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Abstract

Null models exploring species co-occurrence and trait-based limiting similarity are increas-
ingly used to explore the influence of competition on community assembly; however,
assessments of common models have not thoroughly explored the influence of variation in
matrix size on error rates, in spite of the fact that studies have explored community matrices
that vary considerably in size. To determine how smaller matrices, which are of greatest
concern, perform statistically, we generated biologically realistic presence-absence matri-
ces ranging in size from 3-50 species and sites, as well as associated trait matrices. We
examined co-occurrence tests using the C-Score statistic and independent swap algorithm.
For trait-based limiting similarity null models, we used the mean nearest neighbour trait dis-
tance (NN) and the standard deviation of nearest neighbour distances (SDNN) as test sta-
tistics, and considered two common randomization algorithms: abundance independent
trait shuffling (AITS), and abundance weighted trait shuffling (AWTS). Matrices as small as
three x three resulted in acceptable type | error rates (p < 0.05) for both the co-occurrence
and trait-based limiting similarity null models when exclusive p-values were used. The com-
monly used inclusive p-value (< or >, as opposed to exclusive p-values; < or >) was associ-
ated with increased type | error rates, particularly for matrices with fewer than eight species.
Type | error rates increased for limiting similarity tests using the AWTS randomization
scheme when community matrices contained more than 35 sites; a similar randomization
used in null models of phylogenetic dispersion has previously been viewed as robust. Not-
withstanding other potential deficiencies related to the use of small matrices to represent
communities, the application of both classes of null model should be restricted to matrices
with 10 or more species to avoid the possibility of type Il errors. Additionally, researchers
should restrict the use of the AWTS randomization to matrices with fewer than 35 sites to
avoid type | errors when testing for trait-based limiting similarity. The AITS randomization
scheme performed better in terms of type | error rates, and therefore may be more appropri-
ate when considering systems for which traits are not clustered by abundance.
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Introduction

A tenet of community ecology is that there exists a set of rules that constrain community
assembly [1] and that these rules are the combined result of species interactions and abiotic fac-
tors (i.e., environmental filtering)[2-4]. In an effort to determine these community assembly
rules, a number of null models have been developed and have come into common use [5]. Null
models testing for negative co-occurrence and limiting similarity are regularly used to evaluate
the influence of competition on community structure [6-21]. While both models focus on link-
ing community patterns to the competitive process, they do so in different ways. Co-occur-
rence null models test for patterns of segregation among species that may be the result of
competitive exclusion, although it is clear that other processes may influence these patterns
[22,23]. Limiting similarity null models (i.e. trait-based null models) test whether species found
together in samples are convergent or divergent with respect to important functional traits;
convergence is often taken as evidence for environmental (abiotic) filtering and divergence as
evidence for biotic filtering (i.e., competitive filtering) as predicted under limiting similarity
[24], although interpretations of patterns of convergence vary (e.g., [8,20]).

Both classes of null model have undergone some testing to determine whether they perform
with acceptable type I and type II error rates [25-27]; however, this testing has been confined
to a limited set of matrix sizes. For co-occurrence null models, Fayle & Manica [27] explored
matrices ranging from 10 x 10 up to 100 x 100; however, they relied on the sequential swap
algorithm, which is vulnerable to serial correlation [28]. Furthermore, both Gotelli [25] and
Fayle & Manica [27] explored type II error rates using only highly structured, biologically unre-
alistic test matrices. Gotelli [25] explored a single biologically realistic matrix (17 x 19), but
only for type I error rates. As such, understanding error rates for co-occurrence tests on small,
biologically realistic matrices (specifically for type II error rates) requires further work. For lim-
iting similarity null models, no comparable analysis of error rates has been carried out; how-
ever, studies have assessed the performance of related null models of phylogenetic dispersion
[26,29]. It is clear from the phylogenetic analyses that performance is dependent on the combi-
nation of metric and null model [26,29]. Consequently, error rates for trait-based limiting simi-
larity models require further attention. Finally, it is not clear how trait-based null model
performance is affected by community matrix dimension.

There are a number of reasons why it is important to understand how these null models per-
form at the lower end of matrix dimensionality. Reduction of matrix size through small num-
bers of species or sites can adversely affect these null models by reducing both the number of
ways that the matrix can be shuffled and the granularity of the C-Score values (C-Score is the
mean number of 2 x 2 checkerboard sub-matrices {{1,0},{0,1}} per species pair in a community
[30]). For example, a 3 x 3 matrix can be shuffled a maximum of three ways using the indepen-
dent swap algorithm and has a granule size of 1/3. Granule size is the amount of increase or
decrease that a single change in checkerboardedness within the matrix imparts on the C-Score
(i.e., the minimum incremental change in C-Score); it is equal to one divided by the number of
pairwise comparisons 1/(r(r- 1)/2) where r is the number of rows in the matrix. Granularity
combined with the number of sites and matrix density (the number of non-zero cells in the
matrix) determines the range of possible C-Score values. It is unknown if constraints on this
range influences the error rates of the null models although Ulrich and Gotelli [31] have inves-
tigated one component of granularity, matrix fill, on null model performance.

The type I error rates of co-occurrence null models on mid- to large-sized matrices is reason-
ably well established [25,27,28]; however, several studies have used co-occurrence null models
on matrices smaller than those for which error rates have been estimated (e.g., [31-38]). The
conclusions of these studies rely on the stability of error rates at low matrix dimensionality.
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For trait-based limiting similarity null models, no analysis of statistical performance has
been carried out and nothing is known about the impact of variation in matrix size on their
performance. Importantly, a broad range of community dimensions have been tested for pat-
terns of limiting similarity using these null models (e.g., [39] species = 1,083, [40] species = 499,
[41] species = 11 & 14); the proliferation of trait-based investigations has outpaced our efforts
to understand their efficacy. As such, our understanding of the general trends across limiting
similarity studies [5] may be impeded by problems related to error rates for particular focal
matrix sizes. Error rate-related problems may explain why some studies have found support
for limiting similarity (e.g., [17,24,39,42]) while many more have not (e.g., [13,20,37,41,43-
47]) and why a recent review by Gétzenberger et al. [5] found little support for limiting
similarity.

