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ABSTRACT: Thermally activated delayed fluorescence (TADF) materials enable organic light-emitting devices (OLEDs) to
exhibit high external quantum efficiency (EQE), as they can fully utilize singlets and triplets. Despite the high theoretical limit in
EQE of TADF OLEDs, the reported values of EQE in the literature vary a lot. Hence, it is critical to quantify the effects of the factors
on device EQE based on data-driven approaches. Herein, we use machine learning (ML) algorithms to map the relationship between
the material/device structural factors and the EQE. We established the dataset from a variety of experimental reports. Four
algorithms are employed, among which the neural network performs best in predicting the EQE. The root-mean-square errors are
1.96 and 3.39% for the training and test sets. Based on the correlation and the feature importance studies, key factors governing the
device EQE are screened out. These results provide essential guidance for material screening and experimental device optimization
of TADF OLEDs.

■ INTRODUCTION

Thermally activated delayed fluorescence (TADF) materials
have been regarded as the most promising third-generation
emitters, which enable the fabrication of highly efficient
organic light-emitting devices (OLEDs) due to their ability to
utilize single triplets fully.1,2 Compared to phosphorescent
emitters with triplet exciton harvesting capability,3 organic
TADF emitters show great potential in reducing the cost for
commercial applications as they require no noble metal in their
molecular structures.4 At present, TADF OLEDs possess high
external quantum efficiencies (EQEs) with a theoretical limit
beyond 20% and a practical record exceeding 38%.5

Despite the high level of the theoretical limit in EQE of
TADF OLEDs, the reported values of EQE in the literature
vary a lot, and many reports have EQEs much lower than 20%.
It is generally considered that EQE is determined by the
following expression:

EQE PLQYOC rη η γ= × × ×

where ηOC is the out-coupling efficiency, ηr is the ratio of the
radiative excitons and highly depends on the reverse
intersystem crossing (RISC) efficiency, γ represents the
electron−hole balance, and PLQY is the photoluminescence
quantum yield. Many factors affect these parameters, including
the material and the device structural ones. For example, ηOC is
determined by both the out-coupling technologies on the
device and the dipole orientation of the TADF emitter.6,7

Moreover, the factors affecting EQE may restrain each other.
For instance, a host material enabling a low hole injection
barrier (HIB) may induce a high electron injection barrier
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(EIB), leading to modified electron−hole balance conditions
in the emission layer (EML). As a result, to get a high EQE, it
is rather complex for device design and material screening as
there are so many material factors and device structural factors.
Therefore, exploring the key factors governing the EQE and
quantificationally mapping these factors with EQE are crucial
to figuring out a whole picture for the approaches to making
highly efficient TADF OLEDs.
Experimental evidence for the key factors is often reported

but rarely quantified. Researchers need to do lots of trial and
error experiments to quantify the relation between the factors
and the EQE. Meanwhile, the real impact of the factors on
EQE is challenging to assess in experimental studies, as the
studies cannot adjust the factors solely and independently.
Many parameters interplay with each other, which leads to
deviations in evaluating the importance of a specific factor. For
example, to assess the effect of PLQY on EQE, possible
approaches involve altering the TADF emitters and/or the
host materials and modifying the preparation parameters.
These approaches may simultaneously change other factors
like the molecular arrangement of the TADF emitters and/or
the carrier mobility of the emission layer, leading to the
changes in ηOC and ηr. Furthermore, an experimental
investigation is challenging to give a quantified model to
predict the device performance. Hence, it is critical to explore

the mapping relation between the factors and the EQE of the
TADF OLEDs based on data-driven approaches.
In the past decade, the machine learning (ML) approach has

attracted increasing attention in the scientific field,8−12 which
can learn from the existing results and provide the relation
between the input features to the output performance. Hence,
it can establish the mapping relationship and make predictions
with small errors. In this context, researchers in the material
field use ML to quantify the properties (e.g., the electronic
energy levels) of organic/inorganic materials with their
structural features,8−10 explore new materials for particular
applications,11,12 etc. In terms of devices, significant efforts are
made on solar cells,13−16 which provide some guidelines for
material screening and device optimization of organic solar
cells, perovskite solar cells, and CIGS solar cells. A prior study
focuses on the blue phosphorescent OLEDs.17 Though the
learning performance still suffers from a large error, this study
shows that ML can assist the device design of blue
phosphorescent OLEDs. These preliminary demonstrations
present the advantages of ML in exploring the correlations in
the devices and providing guidelines for device optimization.
Hence, in this work, we attempt to use the ML approach to

explore the quantificational relation between the EQE of
TADF OLEDs and their material and device structural factors,
aiming to screen out the key factors governing the EQE. To
make the learning results more referable for experimental

Figure 1. Schematic device structure (a) and energy level diagram (b) of TADF OLEDs.

