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A three‑stage, deep learning, ensemble 
approach for prognosis in patients 
with Parkinson’s disease
Kevin H. Leung1,2*  , Steven P. Rowe2  , Martin G. Pomper1,2   and Yong Du2   

Abstract 

Background:  Diagnosis of Parkinson’s disease (PD) is informed by the presence of progressive motor and non-motor 
symptoms and by imaging dopamine transporter with [123I]ioflupane (DaTscan). Deep learning and ensemble meth-
ods have recently shown promise in medical image analysis. Therefore, this study aimed to develop a three-stage, 
deep learning, ensemble approach for prognosis in patients with PD.

Methods:  Retrospective data of 198 patients with PD were retrieved from the Parkinson’s Progression Markers 
Initiative database and randomly partitioned into the training, validation, and test sets with 118, 40, and 40 patients, 
respectively. The first and second stages of the approach extracted features from DaTscan and clinical measures of 
motor symptoms, respectively. The third stage trained an ensemble of deep neural networks on different subsets of 
the extracted features to predict patient outcome 4 years after initial baseline screening. The approach was evaluated 
by assessing mean absolute percentage error (MAPE), mean absolute error (MAE), Pearson’s correlation coefficient, 
and bias between the predicted and observed motor outcome scores. The approach was compared to individual 
networks given different data subsets as inputs.

Results:  The ensemble approach yielded a MAPE of 18.36%, MAE of 4.70, a Pearson’s correlation coefficient of 0.84, 
and had no significant bias indicating accurate outcome prediction. The approach outperformed individual networks 
not given DaTscan imaging or clinical measures of motor symptoms as inputs, respectively.

Conclusion:  The approach showed promise for longitudinal prognostication in PD and demonstrated the synergy of 
imaging and non-imaging information for the prediction task.
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Background
Parkinson’s disease (PD) is one of the most common neu-
rodegenerative disorders that is estimated to affect 10 
million individuals globally [1, 2]. PD is characterized by 
the loss of striatal dopaminergic neurons in the substan-
tia nigra and by progressive motor and non-motor symp-
toms, including bradykinesia, resting tremor, muscular 

rigidity, postural instability, and cognitive problems [1, 3, 
4]. Diagnosis of PD is informed by imaging the dopamine 
transporter with [123I]ioflupane (DaTscan), an agent for 
dopamine transporter single-photon emission computed 
tomography [3].

Identifying biomarkers for PD progression and predic-
tion of outcome in PD is an important clinical need [5, 
6]. For this purpose, the Parkinson’s Progression Markers 
Initiative (PPMI) made available a longitudinal database 
of DaTscan images and clinical measures of patients with 
PD [7]. Deep learning methods based on convolutional 
neural networks (CNNs) and recurrent neural networks 
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have had success in medical image classification and time 
series prediction, respectively [8, 9]. While deep learn-
ing methods can suffer from high variance in prediction 
[10], ensemble learning methods can improve accuracy 
of prediction by combining multiple classifier systems 
[11]. Several research groups have developed classifiers 
using machine learning, deep learning, and ensemble 
methods with traditional machine learning on PPMI data 
[5, 12–17]. For instance, Tang et al. used an artificial neu-
ral network to predict PD outcome as a binary classifica-
tion task using radiomic features from DaTscan imaging 
[18]. However, using ensemble deep learning methods for 
building predictive models in PD with DaTscan imaging 
and non-imaging information has not been explored.

Our objective was to develop a three-stage, deep learn-
ing, ensemble approach for prognosis in patients with PD 
(Fig. 1). The approach was developed to predict longitu-
dinal motor scores 4  years after initial baseline screen-
ing (Year 4) by incorporating imaging and non-imaging 
measures from baseline (Year 0) and 1 year after baseline 
(Year 1). The first stage extracted relevant spatiotempo-
ral features directly from DaTscan imaging using a con-
volutional recurrent neural network architecture. The 
second stage extracted relevant temporal features from 
clinical motor scores using a recurrent neural network 
architecture to account for the time-series nature of the 
longitudinal motor scores. The third stage employed 
an ensemble learning approach that combined those 
extracted features and additional clinical measures to 
predict motor outcome of patients with PD in Year 4. The 
ensemble approach proved promising for prediction of 
motor outcome in patients with PD, provided multiple 
methods for extracting the relevant features from clinical 
data, and demonstrated synergy when combining imag-
ing and non-imaging clinical measures for prediction.

