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Cytokines of the interleukin 12 (IL-12) family are assembled
combinatorially from shared α and β subunits. A common
theme is that human IL-12 family α subunits remain incom-
pletely structured in isolation until they pair with a designate β
subunit. Accordingly, chaperones need to support and control
specific assembly processes. It remains incompletely under-
stood, which chaperones are involved in IL-12 family biogen-
esis. Here, we site-specifically introduce photocrosslinking
amino acids into the IL-12 and IL-23 α subunits (IL-12α and
IL-23α) for stabilization of transient chaperone–client com-
plexes for mass spectrometry. Our analysis reveals that a large
set of endoplasmic reticulum chaperones interacts with IL-12α
and IL-23α. Among these chaperones, we focus on protein
disulfide isomerase (PDI) family members and reveal IL-12
family subunits to be clients of several incompletely charac-
terized PDIs. We find that different PDIs show selectivity for
different cysteines in IL-12α and IL-23α. Despite this, PDI
binding generally stabilizes unassembled IL-12α and IL-23α
against degradation. In contrast, α:β assembly appears robust,
and only multiple simultaneous PDI depletions reduce IL-12
secretion. Our comprehensive analysis of the IL-12/IL-23
chaperone machinery reveals a hitherto uncharacterized role
for several PDIs in this process. This extends our under-
standing of how cells accomplish the task of specific protein
assembly reactions for signaling processes. Furthermore, our
findings show that cytokine secretion can be modulated by
targeting specific endoplasmic reticulum chaperones.

Mammalian cells dedicate one-third of their genome to
secretory pathway proteins, which allow cells to interact with
their environment. These proteins generally acquire their
native structure in the endoplasmic reticulum (ER), where a
comprehensive chaperone machinery supports and controls
each molecular step toward the native state (1). Protein
maturation in the ER includes post-translational modifica-
tions that not only render structure formation more robust
‡ These authors contributed equally to this work.
* For correspondence: Matthias J. Feige, matthias.feige@tum.de.

© 2022 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
and tune functionality but also target proteins to certain
chaperone systems. The most prominent modifications are
glycosylation and disulfide bond formation, which occur in
the majority of ER-produced proteins (2). N-linked glycans
target proteins to the calnexin/calreticulin cycle that moni-
tors and supports folding processes in secretory pathway
proteins (3, 4). Disulfide bonds stabilize the native structure
and, while unpaired, cysteines provide a handle for the ER
quality control (ERQC) system (5, 6). Disulfide bond forma-
tion, isomerization, and reduction are catalyzed by the
ER-resident protein disulfide isomerase (PDI) family. This
family comprises a surprisingly large number of approxi-
mately 20 members in humans (7, 8). The expansion of the
PDI family during evolution of more complex cells can likely
be explained by functional specialization of certain family
members. While PDI is a generic oxidoreductase with addi-
tional chaperone functions (9–11), other family members are
more restricted in their clientele and functionalities. For some
family members, insights into their specializations have been
obtained: ERp57 interacts with calnexin and calreticulin and
is thus mostly recruited to glycoproteins (12, 13), whereas the
membrane integral PDI family member TMX1 prefers
membrane proteins as clients (14). The PDI ERp5 interacts
with the ER Hsp70 immunoglobulin binding protein (BiP)
and thus may have a preference for BiP clients (15). TMX4
and ERdj5, the latter being another BiP cochaperone, are
involved in not only reducing disulfide bonds for ER-
associated degradation (ERAD) (16, 17) but also dissolving
incorrectly formed disulfide bonds (18). ERp44, on the other
hand, serves as a recruitment factor for immature proteins
that leave the ER while their native disulfide bonds have not
formed yet (19, 20). In addition to their role in catalyzing
redox reactions in their clients, PDI family members are key
regulators of ER stress responses and thus have further
broadened their functional spectrum during evolution
(11, 21).

The large variety of PDI family members combined with
their different roles not only complicates their functional
analysis in the native cellular context but also renders it
particularly relevant to decipher the working principles of the
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Oxidoreductases in IL-12/23 biogenesis
ER folding environment. Previous studies often focused on
certain PDI family members and analyzed the fate of selected
clients in their absence (22). Alternatively, substrate-trapping
mutants of PDI family members were used to define their
clients (15), which may miss chaperone or oxidase functions
of the respective PDI family member. Here, we complement
these studies by a client-centric crosslinking approach. We
focus on key signaling molecules in the immune system, the
interleukin (IL) 12 family members IL-12 and IL-23, which
both coordinate innate and adaptive immune responses
(23, 24). These two cytokines are ideally suited to further
dissect PDI family member functions in the cell. Our recent
work has shown that oxidative folding governs the biogenesis
of these cysteine-rich cytokines (25–27). Furthermore, these
heterodimeric cytokines form intramolecular as well as
intermolecular disulfide bonds and populate misoxidized
species during their biogenesis, which strongly demands for
support by PDI family members (25, 27–29). Since IL-12 and
IL-23 both share the same β subunit (IL-12β) (30–32), an
analysis of the redox machinery that acts on IL-12 versus
IL-23 can provide insights into PDI family member client
specificity versus promiscuity. Accordingly, these studies may
point toward possible specific ways of modulating IL-12
versus IL-23 assembly, which are both highly relevant mole-
cules for human disease (24).
Results