Table 1. List of the Screened Material and Device Structural Factorsa

abbreviation full name unit

EQE external quantum efficiency %
PLQY photoluminescence quantum yield %
WL the electroluminescence peak wavelength of the TADF OLEDs nm
EL the prompt exciton lifetime of the TADF emitter ns
ΔEST the energy difference between the singlet and the triplet energy levels of the TADF emitter eV
MW the molar weight of the TADF emitter g/mol
HP the polarity of the host material
HTg the glass transition temperature (Tg) of the host °C
EHO the energy difference of the highest occupied molecular orbital (HOMO) energy level between the host and the TADF guest eV
ELU the energy difference of the lowest unoccupied molecular orbital (LUMO) energy level between the host and the TADF guest eV
ETT the classification of the energy difference of the triplet state between the host and the TADF guest, which is confined (the host has a larger

triplet energy, or the band gap of the host is 1 eV or more larger than that of the guest) or nonconfined (others).
GR the doping ratio of the TADF guest in the emission layer (EML) wt %
TEM thickness of the EML nm
TET total thickness of the hole blocking layer (HBL) and the electron transport layer (ETL)/electron injection layer (EIL) nm
CWB the electron injection barrier from the cathode to the ETL/EIL eV
EIB the electron injection barrier, calculated using the energy difference between the LUMO values of the host and the HBL or the ETL/EIL eV
HBB the hole blocking barrier, calculated using the energy difference between the HOMO values of the host and the HBL or the ETL/EIL eV
HIB the hole injection barrier, calculated using the energy difference between the HOMO values of the HTL and the host eV

aEQE is the output, while others are the input features.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06820
ACS Omega 2022, 7, 7893−7900

7894

https://pubs.acs.org/doi/10.1021/acsomega.1c06820?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06820?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06820?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06820?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06820?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


optimization, we established the dataset from various
experimental reports. It is evident that the most critical factors
include PLQY, the emission wavelength, the ΔEST of the
TADF emitter, and the dipole orientation descriptors, which
shall be paid special attention in device optimization.

■ RESULTS AND DISCUSSION
The typical device architecture and the energy level diagram of
TADF OLEDs are shown in Figure 1. We screened 17 factors,
including material information of the TADF emitter, the
properties of the host and the emission layer (EML), and the
device structural factors (interfaces and transport layers), as
listed in Table 1. The output performance is the maximum
external quantum efficiency (EQE).
The dataset is based on experimental results. First, we

searched for the recently published experimental results of the
OLEDs with TADF materials as the emitter. To avoid the
deviation that existed in film preparation, we only considered
the devices fabricated by thermal evaporation. In addition,
devices with out-coupling structures are excluded. Thus, we
got approximately 300 data points (listed in Table S1) from
the papers (the references are listed in Table S1). Second, we
subtracted the values of the factors listed in Table 1 from
information listed in Table S1. Here, to avoid inconsistency
among different reports, the energy levels of the common
materials were assigned to the same values for the same
material other than the inconsistent values among various
reports. For specific materials, the values reported in the
corresponding references were used. The detailed values are
also listed in Table S1. In addition, the glass transition
temperature of the host (HTg) was referred to the
literature.7,18−20 The molecular weight (MW) of the TADF
emitter was calculated from its molecular structure.
We first analyzed the data distribution of the factors and the