Methods
Retrospective data were obtained from the publicly avail-
able PPMI database (https://​www.​ppmi-​info.​org/) [7]. 
This study was reviewed by the Johns Hopkins Institu-
tional Review Boards (IRB) and acknowledged as non-
human subject research since deidentified pre-existing 
open-access data were used. From the PPMI database, 
198 patients with PD (144 men, 54 women, mean age 
67.60 ± 9.96  years, age range 39–91) with available 
DaTscan images at Years 0 and 1 were selected. Stri-
atal binding ratio values in the left and right caudate 
nuclei and putamina of DaTscan images, referred to as 
semi-quantitative imaging features, were extracted [19]. 
Other clinical measures included age, gender, and dura-
tion of illness with respect to time at diagnosis and time 
of appearance of symptoms. The Movement Disorder 
Society Unified Parkinson’s Disease Rating Scale part III 

(MDS-UPDRS-III) scores, one of the most commonly 
used clinical rating scales for motor symptoms of PD, 
were extracted from Years 0, 1, and 4 [3, 7]. Data from 
Years 0 and 1 were used as predictors. Observed clinical 
MDS-UPDRS-III scores in Year 4 (mean 30.65 ± 10.53, 
range 9.33–77.00) were used as ground truth for the 
regression task where higher scores indicate more severe 
motor symptoms. Further details on data processing are 
provided in Additional file 1.

Three‑stage, deep learning, ensemble approach
The three-stage ensemble approach is illustrated in Fig. 1. 
Stage 1 extracted spatiotemporal features from baseline 
DaTscan images with three different methods (Fig.  1a). 
First, a convolutional long short-term memory (LSTM) 
network, a type of recurrent neural network, extracted 
features from DaTscan image volumes containing the 
complete structure of the striatum [20]. Second, CNNs 
pre-trained on the ImageNet dataset of natural images 
[21], including VGG16 [22], ResNet50 [23], DenseNet121 
[24], and InceptionV3 [25], followed by an LSTM net-
work extracted features from maximum intensity projec-
tions (MIPs) of DaTscan transaxial image slices. However, 
one constraint for such pre-trained CNNs is that the 
inputs are limited to 2D images. Therefore, MIPs of the 
DaTscan images were used as inputs to retain 3D infor-
mation about the imaged volume. Third, an LSTM net-
work extracted features from semi-quantitative imaging 
measures. See Additional file 1 for a detailed description 
of the DaTscan feature extraction methods.

Stage 2 extracted temporal features from baseline 
MDS-UPDRS-III time-sequences using an LSTM net-
work (Fig.  1b). Stage 3 combined the extracted features 
from Stages 1 and 2 with other non-imaging clinical 
measures (age, gender, duration of illness) and placed 
those features into a fully connected layer to yield a pre-
diction (Fig.  1c, d). Batch normalization and dropout 
with a drop probability of 0.5 were used to regularize the 
network [9]. Eleven networks were trained with different 
subsets of extracted DaTscan imaging features (Table 1). 
Inputs to all networks included clinical measures and 
MDS-UPDRS-III information. All network predictions 
were averaged in an ensemble to give the final predicted 
MDS-UPDRS-III score in Year 4.

Training and evaluation
Data were randomly partitioned into training, validation, 
and test sets with 118, 40, and 40 patients, respectively, 
using a 60%/20%/20% split. Grid search hyperparam-
eter optimization and training were performed using the 
training and validation sets. Model parameters were ran-
domly initialized, and the approach was trained for 200 
epochs with a batch size of 32. The model parameters of 

https://www.ppmi-info.org/
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the CNNs pre-trained on ImageNet were frozen during 
training. The approach was trained with a mean abso-
lute error (MAE) loss function that quantified the error 
between the observed and predicted MDS-UPDRS-III 

scores in Year 4 and the Adam optimization algorithm 
[26].