As the number of studies using co-occurrence and limiting similarity null models increases,
it remains uncertain as to the suitability of these tests across a broad range of matrix dimen-
sions. In this study, we address this uncertainty by determining the statistical performance (i.e.,
type I and type II error rates) of commonly used co-occurrence and trait-based limiting simi-
larity null models across a broad range of community dimensions.

Materials and Methods
Generating presence-absence matrices

We generated presence-absence matrices using a modified version of a method used by Ulrich
and Gotelli [31]. Ulrich and Gotelli's original method was initially developed to produce eco-
logically realistic species abundance matrices. The process of generating presence-absence
matrices consisted of creating synthetic matrices of m rows (species) by #n columns (sites) with
the number of sites each species occurs in determined by random sampling from a log-normal
distribution (constrained between 0 and n). Species occurrences were randomly distributed
across sites until its occurrences matched the total number of occupied sites. This was done for
each species (row/species) in the matrix. Species incidences of zero were discarded in order to
prevent the creation of degenerate matrices (matrices with empty rows; [25]) and each column
of the matrix was checked to ensure that it contained at least one species incidence. In the
event that a site did not contain any species, a row of the matrix was selected at random and
the species occurrences shuffled among sites. This was repeated until no sites were empty.

Trait generation

For the limiting similarity null model tests, trait values were generated by randomly drawing
from a uniform distribution constrained to the set of numbers {x € R | 0 < x < 100} and lim-
ited to two decimal places by truncation. Other schemes for generating trait distributions (e.g.,
[29,48,49]) are also possible. Given that there was no clear precedent for selecting one distribu-
tion over another, the uniform distribution seemed to be the best choice. The uniform distribu-
tion inherently lacks underlying patterns that could lead to clustered trait values and therefore
influence error rates. Additionally, our goal was to examine a broad class of trait and presence-
absence matrices without making assumptions concerning the underlying processes governing
these trait distributions.

Null models

For co-occurrence analyses, we used the fixed-fixed independent swap algorithm [25,50] in
combination with the C-Score [30]. We used 30,000 swaps per randomisation as recommended
by Lehsten et al. [51] and null distributions were generated from 5000 randomisations of the
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focal matrix. This combination of algorithm and metric is commonly used and is recognized as
being among the best in terms of statistical performance (although see above for limitations of
these analyses) [25].

For limiting similarity tests, we explored two null model randomization methods (below) in
combination with two metrics: mean nearest neighbour trait distances (NN) and, standard
deviation of nearest neighbour distances (SDNN). These test statistics were calculated for the
community as means across site-level values (e.g., [20,42]). It is also possible to examine site-
level patterns (e.g., [17,52]); however, the current approach benefits from treating sites as sam-
ple replicates, giving a better assessment of overall community-level patterns. The two random-
ization procedures examined were abundance-independent trait shuffling (AITS) and
abundance-weighted trait shuffling (AWTS) [47]. AITS has been commonly employed (e.g.,
[11,13,17,47]) and consists of shuffling trait values among species without constraint. AWTS is
an alternative method of shuffling trait values between species that preserves trait-abundance
relationships [14,17,26,42,47]. Both randomization schemes are commonly used and neither
has been shown to be a better choice statistically. While other null models exist, we use com-
mon approaches here to enable a very detailed analysis; any matrix-dimension effects observed
are likely to apply broadly to several combinations of randomization scheme and test statistic.

Type | error rate estimations

We estimated type I error rates for all matrices by evaluating each using the appropriate null
model and test statistic(s). Because matrices were generated randomly, null models should fail
to find significant patterns at least 95% of the time (p < 0.05). To test the effect of matrix
dimension on type I error rates we generated 10,000 matrices for each combination of m spe-
cies, m=1{3,4,5,...,17, 18, 19, 20, 25, 30, 35, 50}, by n sites, n = {3, 4, 5,. . ., 12, 13, 14, 15, 20,
25, 30, 35, 50, 75, 100, 150} for a total of 4,620,000 matrices.

For each matrix we calculated “observed” values for each test statistic (C-Score, NN and
SDNN) as well as a distribution of “expected” values to determine the cumulative frequency of
expected observations that were <, =, and > the observed value. We used three methods to
assess significance. First, the norm for these types of analyses is to assess significance based on
the number of expected values that are equal to or more extreme than the observed value (< or
>), an inclusive p-value. Alternatively, we assess significance based on the number of expected
values that are more extreme than the observed, without the equivalence criterion (< or >).
The use of an exclusive p-value is consistent with normal hypothesis testing but is a more con-
servative test of significance versus an inclusive p-value (see [53] for a discussion of statistical
significance). The exclusive p-value is relevant when the null distribution contains repeated
values, as may be common for null models assessing small presence-absence matrices with
small grain size. The third method is based on the standardized effect size (SES; see [54]) which
has primarily been used to compare patterns across treatments (e.g., [36,55]). SES is less com-
monly used as a measure of significance [56]; for our purposes, |SES| > 1.96 was considered
significant. Correspondence between significance as assessed by SES and p-values will vary
with the normality of the null distribution. SES was calculated as (Obs—Mean)/Std, where Obs
is the observed value for each test statistic, and Mean and Std are the mean and standard devia-
tion respectively of the test statistics for randomized matrices. For small matrices it was com-
mon to have a standard deviation that was either zero or approaching zero, which resulted in
extreme SES values (|[SES| > 20). These extreme values were associated with matrices that,
when shuffled, resulted in extremely small or zero difference in the values for the test statistic
(small grained matrices) and occurred with both the AWTS and AITS null models but were
more prevalent with the AWTS-SDNN combination (proportion of outliers by method;
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AWTS-SDNN: 0.0592, AWTS-NN: 0.0010, AITS-SDNN: 0.0368, AITS-NN: 0.0005). These
outliers were removed from the comparison of SES values but were retained for other analyses
(see S1 Fig).