Establishment of a photocrosslinking approach to identify
IL-12/IL-23 chaperones

Chaperones and folding enzymes generally only transiently
interactwith their clients. This is a prerequisite for their function
but complicates analyses of chaperone–client complexes, in
particular in the biologically relevant context of cells. To analyze
the ER chaperone machinery that acts on the different steps of
IL-12 and IL-23 biogenesis (Fig. 1A), we thus decided to cova-
lently crosslink chaperone–client complexes for downstream
analyses. Toward this end, we site-specifically incorporated the
diazirine bearing unnatural amino acid DiazK (Fig. 1B) into
various positions of the α subunits of IL-12 and IL-23 (IL-12α
and IL-23α, respectively). For this, we used an efficient
pyrrolysyl-tRNA synthetase variant together with its amber-
suppressor tRNA, a setup that has been thoroughly character-
ized in very recent studies (33, 34). Upon irradiation with UV
light (365 nm), DiazK forms a carbene (Fig. 1B) that readily re-
actswith adjacent proteins to stabilize transient protein–protein
complexes for analyses, by for example, immunoblotting and
mass spectrometry (MS; Fig. 1C). In this study, we specifically
focused on IL-12α and IL-23α since these subunits remain
incompletely structured in isolation and are retained in cells
until they pair with their shared IL-12β subunit (25, 27, 30, 31,
35). They are thus prime targets for molecular chaperoning. To
comprehensively analyze the chaperone repertoire that acts on
IL-12α and IL-23α, we selected 14 or nine positions within each
subunit, respectively, where we individually introduced an
amber stop codon to be suppressed by incorporation of DiazK
(Fig. 1, D and E, left panels). We focused on positions that were
2 J. Biol. Chem. (2022) 298(12) 102677
surface exposed, not predicted to destabilize the respective
protein upon mutation and not in the interface with IL-12β (28,
29). For each construct, we observed expression upon transient
transfection into human embryonic kidney 293T (HEK293T)
cells in not only the presence of DiazK but also the presence of
polypeptide chains truncated at the intrinsic amber stop codon,
as expected for amber suppression (Fig. S1, A and B). We thus
fused aC-terminal FLAG tag to the constructs (Fig. S1,C andD),
which allows for the specific immunoprecipitation (IP) only of
completely translated polypeptide chains containing the DiazK
moiety. Since IL-12α and IL-23α can form homodimers in cells
(25, 27), some truncated proteins could still be observed if rather
C-terminally located amber codonswere used, which give rise to
almost fully translated homodimerization-competent poly-
peptide chains if a truncation occurs (e.g., in Fig. S1,C andD). In
general, amber suppression was efficient, and �20% to 80% of
expression of the nonsuppressed wild-type (wt) constructs was
obtained (Fig. S1, C and D).

For a subset of constructs, we in addition tested wt-like
behavior in terms of ERQC. Normally, IL-12α and IL-23α
are retained in the ER in isolation and can only pass ERQC
and become secreted upon coexpression of IL-12β, including
further modification of sugar moieties for IL-12α (25, 27, 30,
31, 35, 36). The same behavior was observed for IL-12α and
IL-23α containing DiazK at different positions. When
expressed alone in HEK293T cells, subunits were retained in
cells. When IL-12β was cotransfected, IL-12α and IL-23α
were secreted together with IL-12β (Fig. 1, D and E, right
panels), showing that DiazK incorporation for photo-
crosslinking is a suitable tool to query their chaperone
repertoire.

Using this approach, we could detect several crosslinked
species for IL-12α containing a DiazK moiety, which were
present exclusively if the cells were UV irradiated and inde-
pendent of the presence of the C-terminal FLAG epitope tag
(Figs. 2, A and B, S2, A–C and S3A). Importantly, some distinct
crosslinked species could be detected for different positions of
DiazK incorporation. Amber suppression did not interfere
with IP, and the crosslinked species could generally be coim-
munoprecipitated (Figs. 2, A and B, S2, B and C and S3A). A
similar behavior was observed for IL-23α (Figs. 2, C and D and
S2, D–F). Together, this setup should thus allow downstream
MS analyses. For IL-12α, we focused on two constructs that
showed the presence of a significant number of crosslinks and
covered different positions, whereas for IL-23α, one cross-
linking position within its first α-helix was used (Figs. 2, A–D
and S3A) since this first α-helix has been shown to serve as a
chaperone recognition site (25). MS analyses revealed a large
number of proteins in the immunoprecipitated samples of IL-
12α and IL-23α (Figs. 2, E and F and S3B; Table S1). Some
interactions were dependent on photocrosslinking, showing
that this approach extends the interactome that can be
detected by MS (Fig. S3, C–E). To identify IL-12α and IL-23α
ER chaperones and quality control factors among the identi-
fied proteins, we used suitable Gene Ontology (GO) term
annotations to filter the interactomes (for details, see the
Experimental procedures section).
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Figure 1. Establishment of amber suppression for site-specific photocrosslinking of IL-12α and IL-23α. A, the biogenesis of IL-12 and IL-23 involves
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Oxidoreductases in IL-12/23 biogenesis
Not only multiple overlapping but also distinct ER PDI family
members are involved in IL-12 and IL-23 biogenesis