EQE of the TADF OLEDs. Data summaries are listed in Table
S2, and violin plots are shown in Figure S1. In general, the
commonly obtained EQE and PLQY are in the range of 15−
22% and 80−100%, respectively. They demonstrate the unique
advantages of TADF materials used as emitters. However, it is
surprising that the reports with EQE values less than 10% are
so much despite the highest efficiency exceeding 38%. Other
factors also show significant deviations, as can be seen from
Figure S1. The significant deviations in these factors make
manually exploring the key factors much confusing; hence, a
data-driven, clear, and full view of the factors governing the
EQE is critical.
Then, we use the correlation matrix to learn the linear

correlation among the factors and the EQE. The results are
depicted in Figure 2. Overall, to get a high EQE, a high PLQY
is essential, showing a strong linear correlation with EQE. A
small ΔEST, a short EL, a high HTg, a reasonably large HBB
and EIB, and a small CWB and HIB lead to a high EQE,
whereas other factors seem to have a negligible linear
correlation with EQE.
To clearly show the relationship between the factors and the

EQE, we plot the statistics of the EQE values changing with
several factors, as shown in Figure 3 and Figure S2.
PLQY and Electroluminescence Wavelength (WL).

From Figure 3a, it is clear that EQE roughly increases with
increasing PLQY; hence, they show a strong positive
correlation (the correlation coefficient is 0.73). Though EQE
shows a small linear correlation coefficient of −0.17 with the
emission peak wavelength (WL), it is notably influenced by the

WL as shown in Figure 3b. In general, sky-blue to yellow
devices in the wavelength scale of 480−550 nm exhibit a
higher EQE, whereas blue (400−480 nm) and red (550−700
nm) devices suffer from a lower EQE. This trend is consistent
with the general knowledge that blue and red devices have
inferior performance to green devices. From experience, the
inferior performance may correlate with the low PLQY of the
TADF material. However, from Figure 3b, it can be seen that
blue and red TADF emitters can achieve a high PLQY of
approximately 100% as their green counterparts. Therefore, the
inferior performances of the blue and red devices are probably
induced by other factors in the devices.

ΔEST and Exciton Lifetime of the TADF Emitters. In
TADF OLEDs, since EQE strongly depends on the reverse
intersystem crossing (RISC) efficiency of the TADF emitters, a
small ΔEST is required to facilitate the efficient RISC process;21

the RISC rate constant (kRISC) can be expressed by the
Boltzmann distribution relation k e E k T

RISC
/ST B∝ Δ , where kB is

the Boltzmann constant and T is the temperature. From Figure
3c, it is clear that most of the TADF emitters have a ΔEST of
0−0.2 eV, and the high EQE (≥30%) is obtained on a scale
less than 0.1 eV. In general, EQE tends to decrease with
increasing ΔEST. On the other hand, nonradiative recombina-
tion processes need to be suppressed to get a high EQE. These
processes are governed significantly by the TADF emitters’
exciton lifetime, and a short radiative lifetime tends to suppress
nonradiative processes. TADF emitters generally have prompt
lifetimes of 0−35 ns, which are much longer than those of the
phosphorescent emitters (several to tens of microseconds).

Correlation between the Host and the TADF Guest:
The Doping Ratio (GR) and the Energy Difference (EHO,
ELU, and ETT). Doping TADF emitters into a host is an
efficient way to get a high EQE benefiting from the suitable
electrical property of the host and the suppressed recombina-
tion among the emitters. The doping ratio typically has an
optimized value for the specific host−guest system and device
structure. From Figure 3d, it shows that the guest ratio differs
in an extensive range, while a relatively low ratio (around 10%)
tends to enable both a high (≥30%) and low (≤10%) EQE.

Figure 2. Correlation matrix of the material and device structural
factors influencing the device EQE. The values represent the Pearson
correlation coefficient (r). A high and positive value means a strong
positive relation.
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Therefore, the linear correlation coefficient between EQE and
the GR is much tiny (−0.02). Essential requirements for the
host generally include two aspects: (1) the host shall have a
larger triplet energy than the TADF guest, and (2) the host is
better to be bipolar to make the carrier distribution much
balanced in the EML. Indeed, bipolar hosts tend to enable a
higher EQE with a high mean value, while the electron-type
host performs inferiorly. However, the effects of the energy
differences between the host and the guest (EHO, ELU, and
ETT) on EQE are indefinable from their correlations shown in
Figure S2a.