Type Il error rate estimations

Type II error rates represent the probability that real patterns of co-occurrence or limiting sim-
ilarity go undetected by null models. A similar approach to the type I error rate estimations
was used; however, for these tests, we greatly amplified the amount of pattern in each matrix
and then tested the ability of null models to find that pattern. To do this both presence-absence
matrices and trait values were randomly generated using the methods described above. The
number of species and sites used for the co-occurrence tests were m species, m = {5, 10, 15, 20,
25,30, 35}, by nsites, n = {3,4, 5, . . ., 13, 14, 15, 20, 25, 30, 35, 50}. The number of species and
sites used for limiting similarity tests were m species, m = {5, 10, 15, 20, 25, 30, 35}, by # sites, n
={3,4,5,...,13,14, 15, 20, 25, 30, 35, 50, 75, 100, 150, 200}. The co-occurrence null model
used a reduced set of sites (max. n = 50) compared to the limiting similarity null models due to
the substantially longer computational time required for those tests. For both co-occurrence
and limiting similarity tests 10,000 presence-absence matrices were generated for each combi-
nation of m x n. This produced 1,260,000 matrices for co-occurrence tests and 1,540,000 matri-
ces for limiting similarity tests.

To produce matrices with maximal or near-maximal C-Scores (i.e., with increased signal),
the observed C-Score was determined for the generated matrix, after which each species was
re-assigned among sites using a Fisher-Yates shuffle, which maintains row but not column
totals [57]. In a minority of cases, this resulted in sites with no species and therefore altered
matrix sizes. Some additional analyses confirmed that the Fisher-Yates shuffle did not alter our
matrices in a way that affected our results (see Appendix A for details). Once all species were
shuffled among sites, the C-Score was re-calculated. If the new C-Score was greater than the
previous, the new matrix was stored. Each matrix was shuffled 10,000 times to ensure a maxi-
mal or near-maximal C-Score.

We used a similar process to maximize trait structure for the limiting similarity null models.
Because one of the expectations under limiting similarity is that coexisting (i.e. positively co-
occurring) species will differ with respect to relevant traits, we only added trait structure to matri-
ces without significant negative co-occurrence. We used a pairwise test of species co-occurrence
to rapidly select matrices with no negatively co-occurring pairs of species [58]; this approach
does not require a null model test and sped up the process of adding signal. Trait values were gen-
erated using the same method as for the type I error rate assessments. Limiting similarity signal
was maximized (or nearly so) by iteratively shuffling traits among species, and recalculating the
test statistics. If the shuffled traits increased the test statistic (decreased for SDNN), it was stored
and the process was continued. The trait distribution that maximized the observed limiting simi-
larity after 100,000 iterations of this process was then tested using the null models. We estimated
type II error rates as the proportion of matrices that null model tests indicated as having signifi-
cant patterns of limiting similarity. This method of estimating type II error rates is consistent
with previous methods (e.g., [25,26,29,31,59]). Because we were interested in trait divergence
(NN) and evenness of trait spread (SDNN) as signals of limiting similarity, and because we maxi-
mized signal in these directions only, we calculated one-tailed p-values for our tests.

Software

All analyses were written in Scala (Version 2.9.2) [Computer Language], available from http://
www.scala-lang.org/downloads using Intelli] IDEA Community Edition (Version 12.1.3)
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[Computer program], retrieved from http://www.jetbrains.com/idea/download/index.html
and run on the Java VM (Version 1.6) [Computer software], available from http://www.oracle.
com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.
html. Statistical analyses (non-null model) were carried out using the R Project for Statistical
Computing (Version 3.0.3) [Computer software], available at http://cran.r-project.org. Plots
were generated using the Lattice package [60]

Results
Type | Error Rate Estimation

Type I error rates for all three null models were sensitive to both the dimension of the matrices
and the method of determining significance (Figs 1 & 2). Co-occurrence null model type I
error rates increased with both decreasing species and decreasing site numbers; however, the
number of species had greater impact. The use of an inclusive p-value for determining signifi-
cance resulted in type I error rates between 0.10 and 0.20 (Fig 1). Using exclusive p-values
resulted in type I error rates of less than 0.10 (Fig 1) with the majority of tests producing desir-
able type I error rates (< 0.05). Using SES to determine significance resulted in type I error
rates exceeding 0.05 for test matrices containing fewer than five species (Fig 1). For matrices
with three species the error rate increased with increasing site number. Using SES for matrices
with greater than five species resulted in error rates < 0.05.

For limiting similarity tests, the AITS randomization scheme in combination with the NN
metric resulted in type I error rates below 0.05 in all cases when an exclusive p-value was used
(Fig 2). Type I error rates were unacceptably high (> 0.05) when inclusive p-values were used
in combination with six species or less. The use of SES with three x three matrices also resulted
in type I error rates higher than 0.05 (Fig 2). Using AITS in combination with SDNN produced
similar results; type I error rates exceeded 0.05 for both the inclusive p-value and SES measures
for matrices with less than seven and six species respectively. The AWTS randomization
scheme resulted in similar patterns, with the exception that error rates increased above 0.05
when the number of sites in the community matrix surpassed 50 (Fig 2).

Type Il Error Rate Estimation

When signal is maximized for the focal matrix, negative co-occurrence tests using the inclusive
significance criterion detected negative co-occurrence patterns in at least 95% of the test matri-
ces when there were fewer than thirteen sites; however, this rate decreased to 50% as the num-
ber of sites increased to 50 (Fig 3). The number of species in matrices had only a marginal
effect on type II error rates regardless of the significance criterion used; increasing species num-
ber resulted in slightly improved type II error rates for matrices with 12 or more sites (Fig 3).

For the limiting similarity null models, type II error rates were generally stable with o <
0.05 and the three significance criteria produced similar results with three exceptions (Fig 4).
First, type II error rates did not exceed 0.05 for any of the matrix dimensions tested when an
inclusive p-value was used with AITS and either NN or SDNN but did exceed 0.05 for matrices
with fewer than 10 species when the exclusive p-value was used (Fig 4). Second, using AITS
with SDNN and SES resulted in increasing type II errors as the number of sites increased; how-
ever, increasing the number of species counteracted this effect (Fig 4). Third, using the AWTS
randomization resulted in similar error rates regardless of metric or significance criteria (Fig 4)
with all combinations producing error rates in excess of 0.05 when matrices had fewer than 10
species. Finally, with fewer than 10 species, AWTS error rates decreased as the number of sites
increased, but remained above 0.05, (Fig 4).
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Fig 1. Type | error rates of the co-occurrence null model test. Each panel represents a different criterion
for determining the significance of the null model: inclusive p-values (< or >), exclusive p-values (< or >), and
SES. The colour of each cell indicates the proportion of the 10,000 null models that were significant for that
combination of species by sites. Blue cells indicate lower type | error rates and red cells indicate higher type |
error rates.

doi:10.1371/journal.pone.0151146.9001
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indicate higher type | error rates.
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Discussion
Type | Error Rate Estimation

Negative co-occurrence. Our results indicate that negative co-occurrence null models
become susceptible to type I errors as the number of species decreases, with the rate of decline
dependent on the method used to assess significance (Fig 1). Determining significance with an
inclusive p-value resulted in unacceptable error rates for matrices with smaller numbers of spe-
cies (< 8), and also resulted in an overall error rate of approximately 10% for matrices with
between eight and 50 species (Fig 1). While the type I error rate of 10% is consistent with the
findings of Gotelli [25], it can be improved upon by using an exclusive p-value. The use of an
exclusive p-value, which is uncommon for null model tests at this time, resulted in type I error
rates below 10% for all matrix dimensions considered with most below five percent (Fig 1).