Our MS analyses identified several ER chaperones inter-
acting with IL-12α and IL-23α, including, for example, the ER
Hsp70 chaperone BiP, the Hsp90 chaperone Grp94 (ENPL),
and the lectin chaperones calreticulin (CALR) and calnexin
(CALX) (Figs. 2, E and F and S3, B–E). Among the IL-12α or
IL-23α interactors, we decided to focus on ER oxidoreductases
because of the key role of oxidative folding in IL-12/IL-23
biogenesis (25–27). We found not only several overlapping
J. Biol. Chem. (2022) 298(12) 102677 3
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Oxidoreductases in IL-12/23 biogenesis
but also distinct PDI family members to interact with IL-12α
or IL-23α (Fig. 2, E and F). To validate and extend our MS
data, for each of the identified interacting PDI family members,
we next assessed interaction with wt IL-12α or IL-23α by co-IP
experiments. In some cases, N-ethylmaleimide (NEM), which
blocks reshuffling of disulfide bonds, was sufficient to preserve
interactions. In other cases, the amine-reactive crosslinker
dithiobis(succinimidyl propionate) (DSP) had to be used,
suggesting that different interactions between the cytokine
subunits and the PDI family members were formed, including
noncovalent ones. All significant interactions with PDI family
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interactome, although not significantly enriched (Table S1).
ERp46 interacted with IL-12α independent of the chemical
crosslinker DSP (Fig. 3A), whereas interaction with IL-23α was
strongly increased in the presence of DSP (Fig. 3B), showing
that although not a significant MS-hit, ERp46 appears to
interact with IL-12α and IL-23α and that complementary ap-
proaches can further extend the MS interactome.

Of note, for interactions that were observable without DSP
as a crosslinker, we could generally detect covalent complexes
between IL-12α and the different PDIs (Fig. 3C) or IL-23α and
the different PDIs (Fig. 3D), respectively. Taken together, as
intended, our workflow succeeded in identifying covalent and
noncovalent chaperone–client complexes (Fig. 3E). Of note,
among the identified PDIs, our approach revealed not only
well-characterized PDI family members (e.g., PDI, ERp57) to
interact with IL-12α and/or IL-23α but also less well-
understood ones, including ERp72 and Sep15, the latter be-
ing a selenoprotein involved in protein quality control (38).
The not only overlapping but also partially distinct PDI family
repertoire, which contained ill-characterized members, led us
to investigate their binding preferences and their role in IL-12/
IL-23 biogenesis in more detail.
Cysteines in IL-12α and IL-23α are recognized differently by
PDI family members

Our photocrosslinking MS approach and its validation by
co-IP experiments revealed multiple PDI family members to
interact with IL-12α and IL-23α. This raises the question if the
identified PDI family members recognized the same or
different cysteines within these clients in cells. To address this
question, we generated a panel of IL-12α mutants. We
replaced either cysteine 96, which forms an interchain disulfide
bond with IL-12β within IL-12, or each pair of cysteines that
form one of the three internal disulfide bonds in IL-12α by
serines (Fig. 4A) (27, 28). In addition, in one mutant, all cys-
teines were replaced by serines. These mutants were used to
analyze interactions with ERp72, ERp5, and ERp46, which all
formed covalent complexes with IL-12α (Fig. 3, C and E) and
are thus suitable to assess their cysteine-binding specificities.
For the cysteine-free IL-12α mutant, hardly any binding to the
three queried PDIs was detectable (Fig. 4B). Since no cross-
linkers but only NEM to avoid disulfide bond reshuffling was
used in this experiment, this finding indicates the absence of
any stable chaperone-like interactions between IL-12α and
ERp72, ERp5, or ERp46. In contrast, each of the cysteine
mutants still bound to the PDIs, but with different effects on
binding: ERp72 had a preference for the cysteines forming
disulfide bond 1 and 3 within IL-12α, ERp5 preferred cysteines
forming disulfide bonds 2 and 3, and ERp46 preferred the
cysteines forming disulfide bond 2 (Fig. 4B). None of these
three PDIs showed reduced binding upon mutation of the
interchain disulfide bond–forming cysteine 96 (Fig. 4, A and
B). For IL-23α, we analyzed interaction with ERp5 analogously.
In this case, binding was only preserved if the cysteines
forming the single disulfide bond in IL-23α were mutated to
6 J. Biol. Chem. (2022) 298(12) 102677
serines, indicating a preference of ERp5 for the three free
cysteines in IL-23α (Fig. 4, C and D).

PDI family members stabilize unassembled cytokine subunits
and improve cytokine secretion

Our comprehensive MS and biochemical analyses revealed
not only several overlapping but also distinct ER PDI family
members to interact with IL-12α and IL-23α, respectively. To
analyze functional effects of these different PDI family mem-
bers on IL-12 and IL-23 biogenesis, we performed siRNA-
mediated knockdowns of the individual PDI family members.
None of the knockdowns caused pronounced ER stress as
measured by the activation of the unfolded protein response
(UPR) (Fig. S4A). We thus assessed effects on protein stability
in cycloheximide (CHX) translational shut-off experiments,
individually knocking down each PDI family member we had
found to interact with IL-12α or IL-23α, respectively. Knock-
down of any of the PDI family members interacting with IL-
12α led to its faster degradation (Fig. 5, A, B and D). For
ERp46, however, the effect of knockdown on protein stability
was only very weak. For others, for example, ERp5, degradation
was accelerated almost twofold (Fig. 5, A, B and D). For IL-23α,
we also tested a subset of the PDIs in similar experiments,
including not only all those we found to interact with IL-23α
(ERp46, ERp5, and ERp72; Fig. 3E) but also one that we did not
find to strongly associate with this subunit (ERp57; Fig. 3E).
Similar to what we had observed for IL-12α, knockdown of
each of the interacting PDI family members accelerated IL-23α
degradation. In contrast, knockdown of ERp57 did not accel-
erate IL-23α degradation (Fig. 5, C and D).

