANO7 100.0 0.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 245.5 0.0 0.0 0.0 0.0 100.0 18.2

AQP5 25.0 0.0 25.0 0.0 216.7 0.0 0.0 33.3 45.5 0.0 8.3 66.7 162.5 0.0 0.0 0.0 33.3 0.0 0.0 9.1

ATP2B2 118.2 166.7 90.9 130.0 163.6 190.0 100.0 150.0 100.0 91.7 100.0 100.0 66.7 63.6 41.7 77.8 90.0 100.0 175.0 109.1

CD19 0.0 25.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 190.9 16.7 0.0 10.0 18.2 0.0 0.0 0.0 0.0 0.0 0.0

CD276 175.0 50.0 150.0 116.7 230.0 183.3 225.0 133.3 183.3 25.0 208.3 158.3 166.7 225.0 50.0 250.0 160.0 100.0 125.0 183.3

CD79B 54.5 0.0 41.7 18.2 81.8 0.0 100.0 16.7 8.3 216.7 25.0 45.5 91.7 141.7 8.3 0.0 54.5 16.7 25.0 8.3

CDCP1 83.3 100.0 83.3 191.7 150.0 16.7 125.0 83.3 54.5 0.0 36.4 133.3 150.0 63.6 50.0 81.8 136.4 0.0 100.0 127.3

CNR1 36.4 75.0 25.0 118.2 91.7 0.0 125.0 50.0 58.3 0.0 8.3 91.7 72.7 41.7 0.0 18.2 90.9 33.3 225.0 133.3

ERBB2 154.5 0.0 10.0 72.7 41.7 0.0 75.0 58.3 27.3 0.0 9.1 54.5 54.5 0.0 16.7 33.3 33.3 22.2 0.0 100.0

GPBAR1 145.5 0.0 58.3 9.1 50.0 0.0 33.3 0.0 50.0 0.0 0.0 66.7 122.2 0.0 0.0 18.2 41.7 0.0 175.0 122.2

HTR2B 250.0 100.0 127.3 163.6 125.0 0.0 125.0 50.0 125.0 0.0 0.0 108.3 190.0 36.4 36.4 8.3 154.5 25.0 75.0 166.7

ITGA3 83.3 100.0 175.0 141.7 200.0 41.7 175.0 127.3 200.0 0.0 141.7 227.3 245.5 30.0 208.3 225.0 191.7 25.0 275.0 258.3

MS4A1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3 291.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MSLN 41.7 0.0 83.3 63.6 75.0 0.0 50.0 60.0 66.7 0.0 0.0 183.3 191.7 0.0 45.5 8.3 100.0 16.7 0.0 8.3

MUC16 10.0 0.0 58.3 0.0 141.7 0.0 0.0 12.5 63.6 0.0 9.1 227.3 41.7 0.0 0.0 0.0 27.3 0.0 50.0 0.0

NECTIN4 83.3 25.0 125.0 90.0 140.0 25.0 25.0 80.0 83.3 9.1 25.0 145.5 66.7 45.5 33.3 100.0 20.0 45.5 150.0 200.0

PCDH7 66.7 125.0 125.0 266.7 127.3 58.3 75.0 145.5 133.3 158.3 218.2 208.3 208.3 50.0 50.0 81.8 200.0 75.0 75.0 90.9

SIT1 8.3 0.0 33.3 125.0 16.7 9.1 0.0 81.8 72.7 218.2 63.6 50.0 145.5 0.0 45.5 0.0 150.0 0.0 66.7 0.0

SLC2A14 63.6 100.0 33.3 0.0 8.3 0.0 50.0 16.7 25.0 0.0 50.0 66.7 16.7 0.0 0.0 66.7 16.7 150.0 100.0 75.0

SLC39A10 258.3 0.0 83.3 70.0 100.0 0.0 75.0 75.0 191.7 0.0 0.0 183.3 208.3 20.0 16.7 16.7 127.3 45.5 275.0 220.0

SLC6A6 111.1 50.0 100.0 177.8 90.9 60.0 100.0 83.3 100.0 0.0 108.3 110.0 130.0 188.9 0.0 90.9 80.0 33.3 100.0 91.7

UPK1B 33.3 25.0 16.7 66.7 150.0 9.1 100.0 8.3 25.0 0.0 0.0 50.0 109.1 16.7 90.9 0.0 18.2 22.2 100.0 181.8

Figure 2: A heat map depicting the quasi H-score for candidate ADC targets across 20 tumor types.

5BioMed Research International



experimental methods in discovery of novel drugs [20]. In
this light, virtual screening methods such as molecular dock-
ing, pharmacophore modeling, quantitative structure–activ-

ity relationships (QSAR), and ligand-based in silico target
prediction were applied [21]. Also, machine-learning
methods can play a substantial role in the field [22, 23]. Some
special features of ADC drugs raise the need for a unique
algorithm to discover candidate ADC targets. Some special
features of ADC drugs raise the need for a unique algorithm
to discover candidate targets. An ideal ADC target should be
expressed at the surface of tumor cells and have low expres-
sion on normal tissues to limit ontarget offtumor toxicity
[1, 4]. The HPA project has provided in situ visualization of
protein expression patterns using a standardized set of TMAs
containing both normal human tissues and 20 most preva-
lent cancer types [24]. The combination of immunohisto-
chemistry and TMA technology is known as an attractive
strategy for high-throughput, antibody-based tissue proteo-
mics [25]. Moreover, it is recognized that the highest impact
on personalized medicine will be achieved by integrating a
vast array of high-quality data; thus, there is increasing inter-
est in applying big data to discover novel therapeutic targets
[26]. The application of big data provided by the HPA could
uncover novel targets missed during the laboratory discovery
process and consequently may revolutionize the targeted
therapy of cancer [9].