Energy Barriers for Electrons and Holes (HIB, EIB,
HBB, and CWB). The energy barriers for electrons and holes
are also considered to be important in determining the device
efficiency and the turn-on voltage. Reasonable values for
energy barriers are expected to promote the carrier balance in
the EML, which are generally considered factors in material
screening. Therefore, they show strong correlations with each
other. In terms of their effects on EQE, a larger EIB/HBB and
a smaller CWB/HIB favor a high EQE. From the statistics of
these barriers versus EQE (Figure S2b), a small HBB (<0 eV)
and a large CWB/HIB (>0.75 eV) tend to lower the EQE,

Figure 3. (a−f) Effects of different factors on EQE, (a) PLQY, (b) electroluminescence wavelength (WL), (c) ΔEST and prompt exciton lifetime
(EL), (d) guest doping ratio (GR), and (e) host polarity (HP). (f) Effects of the dipole orientation descriptors (MW and HTg) on the EQE/PLQY
ratio.
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whereas a large EIB has no such harmful effect. As most of the
host materials are prone to transport holes, electrons are more
difficult to be transported to the HTL/EML interface, while
holes are facilely transported to the EML/HBL (or ETL)
interface. A larger HBB can block holes at the EML/HBL (or
ETL) interface, and a small CWB favors electron injection
from the cathode to the ETL; hence, they lead to a high EQE.
Though a larger EIB induces more difficulty in electron
injection from the ETL/HBL, the electron injection to the
guest is still facile as the guest typically has a lower LUMO
than the host. Subsequent exciton formation directly on the
guest between the injected electrons and the transported holes
in the EML can also lead to a high EQE. In contrast, direct
hole injection to the guest at the HTL/EML interface due to a
large HIB leads to a low EQE.
Out-Coupling-Correlated Factors (MW of the TADF

Emitter and HTg). In OLEDs, the horizontal orientation of
the emissive transition dipole moment can improve the light
out-coupling efficiency by up to 50% relative to a random
orientation. Based on the analysis of 203 published emitter
systems, Gather et al.7 concluded that in host−guest systems
with low-MW emitters, the orientation is mainly influenced by
the host Tg, whereas the length and MW of the emitter
become more relevant for systems involving higher-MW
emitters. Figure 3f shows the effects of two crucial dipole
orientation descriptors, MW of the guest and the host Tg
(HTg), on the EQE/PLQY ratio (= ηOC × ηr × γ). Indeed, a
large MW tends to get a high EQE/PLQY ratio by favoring
high ηOC, whereas HTg has no definable effect on this ratio.
This may be induced by the differences of the host materials in
other aspects (like the energy levels) affecting this ratio
through the charge balance (γ).
From the above analysis, it can be seen that these material

and device structural features play complex influences on EQE,
whose correlations are hard to be explored based on manually
qualitative analysis. Hence, ML is required to process such
complex correlations.
To quantitatively illustrate the factors governing the device

performance, we use ML algorithms to map these factors to
EQE. To establish the dataset for this learning, we remove the
rows with missing data listed in Table S1. We employ four
algorithms, including the linear regression (LR), neural
network (NN), random forest (RF), and extreme gradient
boosting (XGBoost). The input 15 features for the ML
algorithms are listed in Table 1, excluding MW and HTg. MW
and HTg effects will be discussed later. The dataset was
randomly divided into 7:3 for training (the training set) and
testing (the test set). The performance of the algorithm is
evaluated by the root-mean-square error (RMSE) and
Pearson’s coefficient (r). The RMSE estimates the error
between the predicted and true (experimental) values, and
Pearson’s coefficient (r) shows their linear correlation. Hence,
an algorithm performs better with a lower RMSE and a higher
r in prediction.
Table 2 lists the RMSE and r values on predicting the EQE

values by various algorithms. Figure 4 plots the distributions of
the true EQE and the predicted values by various algorithms.
From the comparison of the true and predicted values shown
in Figure 4a, it can be seen that the predicted values show
fewer departures from the true values for NN, RF, and
XGBoost models compared with the simple LR model. Among
them, the NN performs best with the lowest RMSE (3.61%)
on predicting the EQE of the test set.