Based on these findings, we proceeded to analyze secretion
levels of heterodimeric IL-12 or IL-23, respectively, under the
same PDI knockdown conditions. In contrast to a more rapid
degradation of isolated α subunits, no effect of single PDI
knockdown on the secretion of the heterodimeric IL-12 or IL-
23 was observed (Figs. 6, A and B and S5, A and B). To assess
possible compensatory effects of individual PDI members, we
thus simultaneously knocked down combinations of three in-
dividual PDI family members we had found to interact with IL-
12α/IL-23α and assessed secretion of the heterodimeric ILs.
Again, no significant ER stress induction was detectable
(Fig. S4B). In this case, when three PDIs were knocked down
simultaneously, although IL-23 remained unaffected, a signif-
icant decrease in IL-12 secretion by around 20% could be
observed (Fig. 6, C–E).

Discussion

IL-12 and IL-23 are key cytokines in the human immune
systems and highly relevant molecules in the clinics (24). At
the same time, they are demanding clients of the ER folding
machinery. The human α subunits, IL-12α and IL-23α, are
unfolded in isolation and depend on the shared β subunit IL-
12β for structure formation and secretion of the bioactive
heterodimeric cytokines (25, 27, 30–32, 35, 39). Both human α
subunits contain several cysteine residues, five in the case of
IL-23α and seven for IL-12α. In IL-12α, these form three
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Oxidoreductases in IL-12/23 biogenesis
intrachain and one interchain disulfide bond to IL-12β (28). In
IL-23α, the five cysteines form one intrachain and one inter-
chain disulfide bond, whereas two cysteines remain unpaired
(29). Correct disulfide bond formation is important for IL-12/
IL-23 to be secreted (25, 27). Their unfolded nature prior to
assembly and their complex oxidative folding render IL-12α
and IL-23α highly dependent on the ER folding machinery.
Using site-specific photocrosslinking coupled to MS, this study
is the first comprehensive analysis of the chaperone repertoire
that acts on the IL-12 and IL-23 cytokine α subunits,
J. Biol. Chem. (2022) 298(12) 102677 7
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Oxidoreductases in IL-12/23 biogenesis
significantly extending previous studies (25, 40, 41). Among
the interacting chaperones, we find not only overlapping but
also distinct PDI family members to engage IL-12α or IL-23α
(Fig. 6F). Of note, our photocrosslinking approach allows to
identify interactions with potential PDI family members that
do not covalently engage their clients, for example, ERp29, and
thus extends the repertoire of interactors that can be
identified.

We generally observe a stabilizing effect of PDI family
members on the unassembled α subunits, similar to what, for
example, had been observed for ERp57 and the prion protein
(42). A possible explanation is that PDI binding protects the
unfolded α subunits from premature ERAD, a process for
which our MS analyses also provide relevant hits, including
XTP3B (ERLEC) and OS9 for IL-12α (Fig. 2E and Table S1). In
contrast to the pronounced effects on isolated α subunits, no
effects of individual PDI knockdowns on secretion of hetero-
dimeric IL-12/IL-23 was observed when IL-12β was coex-
pressed (Fig. 6F). Although this may depend on relative
expression levels of individual subunits, it argues that α:β as-
sembly is a fast and efficient process; hence, the role of the β
subunit as a folding matrix may overcome the need for sta-
bilizing unassembled α subunits for IL-12 and IL-23. For the
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more labile IL-35, that is not disulfide-linked (43), this may be
different. Our findings are in agreement with the observation
that although IL-12α and IL-23α misfold in isolation and form
incorrect disulfide bonds, misfolding is not observed upon
coexpression of IL-12β (25, 27). Even though our work was
performed by transient transfections in nonimmune cells and
thus awaits further studies in endogenous producers, this
raises the question of why such a complex network of chap-
erones caters for IL-12α and IL-23α if heterodimerization
appears to be highly efficient. One explanation may be not only
the ubiquitous expression of IL-12α (44) and its pairings with
other subunits, for example, EBI3 to form IL-35 (43, 45) but
possibly also autonomous functions of IL-12α as an anti-
inflammatory molecule (46), together requiring a tight regu-
lation of secretion. Another likely explanation is that immune
cells must regulate IL-12 versus IL-23 assembly. Since IL-12
and IL-23 share the same β subunit, and some cells express
all three proteins (see e.g., (47)), their biogenesis has to be
chaperoned in the ER to allow for specific downstream im-
mune responses. The large number of ER chaperones, and in
particular ER PDI family members our study identifies, testifies
to this notion. Our work also shows that combined depletion
of several PDI family members can selectively reduce IL-12
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Oxidoreductases in IL-12/23 biogenesis
secretion without affecting IL-23 secretion (Fig. 6F). It may be
explained by the larger number of disulfide bonds IL-12α has
to form in comparison to IL-23α (25, 27), and its dependency
on different branches of the ER folding machinery, IL-12α
being an N-glycoprotein, whereas IL-23α is not (36).