Since the expression levels of ADC targets in normal cells
influence the drug distribution and safety profile, depicting
the expression map of targets across different normal tissues
is a critical clinical concern when selecting and prioritizing
ADC targets for clinical use [4]. The expression map of can-
didate targets across 45 different normal tissues, shown in
Figure 3, allows us to predict the potential for ontarget
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Figure 3: A heat map depicting the level of the protein expression for candidate ADC targets across 45 normal tissues.

Table 1: Characteristics of patients with urothelial carcinoma for
experimental validation of two FDA-approved targets.

Characteristics (n = 68)
Age,

Mean (SD), years 68.03 (10.15)

Sex, n (%)

Female 7 (10.3)

Male 61 (89.7)

T stage, n (%)

T2 44 (64.7)

T3 19 (27.9)

T4a 5 (7.4)

Tumor grade, n (%)

Low 3 (4.4)

High 65 (95.6)

N status, n (%)

Negative 55 (80.9)

Positive 13 (19.1)

Abbreviation: SD: standard deviation.
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offtumor toxicity per individual target. To avoid on-target
toxicity in critical normal tissues, the genes with high protein
expression across 13 critical normal tissues were excluded
during the screening. Besides, as another critical point, only
predicted cell surface proteins were considered in this study
for their potential draggability and accessibility to
therapeutics.

Few data-driven studies have attempted to identify/prior-
itize ADC targets. Fauteux et al. [6], in a transcript-level
study, have identified and prioritized some candidate ADC
targets for breast cancer. The authors acknowledged that a
proteomic study could provide better estimates. Also, Moek
et al. [7], in a data-driven prioritization study, have priori-
tized 59 clinically relevant ADC targets across different
tumor (sub) types by using functional genomic mRNA pro-
filing. Of note, the gene expression alone cannot be a sole
determinant of the target expression owing to the possibility
of posttranscriptional and posttranslational changes; thus,

high-quality IHC data from normal and tumor tissues is
essential [4]. So, for the first time, this protein-level study
was performed across a wide range of tumor types using
the IHC data, as robust and clinically established evidence.
Remarkably, we hypothesized that an H-score-like approach
could provide some critical information about the level of the
target expression and also target heterogeneity in the popula-
tion, as two critical elements of ADC target selection [5];
thus, we innovatively used the quasi H-score to mathemati-
cally identify whether the selected proteins have high poten-
tial to qualify as ADC targets.

As a limitation, however, the final quasi H-scores may
constitute from combined membranous/cytoplasmic stain-
ing, although only membrane proteins were included in this
study. To overcome the scoring limitation, a visual predom-
inant membranous staining in IHC samples was required
for each potential target to pass the validation process. As
another limitation, despite extensive HPA-based validation,
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Figure 4: Experimental validation of the protein expression for (a) NECTIN4 and (b) ERBB2, as two FDA-approved antibody-drug conjugate
targets, in representative samples of urothelial cell carcinoma.
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our experimental validation only included two selected tar-
gets for a tumor type due to logistical constraints, such as
dataset availability for different tumor types and also a large
number of antibodies required for IHC examination.

Notably, the identification of several targets for which
ADCs have registered or applied in clinical trials, using an
unbiased systematic approach, is a good indicator of the
validity of our findings. As previously mentioned, three
ADCs targeting our identified targets have already been
approved by the FDA for use in solid tumors and lymphoma.
Also, four additional validated targets have been entered in
clinical trials. Therefore, the presence of seven clinically rele-
vant ADC targets in the list of candidate targets (correspond-
ing to about one-third of all validated targets) serves as
verification of the discovery approach and suggests that our
list may also contain novel candidate targets with a high
translational potential, shortening the therapeutic road from
the laboratory to the clinic.

Of note, the antibody-based proteomic approach applied
in this study opens up the possibility to identify and prioritize
optimum combination of antibody-based therapeutics as the
most rapidly growing drug class. Also, the list of candidate
targets identified in this study may provide new avenues for
development of similar antibody-related therapies such as
radioimmunotherapy in which an antibody is labeled with a

radionuclide to deliver cytotoxic radiation to a target cell.
Interestingly, our list included theMS4A1 (CD20) as the only
radioimmunotherapy target approved for clinical practice.

5. Conclusions

Our results showed that mining the HPA has the power to
identify and prioritize candidate ADC targets with transla-
tional potential across different tumor types. Thus, this
antibody-based large-scale study could help researchers and
drug developers in deciding which targets should be taken
for further investigation and consequently lead to develop-
ment of new clinically effective and safe ADCs in the near
future.
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