The use of an inclusive p-value is associated with higher error rates, particularly when exam-
ining small matrices, most likely because each matrix can only be shuffled a limited number of
ways with a limited number of unique C-Score values. Thus, the likelihood of randomization
reproducing the original “observed” matrix (and in our case, C-Score value) increases for
smaller matrices; this is clearly undesirable. Any randomization scheme that imposes con-
straints on how matrices are shuffled is susceptible to this effect with negative impacts more
likely with increasingly strict constraints. Solutions include using larger matrices (10 x 10 or
larger for example) or using a randomization scheme that is less constrained; however, it is
important to balance the constraints on randomization with the goal of appropriately isolating
the biological process under investigation against statistical constraints. In larger matrices,
however, an exclusive p-value may be less important, as the phenomenon of repeated matrices
should diminish quickly with matrix size. It remains unclear why, for larger matrices (> 15
species x sites), type I error rates are improved relative to using the exclusive p-value, although
it is possible that the fixed-fixed randomization scheme is sufficiently restrictive that randomi-
zation still produces many repeated matrices or equivalent C-Score values, even when the focal
matrix is large. Further investigation is warranted.

Our results suggest that the exclusive p-value should be used to assess significance for null
model tests to minimize type I error rates. SES provides a convenient way to compare the
results between matrices; however, its utility is impacted by the deviance from normality of the
null distribution; this may be of particular concern when null distributions among matrices
being compared differ in the degree to which each deviates from normality. Alternative effect
sizes exist (e.g., [61]) and may serve as a useful alternative.

Limiting similarity—AITS. The AITS randomization performed well for both the NN
and SDNN metrics when the inclusive p-value was used and the number of species was greater
than five and six respectively regardless of the number of sites (Fig 2). However, like the nega-
tive co-occurrence null model, error rates for matrices with fewer species (< 6) remained
below five percent when an exclusive p-value was used (Fig 2). As with the negative co-occur-
rence models, this likely results from the generation of random matrices that match the
observed matrix being tested. Unlike the co-occurrence null model using an exclusive p-value
does not result in improved error rates with larger matrices. This is likely due to the way the
metrics are calculated and the fact that they are less granular than the C-Score metric. Using
SES improved the type I error rates for the AITS-NN combination compared to the inclusive
p-value as well as for the AITS-SDNN, albeit moderately (Fig 2).

Limiting similarity—AWTS. Limiting similarity tests using AWTS and NN had excellent
type I error rates for matrices with as few as four species; there was, however, a significant
increase in type I error rates with increasing site number (Fig 2). This trend was consistent for
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all three significance criteria with error rates exceeding 10% for matrices with more than 35
sites (Fig 2).

For AWTS in combination with SDNN, type I error rates for matrices with greater than five
species were very good (< 5%); however, error rates increased with the number of sites, exceed-
ing 10% for matrices with 35 or more sites (Fig 2). It is not clear why this increase occurs.

We performed post-hoc analyses to determine the source of increased type I error rates with
the AWTS null model. We compared trait abundances pre- and post-shuffle using a Chi-
Square goodness of fit test and found that patterns of trait abundance, which AWTS should
maintain, are more poorly maintained as matrix size increases (S2 Fig). We also examined the
variance (breadth) of the null model distributions in relation to matrix size (increasing site
and/or species number) because a narrowing of the null distribution can lead to increased type
I errors. The standard deviation of the null distributions decreased with both increasing site
number and increasing species number (S3 Fig). The narrowing of the null distribution with
increasing site number appears to result from a combination of the underlying log-normal
abundance distribution and the AWTS algorithm itself. As the number of sites increases, the
proportion of species with abundant traits increases logarithmically. The effect of this is two-
fold: first, the contribution of the abundant traits quickly overwhelms any contribution of less
abundant traits to the overall community metric (NN or SDNN); second, in the AWTS algo-
rithm, the way traits are shuffled becomes more constrained with increasing matrix size. As the
number of sites increases, differences in abundance among the most common species become
so extreme that the AWTS results in little variation in abundant trait values among sites, which
results in narrow null distributions. It is not clear if this is a problem for studies that have used
this kind of randomization, as implementations of AWTS likely vary in small but potentially
significant ways; however, this is likely to be an issue with this combination of null model
(AWTS) and metrics (NN and SDNN) particularly when the number of sites and/or species is
high and species occurrences are log-normally distributed (e.g., [17]).

Type Il Error Rate Estimation

Negative co-occurrence. Our results indicate that type II error rates for the negative co-
occurrence null model are acceptable for matrices with fewer than 15 sites but increased with
increasing site number beyond this; variation in species number had little impact (Fig 3). We
suspected that the observed increase in type II errors with increasing site number may have
resulted from the method used to add structure to matrices; our method searched 10,000 matri-
ces to maximize C-Score, but this is a shrinking fraction of possible matrices as matrix size
increases. To investigate, we ran a reduced set of null model tests for a set of matrices with 35
sites and increased the number of shuffles used to maximize the C-Score from 10,000 to
1,000,000. This post-hoc analysis supported our suspicion; increasing the number of matrices
considered in maximizing C-Score clearly reduced the type II error rate in larger matrices (54
Fig). As such, co-occurrence tests appear to have acceptable type II error rates in general across
a wide range of matrix sizes, when signal is maximized for the test matrix. It is clear, however,
that error rates for small matrices are generally the result of including identical matrices in the
null distribution. Using the exclusive p-value for these tests is advisable, although care should
be taken in using very small matrices that may not adequately represent the species co-occur-
rence patterns that exist within the study system.