In addition to insights into the chaperoning of immune
signaling proteins, our study contributes to our understanding
of the ER PDI family. A surprising finding we make is that
most PDI family members seem to have a stabilizing effect on
our two investigated client proteins, arguing against a possible
mutual compensation in this function. This is in agreement
with recent insights into different binding characteristics of
PDI family members (37) and synergistic functions in protein
folding (48). A possible explanation is that different folding
states, each prone to ERAD, are recognized by the different
PDIs or that binding to multiple PDIs shifts the competition
between ERAD and stabilizing unfolded proteins toward the
latter. This notion, that different PDIs recognize different
J. Biol. Chem. (2022) 298(12) 102677 9
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Oxidoreductases in IL-12/23 biogenesis
features of their clients, is in agreement with our findings that
mutating cysteines individually or pairwise within IL-12α or
IL-23α differentially affects binding to ERp72, ERp5, and
ERp46. Protein folding itself also modulates PDI dependency
(49). The fact that IL-12α and IL-23α cannot fold to a native
state autonomously may thus contribute to their strong PDI
dependency in isolation, where misfolding and mispairing of
cysteines are to be chaperoned, and multiple folding in-
termediates exist in cells (25, 27, 49). For IL-23α, it is note-
worthy that ERp44, an ER–Golgi intermediate compartment
PDI, can recognize the same free cysteines in IL-23α, which
our study reveals to be bound by ERp5—and which are close to
a BiP-binding site (25). These free cysteines in IL-23α become
buried upon folding (25), together highlighting these as
important molecular motifs of folding and assembly control
for IL-23. Despite these insights, it should be noted that for
several of the PDI family members, we find to interact with IL-
12α or IL-23α, functions yet remain to be determined. IL-12α
or IL-23αmay prove to be very valuable and medically relevant
clients for this. One example is Sep15, an interactor of UGGT
(50), that has been described as a gatekeeper not only to
maintain misfolded immune proteins in the ER (38) but also
has redox activity (51). Of note, our data show that IL-12α
interacts with both, Sep15 and UGGT1/2, which qualifies it as
an interesting client to further define the functions of Sep15.

Taken together, our study reveals a complex network of PDI
family members that act on the highly disulfide-bonded
glycoprotein IL-12α. The less disulfide-bonded non-
glycosylated IL-23α interacts with significantly less PDI family
members. The PDI family members recognize different cys-
teines in their clients and thus seem to act synergistically, not
redundantly, when it comes to stabilizing the unassembled
incompletely folded cytokine subunits. Despite this, only when
multiple PDIs are depleted is the secretion of heterodimeric
IL-12, but not IL-23, selectively affected, which may be rele-
vant in the light of PDI inhibitors entering the clinic (52–54).
Experimental procedures

Cloning, DNA constructs, and siRNA

The piggybac (pPB) vector containing DiazKRS with mu-
tations (Methanosarcina mazei: Y306M, L309A, and C348A)
(55) has been described previously (33). Amber suppression
sites were inserted in IL-12α/23α constructs by site-directed
mutagenesis PCR using Pfu (Promega) DNA polymerase in a
pSVL vector backbone. “TAG”-replaced coding sequences
were subcloned into the pPB vector as reported previously (56)
in-frame downstream of the EF-1 promoter. Constructs
equipped with a C-terminal FLAG tag were subcloned in a
similar approach separated by four (IL-12α) or five (IL-23α)
GS-linker repeats. Other plasmids used in this study were an
IL-12β construct in the pcDNA3.1(+) vector (56) and immu-
noglobulin γ1 heavy chain in pSVL, a kind gift from Linda M.
Hendershot, St Jude Children’s Research Hospital. All con-
structs were verified by sequencing. Custom oligos (Sigma–
Aldrich) were designed using the SnapGene tool fulfilling
optimal parameters for PCR mutagenesis.
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The following human gene-directed Silencer Select siRNAs
were purchased from Thermo Fisher Scientific.
Mammalian cell culture

HEK293T cells were subcultured every 2-3 days in Dul-
becco’s modified Eagle’s medium containing L-Ala-L-Gln (AQ;
Sigma–Aldrich) supplemented with 10% v/v fetal bovine
serum (Gibco) and 1% v/v antibiotic/antimycotic solution
(25 μg/ml amphotericin B, 10 mg/ml streptomycin, and 10,000
units of penicillin; Sigma–Aldrich) under standard conditions
(37 �C and 5% CO2 in a humidified incubator). Cells were
routinely tested by PCR for the absence of mycoplasma
contamination.