To further screen the features, the importance of 15 input
features is evaluated by the XGBoost model (shown in Figure
4b and listed in Table 3). As expected, PLQY is the most
important feature governing the EQE. The emission peak
wavelength (WL) is the second important factor, which reveals
our analysis on the data statistics shown in Figure 3b. The
prompt exciton lifetime (EL) and ΔEST also play notable roles
in determining EQE as expected. It is a surprise that the guest
doping ratio (GR) is so vital in determining EQE, as it shows
negligible linear correlations with both EQE and PLQY
(shown in Figure 2). This may be because the optimized
doping ratio in many references is around 10% as shown in
Figure 3d, while either a higher or lower doping ratio causes a
lower EQE due to the enhanced exciton annihilation or the
inefficient utilization of injected carriers, respectively. The
three most minor important features are the HP, TEM, and
ETT, showing negligible correlations with EQE and PLQY
(Figure 2). Though the bipolar host seems to favor a high EQE
demonstrated in the statistical analysis, it is not so crucial in
the quantitative model established by XGBoost. The thickness
of the EML (TEM) is an essential factor in device design and
is always preoptimized, so it has little effect on EQE among
different reports. A similar condition also occurs on ETT.
Considering that two factors may influence EQE simulta-

neously, we plot the statistics of the EQE values changing with
two major factors, PLQY−ΔEST and PLQY−WL, as shown in
Figure S3. A PLQY larger than 70% and a ΔEST less than 0.3
eV lead to a high EQE (>24%); meanwhile, a PLQY larger
than 65% and a WL on the scale of 450−600 nm lead to a high
EQE(>24%). This reveals that the major factors influence EQE
simultaneously, which shall be considered in the experimental
design.
Based on the analysis, we minimize the feature size to be 12,

excluding three features: the HP, TEM, and ETT. The
performances of the algorithms on the dataset with these 12
features are shown in Figure 5a and Table 2. It can be seen that
the performances of all algorithms are better than or similar to
those on the dataset with 15 features (shown in Figure 4a and
Table 2). This indicates that the three features, the HP, TEM,
and ETT, are nonsignificant factors on device EQE. The NN
also performs best with the lowest RMSE and the highest r.

Table 2. Performance of Different ML Algorithms on
Predicting the EQE of the TADF OLEDs

training set test set

input features
ML

algorithms RMSE (%) r value RMSE (%) r value

15 featuresa LR 3.44 0.86 3.94 0.71
RF 1.53 0.97 4.69 0.60
NN 2.28 0.92 3.61 0.55
XGBoost 2.07 0.95 4.57 0.62

12 featuresb LR 4.00 0.80 4.73 0.68
RF 1.80 0.96 4.47 0.72
NN 2.59 0.91 3.46 0.87
XGBoost 1.27 0.98 3.91 0.78

14 featuresc LR 3.13 0.87 4.52 0.65
RF 1.56 0.97 3.81 0.75
NN 1.96 0.95 3.39 0.81
XGBoost 1.33 0.98 3.94 0.74

aExcluding HTg and MW listed in Table 1. bExcluding HTg, MW,
HP, TEM, and ETT in Table S1. cExcluding HP, TEM, and ETT in
Table S1.
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The improvement in the prediction performance of the NN
model can be ascribed to the decreased feature size, which
minimizes the noise. The RF and XGBoost show minor
improvements after feature minimization, as the excluded
features are not important in these two models. The XGBoost
and RF generally predict well except for several outliers.
These results confirm that the data-driven approach to

predict the device performance is sufficiently referable for the
experimental design of TADF OLEDs. Though the device
performance can be well predicted in general, the device with
an ultrahigh EQE (≥25%) shows a larger derivation between
the predicted and the true values (shown in Figures 4a and
5b). One reason for this is that most of the data points have
moderate performance, so the algorithms learn better due to
the relatively larger data size and thus present a higher accuracy