Limiting similarity-AITS. AITS in combination with the NN or SDNN test statistic had
good type II error rates (< 0.05) for matrices with more than 10 species (Fig 4). While statisti-
cal power for combinations of AITS and the test statistics was good in general, it was best when
the inclusive p-value, very good when the exclusive p-value was used, and worst when SES was
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used in combination with lower species numbers and higher site numbers (Fig 4). It is advisable
to use the exclusive p-value criterion, as it results in low type I error rates and still has relatively
strong statistical power. The exclusive p-value also reduces the potential for significant results
deriving from null distributions built from repeat matrices. For example, traits may only be
shuffled amongst five species 120 times meaning a null distribution of 5000 will inappropri-
ately contain many repeats.

Limiting similarity-AWTS. AWTS in combination with either test statistic had good type
IT error rates for most matrix sizes, although these error rates were generally greater than 10%
when matrices contained fewer than ten species (Fig 4). Type II error rates were consistent for
AWTS regardless of the significance criterion used (Fig 4). For this null model, error rates for
small matrices cannot be ameliorated through the use of the exclusive p-value, as the null
model performs poorly for that size class in general (Fig 4). However, as the exclusive p-value
is more conservative in assessing significance and does not appear to negatively impact this
null model test, it seems advisable to use an exclusive p-value for all tests using the AWTS ran-
domization. With the exception of matrices containing fewer than five samples or sites, this
model demonstrated good statistical power across a wide spectrum of matrix sizes, consistent
with the findings of Hardy [26] for an analog of this randomization procedure as used to assess
phylogenetic dispersion.

Conclusion and Recommendations

Growing use of null models by ecologists makes it imperative that we understand the statistical
properties of these models and whether they are stable across matrix sizes. We evaluated error
rates for two common classes of null model that are used to assess either negative co-occur-
rence or trait-based limiting similarity. Type II error rates were examined for matrices in
which the signal for the expected patterns was maximized.

All null models generally performed better when the exclusive p-value was used. In general,
the nature of null models is that they will vary in the degree to which the randomization
scheme will produce identical matrices or metric values. Using the exclusive p-value is a more
conservative approach to assessing significance and is prudent to use in combination with
small focal matrices, as this conservatism doesn’t appear to strongly impact type II error rates.

Our results suggest a minimum safe standard matrix size; the threshold varies with null
model, but safe practice would be to use these models with matrices containing >10 species;
below this, error rates increased unacceptably. For limiting similarity models using the AWTS
algorithm, type I error rates became undesirably high when matrices with more than 35 sites
where tested. Limiting similarity null models using the AITS algorithm had good error rates in
general for both metrics. An important qualification of these results is that these error rates are
good when the signal for the pattern of interest comes from 100% of species in the focal matrix.
It remains to be seen whether error rates are acceptable when signal comes from fewer species.

Supporting Information

S1 Fig. Standardized effect size (SES) of the limiting similarity null models in relation to
the SES of the co-occurrence null model for the same matrix. All C-Score SES values are pos-
itively skewed. The SES values of the limiting similarity null models shown in panels b, c and d
indicate that there is some interaction between C-Score SES and limiting similarity SES values
(SDNN & AITS: r=-0.0011, p = 0.0245; mean NTD & AITS: r = -0.0001, p = 0.7572; mean
NTD & AWTS: r = 0.0002, p = 0.6062; SDNN & AWTS: r = -0.0002, p = 0.631).

(TIFF)
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S2 Fig. Chi-Square values for goodness of fit test comparing trait abundance before and
after shuffling matrices of different sizes. The top panel shows the results for the abundance
weighted trait shuffling algorithm (AWTS). The bottom panel are the results for the abundant
independent trait shuffling algorithm (AITS). AWTS fails to maintain trait abundances when
matrices have more than 200 sites. Trait abundances with AITS, which is not intended to main-
tain trait abundance, leads to significant differences in trait-abundance relationships with very
small matrices. The horizontal dashed line represents the critical x> value (x> = 30.1435,

df =19, o= 0.05).

(TIFF)

S3 Fig. Type II error rates of the co-occurrence null model test with respect to the number
of shuffles used to introduce structure into the matrices. Each panel represents a different
criterion for determining the significance of the null model. The colour of each cell indicates
the proportion of the 10,000 null models that were significant for that combination of species
by sites. Blue cells indicate lower type II error rates and red cells indicate higher type II error
rates. 10k = 10,000 and 1M = 1,000,000

(TIFF)

$4 Fig. Mean standard deviations of the null distribution for each species x site combina-
tion. Each cell in the plot (species x site) represents average standard deviation of 10,000 null
distributions. Increasing plot number (and number of species) results in narrower (lower mean
standard deviation) null distributions. This narrowing of the null distribution contributes to
the increased rate of type I errors with increasing plot number.

(TIFF)

Acknowledgments

This study was funded by Natural Sciences and Engineering Research Council of Canada
grants to E. Lamb and B. Schamp, and a Department of Plant Sciences scholarship to M. Laven-
der. Computing resources were provided by WestGrid (www.westgrid.ca), Compute Canada /
Calcul Canada (www.computecanada.ca) and the University of Saskatchewan High Perfor-
mance Computing Research Facility (HPCRF).

Author Contributions

Conceived and designed the experiments: TML EGL BSS. Performed the experiments: TML.
Analyzed the data: TML. Wrote the paper: TML EGL BSS.