Transient transfections

Transient transfections were carried out using GeneCellin
(BioCellChallenge) or Lipofectamine 3000 (Thermo Fisher)
according to the manufacturers’ instructions. Cells were grown
in poly-D-lysine-coated 35 mm dishes (Corning) to a con-
fluency of 60 to 70%. About 1 μg of IL-12α or IL-23α construct
in combination with 1 μg of DiazKRS or 1 μg of the α subunits
alone were delivered to cells for expression tests and CHX
chase experiments, respectively. For PDI co-IP (4 μg of IL-12α
or IL-23α) or MS analysis (1 μg of pPB IL-12α or IL-23α
“TAG”-replaced constructs or pPB empty vector and 1 μg of
DiazKRS), cells were seeded on poly-D-lysine-coated 60 mm.
About 2 μg of total DNA in a 1:2 ratio (α subunit:IL-12β) in
the presence of 0.5 μg DiazKRS, where indicated, was trans-
fected for in cellulo secretion and assembly tests. Cells were
lysed 24 to 48 h post-transfection.

For siRNA-mediated knockdown experiments, 25 nM of
each individual siRNA was added to cells using Lipofect-
amine’s RNAiMAX (Thermo Fisher) protocol and incubated
for another 24 h prior to DNA transfection. Combined
knockdowns were achieved by adding three different siRNAs
to a final concentration of 50 nM. siRNA stocks at 10 μM were
prepared using nuclease-free water.

Cell harvesting and immunoblotting

Cells were washed in ice-cold PBS (Sigma–Aldrich) and
lysed in an appropriate amount of radioimmunoprecipitation
assay buffer (50 mM Tris–HCl [pH 7.5], 150 mMNaCl, 1% NP-
40, 0.1% SDS, 0.5% NaDOC, 1× Roche complete protease in-
hibitor without EDTA) for 20 to 30 min on ice. For UPR
activation tests, cell lysis was performed using either Triton
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lysis buffer (50 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1 mM
EDTA, 1% Triton X-100, 1× Roche complete protease inhibitor
without EDTA, and 1× SERVA phosphatase inhibitor mix) or
NP-40 lysis buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl,
0.5% NaDOC, 0.5% NP-40 substitute, 1× Roche complete
protease inhibitor without EDTA, and 1× SERVA phosphatase
inhibitor mix). About 20 mM NEM (Sigma–Aldrich) was
added to lysis steps where indicated. Cell debris was pelleted by
centrifugation at 20,000g at 4 �C for 15 min. Whole cell lysate/
input or immunoprecipitated samples were supplemented with
Laemmli containing either 10% β-mercaptoethanol (β-Me;
reducing) or 100 mM NEM (nonreducing) and heated to 95 �C
for 5 min or, in the case of activating transcription factor 6
(ATF6) sample processing, to 37 �C for 30 min. Proteins were
then separated using SDS-polyacrylamide gels and transferred
to polyvinylidene difluoride membranes (Bio-Rad) by wet
electroblotting (overnight at 30 V and 4 �C). Thereafter,
membranes were blocked for at least 3 h (at room temperature)
with MTBST (25 mM Tris–HCl [pH 7.5], 150 mM NaCl, 5%
skim milk powder, and 0.1% Tween) or 5% w/v bovine serum
albumin (BSA) in Tris-buffered saline with Tween-20 under
constant agitation. Proteins of interest were detected using
anti-IL-12α (Abcam; catalog no.: ab133751, 1:500/1:1000 dilu-
tion in MTBST), anti-IL-23α (BioLegend; catalog no.: 511202,
1:500 dilution in MTBST), anti-IL-12β (Abcam; catalog no.:
ab133752, 1:500 dilution in MTBST), anti-Hsc70 (Santa Cruz;
catalog no.: sc-7298, 1:1000 dilution in MTBST), anti-Sep15
(Abcam; catalog no.: ab124840, 1:200 dilution in MTBST),
anti-ERp18 (Abcam; catalog no.: ab134938, 1:500 dilution in
MTBST), anti-ERp29 (Abcam; catalog no.: ab11420, 1:1000
dilution in MTBST), anti-ERp46 (Proteintech; catalog no.:
19834-1-AP, 1:1000 dilution in MTBST), anti-PDIA6 (Pro-
teintech; catalog no.: 18233-1-AP, 1:1000 dilution in MTBST),
anti-ERp57 (Abcam; catalog no.: ab13506, 1:1000 dilution in
MTBST), anti-CALR (Abcam; 1:1000 dilution in MTBST),
anti-ERp72 (Proteintech; catalog no.: 14712-1-AP, 1:1000
dilution in MTBST), anti-ATF6 (Abcam; catalog no.: ab122897,
1:500 dilution in MTBST), anti–eukaryotic translation initia-
tion factor 2α (eIF2α; Cell Signaling; catalog no.: 9722, 1:1000
dilution in BSA), anti-phospho-eIF2α (Cell Signaling; catalog
no.: 9721, 1:500 in BSA), and anti-BiP (Cell Signaling; catalog
no.: 3177, 1:500 dilution in MTBST). Membranes were next
probed with species-specific secondary antibodies coupled to
horseradish peroxidase: goat antimouse immunoglobulin G
(IgG) (Santa Cruz; catalog no.: sc-2031), mouse-IgGκ BP (Santa
Cruz; catalog no.: sc-516102), or goat anti-rabbit IgG (Santa
Cruz; catalog no.: sc-2054/sc-2357). Bands were detected by
enhanced chemiluminescence (ECL Prime) on a Fusion Pulse 6
imager (Vilber Lourmat).
Incorporation of DiazK

Where specified, N6-((2-(3-methyl-3H-diazirin-3-yl)ethoxy)
carbonyl)-L-lysine (DiazK, (33)) was added to the complete
Dulbecco’s modified Eagle’s medium at a concentration of
0.25mM (MS experiments) or 1mMduringDNA transfections.
A 100 mM DiazK stock solution was prepared by dissolving
powder form of DiazK in 100mMTFA/H2O, sterile filtered, and
stored at −20 �C. Before incubations, an equivalent amount of
NaOH was added to the cell culture medium to neutralize pH.