in the devices with good performance. In addition, several
outliers can be observed in Figures 4a and 5a. These outliers
are caused by other factors like the out-coupling effect, which
are not considered in these models. For example, the outlier
with a true EQE of 21% and a predicted value of less than 10%
is probably caused by enhanced out-coupling efficiency despite
of the low PLQY (45.1%) of the TADF emitter.22 Hence, we
further introduce the dipole orientation descriptors, MW and
HTg, and the performance of algorithms is shown in Figure 5b
and Table 2. The deviations of the outliers are decreased,
proving that the dipole orientation indeed has a notable effect
on EQE. Though the dipole orientation descriptors are not
essential factors considered in material screening and device
design, it shall be noted that they are very important and shall
be considered.
As PLQY is of critical importance in determining EQE, we

also tried to explore the key factors governing the PLQY from
the viewpoints of the chemical structure and the chemical/
physical properties of TADF molecules. We utilized the
features including the MACCS fingerprint, E-state index,
cheminformatics, ΔEST, the exciton lifetime, etc. and several
algorithms (principal component analysis, LR, NN, RF,
XGBoost, etc.) to analyze the correlations between these
features of the TADF materials with PLQY. However, due to

Figure 4. (a) Comparison of true EQE and predicted values by different algorithms on training and test sets with 15 input features listed in Table
S1. XGB represents XGBoost. The red dashed line presents the condition in which the predicted value equals to the experimental value. (b)
Feature importance of these 15 material and device structural features on EQE.

Table 3. The Three Most Important Factors Governing the
EQE of the TADF OLEDs Evaluated by the XGBoost Model
Based on Different Feature Sets

feature sets first important second important third important

15 features PLQY WL ΔEST

12 features PLQY WL ΔEST

14 features MW WL PLQY

Figure 5. Comparison of true EQE and predicted values by different algorithms on training and test sets with 12 (a) and 14 (b) input features
listed in Table S1. In the scenario of 12 features, HP, TEM, ETT, MW, and HTg are excluded, and the others listed in Table S1 are included. In the
scenario of 14 features, MW and HTg are included. XGB represents XGBoost. The red dashed line presents the condition in which the predicted
value equals to the experimental value.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06820
ACS Omega 2022, 7, 7893−7900

7898

https://pubs.acs.org/doi/10.1021/acsomega.1c06820?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06820?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06820?fig=fig4&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06820/suppl_file/ao1c06820_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06820/suppl_file/ao1c06820_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06820?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06820?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06820?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06820?fig=fig5&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06820/suppl_file/ao1c06820_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06820/suppl_file/ao1c06820_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06820?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06820?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the complexity of the molecules and the limited data size, the
prediction accuracy is poor on the test set. Hence, guiding
material design is still tricky by machine learning from the
experimental results. Compared with the complexity of the
molecules, the device structure is relatively simple, and the key
features are limited; herein, the prediction on the device
performance is much more accurate, which provides essential
guidelines for device design and material screening.

■ CONCLUSIONS
In summary, key factors governing the device EQE of TADF
OLEDs were explored and modeled by machine learning (ML)
algorithms. These factors cover the properties of TADF
emitters, the host and the EML, the transport layers, and the
interfaces. Among the four used algorithms, the neural network
performs best in predicting the EQE of the TADF OLEDs with
a high accuracy. Key factors governing the device EQE are
screened out based on correlation analysis and feature
importance. To further improve the prediction accuracy, the
optimizations of both the dataset and feature selection are
important. These results prove the great potential and the
power of the machine learning tool in optimizing the device
EQE of TADF OLEDs, and the approach can also be applied
in other types of OLEDs.

■ METHODS
Python (version 3.7) was employed as the platform for
machine learning. Linear regression (LR), neural network
(NN), random forest (RF), and extreme gradient boosting
(XGBoost) algorithms were used for learning based on
sklearn-linear_model, keras, sklearn-ensemble, and xgboost
functions, respectively. The NN model had three hidden
layers, which had 600, 600, and 600 neurons, respectively. The
value of n_estimators in the RF model was 1000. The max
depth and the objective in the xgboost function were 5 and
“reg:gamma”, respectively, and the value of n_estimators was
500. These values were optimized in advance. The ratio of the
test set was 0.3. The algorithms were evaluated by the RMSE
and r2 value. Here,
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Xi, Yi, X̅, Y̅, and n represent the ith value of the experimental
dataset, the ith value of the predicted dataset, the mean value of
the experimental dataset, the mean value of the predicted
dataset, and the number of the dataset points, respectively.
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