References

1. Diamond JM. Assembly of species communities. In Cody M.L. Diamond J.M. eds. Ecology and evolu-
tion of communities.

2. Drake JA. The mechanics of community assembly and succession. J Theor Biol. 1990; 147: 213-233.
doi: 10.1016/S0022-5193(05)80053-0

3. Haefner JW. Avian community assembly rules: The foliage-gleaning guild. Oecologia. Springer-Verlag;
1981; 50: 131-142. doi: 10.1007/BF00348027

4. Weiher E, Keddy PA. Ecological assembly rules: perspectives, advances, retreats. Cambridge Univ
Pr; 1999.

5. Gotzenberger L, de Bello F, Brathen KA, Davison J, Dubuis A, Guisan A, et al. Ecological assembly
rules in plant communities—approaches, patterns and prospects. Biol Rev Camb Philos Soc. 2012; 87:
111-127. doi: 10.1111/j.1469-185X.2011.00187.x PMID: 21692965

6. Swenson NG, Enquist BJ. Opposing assembly mechanisms in a Neotropical dry forest: implications for
phylogenetic and functional community ecology. Ecology. Ecological Society of America; 2009; 90:
2161-2170. doi: 10.1890/08-1025.1

PLOS ONE | DOI:10.1371/journal.pone.0151146 March 4, 2016 14/17


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151146.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151146.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151146.s004
http://www.westgrid.ca
http://www.computecanada.ca
http://dx.doi.org/10.1016/S0022-5193(05)80053-0
http://dx.doi.org/10.1007/BF00348027
http://dx.doi.org/10.1111/j.1469-185X.2011.00187.x
http://www.ncbi.nlm.nih.gov/pubmed/21692965
http://dx.doi.org/10.1890/08-1025.1

@’PLOS ‘ ONE

Error Rates for Community Null Models

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

Mayfield MM, Boni MF, Daily GC, Ackerly DD. Species and functional diversity of native and human-
dominated plant communities. Ecology. Ecological Society of America; 2013; 86: 2365-2372. doi: 10.
1890/05-0141

Mayfield MM, Levine JM. Opposing effects of competitive exclusion on the phylogenetic structure of
communities. Ecology letters. Blackwell Publishing Ltd; 2010; 13: 1085-1093. doi: 10.1111/j.1461-
0248.2010.01509.x

Maestre FT, Bowker MA, Escolar C, Puche MD, Soliveres S, Maltez-Mouro S, et al. Do biotic interac-
tions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biologi-
cal soil crust communities. Philos Trans R Soc Lond, B, Biol Sci. 2010; 365: 2057-2070. doi: 10.1098/
rstb.2010.0016 PMID: 20513714

Maltez-Mouro S, Maestre FT, Freitas H. Co-occurrence patterns and abiotic stress in sand-dune com-
munities: Their relationship varies with spatial scale and the stress estimator. Acta Oecologica. 2010;
36: 80—84. doi: 10.1016/j.actao.2009.10.003

Cornwell WK, Ackerly DD. Community assembly and shifts in plant trait distributions across an environ-
mental gradient in coastal California. Ecological Monographs. Ecological Society of America; 2009; 79:
109-126. doi: 10.1890/07-1134.1

Zhang J, Hao Z, Song B, Li B, Wang X, Ye J. Fine-scale species co-occurrence patterns in an old-
growth temperate forest. Forest Ecology and Management. 2009; 257: 2115-2120. doi: 10.1016/j.
foreco.2009.02.016

Schamp BS, Aarssen LW. The assembly of forest communities according to maximum species height
along resource and disturbance gradients. Oikos. Blackwell Publishing Ltd; 2009; 118: 564-572.

de Bello F, Thuiller W, Leps J, Choler P, Clément J-C, Macek P, et al. Partitioning of functional diversity
reveals the scale and extent of trait convergence and divergence. Journal of Vegetation Science. Black-
well Publishing Ltd; 2009; 20: 475—486. doi: 10.1111/j.1654-1103.2009.01042.x

Pillar VD, Duarte LDS, Sosinski EE, Joner F. Discriminating trait-convergence and trait-divergence
assembly patterns in ecological community gradients. Journal of Vegetation Science. Blackwell Pub-
lishing Ltd; 2009; 20: 334—348. doi: 10.1111/.1654-1103.2009.05666.x

Rooney TP. Comparison of co-occurrence structure of temperate forest herb-layer communities in
1949 and 2000. Acta Oecologica. 2008; 34: 354—360. doi: 10.1016/j.acta0.2008.06.011

Kraft NJB, Valencia R, Ackerly DD. Functional traits and niche-based tree community assembly in an
Amazonian forest. Science (New York, NY). 2008; 322: 580-582. doi: 10.1126/science.1160662

Boschilia SM, Oliveira EF, Thomaz SM. Do aquatic macrophytes co-occur randomly? An analysis of
null models in a tropical floodplain. Oecologia. 2008; 156: 203—-214. doi: 10.1007/s00442-008-0983-4
PMID: 18274779

Maestre FT, Escolar C, Martinez |, Escudero A. Are soil lichen communities structured by biotic interac-
tions? A null model analysis. Journal of Vegetation Science. Blackwell Publishing Ltd; 2008; 19: 261—
266. doi: 10.3170/2007-8-18366

Schamp BS, Chau J, Aarssen LW. Dispersion of traits related to competitive ability in an old-field plant
community. Journal of Ecology. Blackwell Publishing Ltd; 2008; 96: 204—212. doi: 10.1111/j.1365-
2745.2007.01328.x

Dullinger S, Kleinbauer |, Pauli H, Gottfried M, Brooker R, Nagy L, et al. Weak and variable relationships
between environmental severity and small-scale co-occurrence in alpine plant communities. Journal of
Ecology. British Ecological Society; 2007; 95: 1284—1295.

Gilpin ME, Diamond JM. Factors contributing to non-randomness in species Co-occurrences on
Islands. Oecologia. Springer-Verlag; 1982; 52: 75-84. doi: 10.1007/BF00349014

Schamp BS, Arnott SE, Joslin KL. Dispersal strength influences zooplankton co-occurrence patterns in
experimental mesocosms. Ecology. Ecological Society of America; 2015; 96: 1074—1083. doi: 10.
1890/14-1128.1

Weiher E, Clarke GDP, Keddy PA. Community Assembly Rules, Morphological Dispersion, and the
Coexistence of Plant Species. Oikos. 1998; 81: 309. doi: 10.2307/3547051

Gotelli NJ. Null model analysis of species co-occurrence patterns. Ecology. Ecological Society of Amer-
ica; 2000; 81: 2606—2621. doi: 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2

Hardy OJ. Testing the spatial phylogenetic structure of local communities: Statistical performances of
different null models and test statistics on a locally neutral community. Journal of Ecology. Wiley Online
Library; 2008; 96: 914-926. doi: 10.1111/].1365-2745.2008.01421.x

Fayle TM, Manica A. Reducing over-reporting of deterministic co-occurrence patterns in biotic commu-
nities. Ecological Modelling. 2010; 221: 2237-2242. doi: 10.1016/j.ecolmodel.2010.06.013