Determination of protein removal rates

Translational arrest (chase) was carried out 24 to 48 h post-
gene transfection with 50 μg/ml CHX (Sigma–Aldrich) added to
cells for the indicated time points. Linear regression fittings on
semilog curves were used to calculate protein half-lives using
plots of protein abundance over time (0 h set to 100%).

In situ photocrosslinking/chemical crosslinking, pull-down
and co-IP workflows

Cells expressing the desired constructs for DiazK incorpo-
ration were washed twice with PBS and subjected to a broad-
emitting UV lamp (Vilber VL-215.L; 2 × 15 W, 365 nm) for
30 min in PBS. During this procedure, culture plates were
placed on ice under cardboard covers with occasional swirling.
Reactions without irradiation served as negative controls.
Thiol-cleavable DSP (Thermo Fisher) crosslinks were also
performed in intact cells. A 25 mM stock solution was pre-
pared by reconstituting 1 mg of desiccated DSP in 100 μl dry
dimethyl sulfoxide. In brief, cells were first washed in PBS and
then in crosslinking buffer (25 mM Hepes–KOH, pH 8.3,
125 mM KCl) on ice before incubation with 0.8 mM DSP in
the same buffer for 1 h 20 min and quenched using 100 mM
glycine for 20 min on ice checking for even dispersion. Cell
lysis was performed as described previously.

To study interactors of IL-12α/23α via enrichment of cell
lysates, purification from photocrosslinked/chemically cross-
linked samples was performed using anti-FLAG affinity gel
(Sigma). The same amount of isotype control slurry (mouse
IgG-Agarose; Sigma) was used to discriminate positive hits from
unspecific binding to antibody and beads. Alternatively, ATF6
samples were initially precleared for 30 min and pulled down
overnight using 2 μg of antibody followed by immobilization on
protein A/G agarose beads (Thermo Fisher) for 1 h at 4 �C,
while rotating and eluted with 2× Laemmli with 10% v/v β-Me
after washing three times with NP-40 wash buffer (50 mM Tris–
HCl, pH 7.5, 400 mM NaCl, 0.5% NaDOC, and 0.5% NP-40
substitute) and centrifugation in each round (7000g, 1 min at
4 �C). Of note, in covalent complex (nonreducing IP) SDS-
PAGE, 10% v/v NEM was added instead of β-Me. Beads were
washed twice with radioimmunoprecipitation assay buffer and
three times with PBS in the case of MS measurements.

Sample preparation for MS

After enrichment, proteins were reduced and digested on-
beads in 25 μl 50 mM Tris–HCl, pH 8.0 containing 5 ng/μl
sequencing grade trypsin (Promega), 2 M urea, and 1 mM
DTT for 30 min at 25 �C and with shaking at 600 rpm. Next,
100 μl 50 mM Tris–HCl, pH 8.0 containing 2 M urea, and
alkylating 5 mM iodoacetamide were added (30 min incuba-
tion at 25 �C under shaking at 600 rpm). Digestion took place
overnight at 37 �C with shaking 600 rpm. The following day,
digestion was stopped by addition of formic acid (FA, 0.5% v/v
J. Biol. Chem. (2022) 298(12) 102677 11
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final amount). The beads were pelleted, and the supernatant
was desalted using double layer C18-stage tips (Agilent
Technologies, Empore disk-C18, 47 mm) equilibrated with
70 μl methanol and three times aqueous 0.5% v/v FA. Samples
were loaded and washed three times with 70 μl aqueous 0.5%
v/v FA and eluted three times with 30 μl 80% v/v acetonitrile
(ACN), 20% v/v H2O, and 0.5% v/v FA. The eluate was
lyophilized in vacuo, resuspended in 25 μl aqueous 1% v/v FA,
pipetted up and down, vortexed, and sonicated for 15 min.
Finally, the peptide solution was passed through a poly-
vinylidene difluoride filter (Millipore; 0.22 μm pore size).