Gotelli NJ, Ulrich W. Over-reporting bias in null model analysis: A response to Fayle and Manica
(2010). Ecological Modelling. 2011; 222: 1337—-1339. doi: 10.1016/j.ecolmodel.2010.11.008

PLOS ONE | DOI:10.1371/journal.pone.0151146 March 4, 2016 15/17


http://dx.doi.org/10.1890/05-0141
http://dx.doi.org/10.1890/05-0141
http://dx.doi.org/10.1111/j.1461-0248.2010.01509.x
http://dx.doi.org/10.1111/j.1461-0248.2010.01509.x
http://dx.doi.org/10.1098/rstb.2010.0016
http://dx.doi.org/10.1098/rstb.2010.0016
http://www.ncbi.nlm.nih.gov/pubmed/20513714
http://dx.doi.org/10.1016/j.actao.2009.10.003
http://dx.doi.org/10.1890/07-1134.1
http://dx.doi.org/10.1016/j.foreco.2009.02.016
http://dx.doi.org/10.1016/j.foreco.2009.02.016
http://dx.doi.org/10.1111/j.1654-1103.2009.01042.x
http://dx.doi.org/10.1111/j.1654-1103.2009.05666.x
http://dx.doi.org/10.1016/j.actao.2008.06.011
http://dx.doi.org/10.1126/science.1160662
http://dx.doi.org/10.1007/s00442-008-0983-4
http://www.ncbi.nlm.nih.gov/pubmed/18274779
http://dx.doi.org/10.3170/2007-8-18366
http://dx.doi.org/10.1111/j.1365-2745.2007.01328.x
http://dx.doi.org/10.1111/j.1365-2745.2007.01328.x
http://dx.doi.org/10.1007/BF00349014
http://dx.doi.org/10.1890/14-1128.1
http://dx.doi.org/10.1890/14-1128.1
http://dx.doi.org/10.2307/3547051
http://dx.doi.org/10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2
http://dx.doi.org/10.1111/j.1365-2745.2008.01421.x
http://dx.doi.org/10.1016/j.ecolmodel.2010.06.013
http://dx.doi.org/10.1016/j.ecolmodel.2010.11.008

@’PLOS ‘ ONE

Error Rates for Community Null Models

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

4.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Kembel SW. Disentangling niche and neutral influences on community assembly: assessing the perfor-
mance of community phylogenetic structure tests. Ecology letters. 2009; 12: 949-960. doi: 10.1111/j.
1461-0248.2009.01354.x PMID: 19702749

Stone L, Roberts A. The checkerboard score and species distributions. Oecologia. Springer-Verlag;
1990; 85: 74-79. doi: 10.1007/BF00317345

Ulrich W, Gotelli NJ. Null model analysis of species associations using abundance data. Ecology. Eco-
logical Society of America; 2010; 91: 3384—3397. doi: 10.1890/09-2157.1

Burns KC. Patterns in the assembly of an island plant community. Journal of Biogeography. Blackwell
Publishing Ltd; 2007; 34: 760-768. doi: 10.1111/j.1365-2699.2006.01625.x

Gainsbury AM, Colli GR. Lizard assemblages from natural cerrado enclaves in Southwestern Amazo-
nia: The role of stochastic extinctions and isolation. Biotropica. The Association for Tropical Biology
and Conservation; 2003; 35: 503-519.

Gotelli NJ, McCabe DJ. Species co-occurrence: A meta-analysis of J. M. Diamond's assembly rules
model. Ecology. 2002; 83: 2091-2096. doi: 10.1890/0012-9658(2002)083[2091:SCOAMA]2.0.CO;2

Gotelli NJ, Rohde K. Co-occurrence of ectoparasites of marine fishes: a null model analysis. Ecology
letters. Blackwell Science Ltd; 2002; 5: 86—94. doi: 10.1046/].1461-0248.2002.00288.x

Heino J. Environmental heterogeneity, dispersal mode, and co-occurrence in stream macroinverte-
brates. Ecol Evol. 2013; 3: 344-355. doi: 10.1002/ece3.470 PMID: 23467653

Mouillot D, Mason NWH, Wilson JB. Is the abundance of species determined by their functional traits?
A new method with a test using plant communities. Oecologia. Springer-Verlag; 2007; 152: 729-737.
doi: 10.1007/s00442-007-0688-0

Pitta E, Giokas S, Sfenthourakis S. Significant pairwise co-occurrence patterns are not the rule in the
majority of biotic communities. Molecular Diversity Preservation International; 2012; 4: 179-193. doi:
10.3390/d4020179

Stubbs WJ, Wilson JB. Evidence for limiting similarity in a sand dune community. Journal of Ecology.
Blackwell Science Ltd; 2004; 92: 557—-567. doi: 10.1111/1.0022-0477.2004.00898.x

Kraft NJB, Ackerly DD. Functional trait and phylogenetic tests of community assembly across spatial
scales in an Amazonian forest. Ecological Monographs. 2010; 80: 401—-422. doi: 10.1890/09-1672.1

Baraloto C, Hardy OJ, Paine CE, Dexter KG, Cruaud C, Dunning LT, et al. Using functional traits and
phylogenetic trees to examine the assembly of tropical tree communities. Journal of Ecology. Wiley
Online Library; 2012; 100: 690-701. doi: 10.1111/j.1365-2745.2012.01966.x

Wilson JB, Stubbs WJ. Evidence for assembly rules: Limiting similarity within a saltmarsh. Journal of
Ecology. 2012; 100: 210-221. doi: 10.1111/j.1365-2745.2011.01891.x

Franzén D. Plant species coexistence and dispersion of seed traits in a grassland. Ecography. 2004;
27:218-224. doi: 10.1111/].0906-7590.2004.03733.x

Mouillot D, Stubbs WJ, Faure M, Dumay O, Tomasini JA, Wilson JB, et al. Niche overlap estimates
based on quantitative functional traits: a new family of non-parametric indices. Oecologia. 2005; 145:
345-353. doi: 10.1007/s00442-005-0151-z PMID: 16001221

Schamp BS, Hettenbergerova E, Hajek M. Testing community assembly predictions for nominal and
continuous plant traits in species-rich grasslands. Preslia (Prague). 2011; 83: 329-346. Available:
http://www.muni.cz/research/publications/945959

Schamp BS, Horsak M, Hajek M. Deterministic assembly of land snail communities according to spe-
cies size and diet. Journal of Animal Ecology. 2010. doi: 10.1111/}.1365-2656.2010.01685.x

Dante SK, Schamp BS, Aarssen LW. Evidence of deterministic assembly according to flowering time in
an old-field plant community. Funct Ecol. 2013; 27: 555-564. doi: 10.1111/1365-2435.12061

Kraft NJB, Cornwell WK, Webb CO, Ackerly DD. Trait evolution, community assembly, and the phylo-
genetic structure of ecological communities. Am Nat. 2007; 170: 271-283. doi: 10.1086/519400 PMID:
17874377

Vellend M, Cornwell WK, Magnuson-Ford K, Mooers AQ. Measuring phylogenetic biodiversity. Biologi-
cal diversity: frontiers in measurement and assessment. Oxford University Press; 2010. pp. 193—-206.