MS analysis
Three replicates of photocrosslink/co-IP samples on mu-

tants and wt IL-12α/23α as well as controls transfected with
empty vectors were analyzed via LC–MS/MS using an Ulti-
Mate 3000 nano HPLC system (Thermo Fisher) equipped with
an Acclaim C18 PepMap100 75 μm ID × 2 cm trap (Thermo
Fisher) and an Aurora C18 separation column (75 μm ID ×
25 cm, 1.6 μm; IonOpticks) coupled to a CaptiveSpray source
equipped TimsTOF Pro mass spectrometer (Bruker). Samples
were loaded onto the trap column at a flow rate of 5 μl/min
with aqueous 0.1% TFA and then transferred onto the sepa-
ration column at 0.4 μl/min. Buffers for the nano-
chromatography pump were aqueous 0.1% FA (buffer A) and
0.1% FA in ACN (buffer B). The gradient length on the Tim-
sTOF Pro was 73 min, whereas ACN in 0.1% FA was stepwise
increased from 5% to 28% in 60 min and from 28% to 40% in
13 min, followed by a washing and equilibration step of the
column. The TimsTOF Pro was operated in parallel
accumulation–serial fragmentation (PASEF) mode. Mass
spectra for MS and MS/MS scans were recorded between 100
and 1700 m/z. Ion mobility resolution was set to 0.85 to
1.40 V s/cm over a ramp time of 100 ms. Data-dependent
acquisition was performed using ten PASEF MS/MS scans
per cycle with a near 100% duty cycle. A polygon filter was
applied in the m/z and ion mobility space to exclude low m/z,
singly charged ions from PASEF precursor selection. An active
exclusion time of 0.4 min was applied to precursors that
reached 20,000 intensity units. Collisional energy was ramped
stepwise as a function of ion mobility (57). The acquisition of
all MS spectra on the TimsTOF instrument was performed
with the Compass HyStar software, version 6.0 (Bruker).

UPR activation tests
To observe possible effect of PDI siRNAs on ER stress, cells

transfected with each siRNA were checked for upregulation of
intracellular BiP levels, phosphorylation of eIF2α (protein ki-
nase R-like ER kinase branch) and ATF6 N-terminal cleavage
(ATF6 branch) using immunoblots. HEK293T cells incubated
with 10 mM DTT (Sigma, 1 h) or 5 μg/ml tunicamycin (Sigma,
4–6 h) before cell lysis served as positive controls.

Software and statistical analyses

IL-12 and IL-23 structures were modeled in silico with
YASARA Structure (58) for missing loops and energy
12 J. Biol. Chem. (2022) 298(12) 102677
minimized (steepest descent). Sites for replacement to amber
codons were selected on the basis of residue solvent acces-
sibility (PDBePISA server (59)), mutation stability prediction
(SDM (60) and DynaMut servers (61)), and interfaces with the
IL-12β subunit and/or IL-23 receptor (28, 29, 62). Other
known experimental constraints like secondary structure
flexibility/lesions/chaperone-binding sites (25) were also
taken into account. Available crystal structural data (Protein
Data Bank codes: 3HMX, 1F45, 3DUH, 5MXA, and 5MZV)
were inputs for the aforementioned analyses and visualized
with PyMOL (www.pymol.org). Western blot raw images
were processed for brightness and contrast in ImageJ (63) or
Adobe Photoshop. Chemiluminescence band intensity
quantifications were performed using the Bio-1D (Vilber
Lourmat) software. For normalization of PDI co-IP, IP signals
were background subtracted if unspecific signals were
detected for empty vector controls. IP signals of wt were set
to 1, and chaperone IP was divided by respective FLAG sig-
nals, thus amount of IL subunit, to obtain normalized PDI co-
IP ratios. Statistical analyses and graph fittings were per-
formed with Prism 7 (GraphPad) software as stated in the
figure legends.
Statistical analyses of MS data

MS raw files were analyzed with MaxQuant software
(version 2.1.0.0), and the default settings for TimsTOF files
were applied except that the TOF MS/MS match tolerance was
set to 0.05 Da. Searches were performed with the Andromeda
search engine embedded in the MaxQuant environment
against the UniProt human protein database (taxon identifier:
9606; downloaded September 2021; number of entries:
20,371). The following parameter settings were used: peptide
spectrum match and protein false discovery rate 1%; enzyme
specificity trypsin/P; minimal peptide length: 7; variable
modifications: methionine oxidation, N-terminal acetylation;
and fixed modification: carbamidomethylation. The minimal
number of unique peptides for protein identification was set to
2. For label-free protein quantification, the MaxLFQ algorithm
was used as part of the MaxQuant environment: (label-free
quantitation) minimum ratio count: 2; peptides for quantifi-
cation: unique. Resulting data were further analyzed using
Perseus software, version 1.6.15.0 (64). The rows were filtered
(only identified by site, potential contaminant, reverse), and
label-free quantitation intensities were log2 transformed.
Replicates (n = 3) were grouped, filtered for at least two valid
values in at least one group, and missing values were imputed
for total matrix using default settings. A both sided, two-
sample Student’s t test was performed, and derived p values
were corrected for multiple testing by the method of Benjamini
and Hochberg with a significance level of p = 0.05. Volcano
plots were generated by plotting log2 (fold change)
against −log10 (p value). ER chaperones were detected
searching for GO terms cellular compartment = ER, biological
process = protein folding (GO numbers: 0006457, 0071712,
0006986, 0030433, 0034975, and 0061077) and molecular
function = PDI activity with the help of the GO annotation file

http://www.pymol.org
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for Homo sapiens downloaded from UniProt (August 2022)
(65). In addition, all ER proteins were manually scrutinized for
possible PDI family members that have not been annotated as
such with the suitable GO terms. This further added ERp18,
Sep15, and TMX1 to the list.
Data availability

The MS proteomics data have been deposited to the Pro-
teomeXchange Consortium via the PRIDE (66) partner re-
pository with the dataset identifier PXD036463.
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