Connor EF, Simberloff D. The assembly of species communities: Chance or competition? Ecology.
Ecological Society of America; 1979; 60: 1132—1140.

Lehsten V, Harmand P. Null models for species co-occurrence patterns: assessing bias and minimum
iteration number for the sequential swap. Ecography. 2006; 29: 786—792. doi: 10.1111/1.0906-7590.
2006.04626.x

Weiher E, Freund D, Bunton T, Stefanski A, Lee T, Bentivenga S. Advances, challenges and a develop-
ing synthesis of ecological community assembly theory. Philos Trans R Soc Lond, B, Biol Sci. 2011;
366: 2403-2413. doi: 10.1098/rsth.2011.0056 PMID: 21768155

PLOS ONE | DOI:10.1371/journal.pone.0151146 March 4, 2016 16/17


http://dx.doi.org/10.1111/j.1461-0248.2009.01354.x
http://dx.doi.org/10.1111/j.1461-0248.2009.01354.x
http://www.ncbi.nlm.nih.gov/pubmed/19702749
http://dx.doi.org/10.1007/BF00317345
http://dx.doi.org/10.1890/09-2157.1
http://dx.doi.org/10.1111/j.1365-2699.2006.01625.x
http://dx.doi.org/10.1890/0012-9658(2002)083[2091:SCOAMA]2.0.CO;2
http://dx.doi.org/10.1046/j.1461-0248.2002.00288.x
http://dx.doi.org/10.1002/ece3.470
http://www.ncbi.nlm.nih.gov/pubmed/23467653
http://dx.doi.org/10.1007/s00442-007-0688-0
http://dx.doi.org/10.3390/d4020179
http://dx.doi.org/10.1111/j.0022-0477.2004.00898.x
http://dx.doi.org/10.1890/09-1672.1
http://dx.doi.org/10.1111/j.1365-2745.2012.01966.x
http://dx.doi.org/10.1111/j.1365-2745.2011.01891.x
http://dx.doi.org/10.1111/j.0906-7590.2004.03733.x
http://dx.doi.org/10.1007/s00442-005-0151-z
http://www.ncbi.nlm.nih.gov/pubmed/16001221
http://www.muni.cz/research/publications/945959
http://dx.doi.org/10.1111/j.1365-2656.2010.01685.x
http://dx.doi.org/10.1111/1365-2435.12061
http://dx.doi.org/10.1086/519400
http://www.ncbi.nlm.nih.gov/pubmed/17874377
http://dx.doi.org/10.1111/j.0906-7590.2006.04626.x
http://dx.doi.org/10.1111/j.0906-7590.2006.04626.x
http://dx.doi.org/10.1098/rstb.2011.0056
http://www.ncbi.nlm.nih.gov/pubmed/21768155

@’PLOS ‘ ONE

Error Rates for Community Null Models

53.

54.

55.

56.

57.

58.

59.

60.

61.

Skipper JK, Guenther AL, Nass G. The sacredness of. 05: A note concerning the uses of statistical lev-
els of significance in social science. The American Sociologist. Springer; 1967; 2: 16—18. doi: 10.2307/
27701229

Gurevitch J, Morrow LL, Wallace A, Walsh JS. A meta-analysis of competition in field experiments. Am
Nat. The University of Chicago Press for The American Society of Naturalists; 1992; 140: 539-572.

Sanders NJ, Gotelli NJ, Heller NE, Gordon DM. Community disassembly by an Invasive species. Sci
Tot Environ. National Academy of Sciences; 2003; 100: 2474—2477.

Ulrich W, Gotelli NJ. Null model analysis of species nestedness patterns. Ecology. Ecological Society
of America; 2007; 88: 1824—1831. doi: 10.1890/06-1208.1

Fisher RA, Yates F. Statistical tables for agricultural, biological and medical research. Edinborough:
Oliver & Boyd; 1953.

Veech JA. A probabilistic model for analysing species co-occurrence. Peres-Neto P, editor. Global
Ecology and Biogeography. Wiley Online Library; 2013; 22: 252—260. doi: 10.1111/j.1466-8238.2012.
00789.x

Ulrich W, Gotelli NJ. Disentangling community patterns of nestedness and species co-occurrence.
Oikos. Blackwell Publishing Ltd; 2007; 116: 2053—-2061. doi: 10.1111/j.2007.0030-1299.16173.x

Sarkar D. Lattice: Multivariate Data Visualization with R [Internet]. New York: Springer; 2008. Avail-
able: http:/Imdvr.r-forge.r-project.org

Bernard-Verdier M, Navas M-L, Vellend M, Violle C, Fayolle A, Garnier E. Community assembly along
a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean
rangeland. Cornelissen H, editor. Journal of Ecology. 2012; 100: 1422—1433. doi: 10.1111/1365-2745.
12003

PLOS ONE | DOI:10.1371/journal.pone.0151146 March 4, 2016 17/17


http://dx.doi.org/10.2307/27701229
http://dx.doi.org/10.2307/27701229
http://dx.doi.org/10.1890/06-1208.1
http://dx.doi.org/10.1111/j.1466-8238.2012.00789.x
http://dx.doi.org/10.1111/j.1466-8238.2012.00789.x
http://dx.doi.org/10.1111/j.2007.0030-1299.16173.x
http://lmdvr.r-forge.r-project.org
http://dx.doi.org/10.1111/1365-2745.12003
http://dx.doi.org/10.1111/1365-2745.12003