The approach was evaluated on the test set by assessing 
the mean absolute percentage error (MAPE), MAE, mean 

a

d

b

c

Fig. 1  An illustration of the three-stage ensemble deep learning approach (a–c) and the complete network architecture with all inputs (d)
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squared error (MSE), Pearson’s correlation coefficient, 
and an ordinary least squares linear regression between 
the predicted and observed MDS-UPDRS-III scores in 
Year 4 [27–30] (Additional file  1: Equations  1–5). The 
95% confidence interval (CI), 95% prediction interval, 
and goodness-of-fit R2 value of the regression line were 
computed [31]. Scatter plots of the predicted versus 
observed MDS-UPDRS-III scores were created. Bland–
Altman plot analysis was performed to evaluate bias and 
agreement between the observed and predicted outcome 
scores [32]. Bias was estimated by the mean difference 
between the observed and predicted outcome scores. The 
limits of agreement were estimated by calculating the 
mean difference ± 1.96s, where s is the standard deviation 
of the differences [32]. Failure analysis was performed for 
test cases with a MAPE greater than two standard devia-
tions above the mean. See Additional file  1 for further 
details on training and evaluation.

Varying the input data
To evaluate the approach’s robustness to different inputs, 
four individual networks trained on different subsets of 
the clinical inputs (Table 2) were compared to the ensem-
ble approach, which used a combination of multiple 
trained networks. The first network was trained once on 
all available inputs. Clinical measures (age, gender, dura-
tion of illness), DaTscan imaging, and MDS-UPDRS-III 
information were excluded from the inputs for the sec-
ond, third, and fourth networks, respectively. In all cases, 
the DaTscan imaging inputs refer to features extracted 
from DaTscan images using a convolutional LSTM 
network. Each network was evaluated with metrics 

described above and compared to the ensemble approach 
by evaluating the difference of squared errors (Additional 
file 1: Equation 6).

Comparison of DaTscan feature extraction methods
To evaluate the image feature extraction methods, the 11 
individual networks trained in Stage 1 with different sub-
sets of imaging features (Table 1) were compared to the 
ensemble approach. VGG16, ResNet50, DenseNet121, 
and InceptionV3 refer to imaging features extracted from 
each CNN pre-trained on ImageNet separately (Table 1). 
Imaging features extracted from all four pre-trained 
CNNs were also combined and are referred to as All Ima-
geNet imaging features (Table 1). Additional inputs to the 
network included MDS-UPDRS-III and clinical measures 
for each case.

Statistical analysis
Statistical analysis was performed in Python 3.7.9. Statis-
tical significance was present when P < 0.05. Statistically 
significant differences were determined using a paired 
two-tailed t-test. The normality of the predicted and 
observed MDS-UPDRS-III scores and their differences 
was confirmed by the Shapiro–Wilk test [33]. A one-sam-
ple t-test of the mean differences was performed where 
the null hypothesis that the true mean of differences is 
zero, corresponding to no bias, was tested. This was done 
to determine if there was a statistically significant bias 
between the observed and predicted MDS-UPDRS-III 
scores [34]. Experiments were implemented with Ten-
sorFlow 1.13.1 and Keras 2.2.5 and run on an NVIDIA 
Quadro P5000 GPU and Linux CentOS 7.6 operating 
system.

Results
Evaluating the ensemble approach
The three-stage, deep learning, ensemble approach 
yielded a MAPE of 18.36% (95% CI 11.74%, 24.98%), 
MAE of 4.70 (95% CI 3.56, 5.84), and MSE of 34.53 (95% 
CI 18.81, 50.25) between the predicted and observed 

Table 1  The different sets of imaging feature combinations used 
as input to the approach

DaTscan imaging features refer to the imaging features extracted directly from 
the convolutional LSTM network. Semi-quantitative refers to the striatal binding 
ratio values from the right and left caudate nuclei and putamina

Feature set combinations

1 DaTscan + Semi-quantitative + All ImageNet

2 DaTscan + Semi-quantitative

3 DaTscan + All ImageNet

4 Semi-quantitative + All ImageNet

5 DaTscan

6 Semi-quantitative

7 All ImageNet

8 VGG16

9 ResNet50

10 DenseNet121

11 InceptionV3

Table 2  The different subsets of feature combinations used as 
input

DaTscan refers to the imaging features extracted directly from the convolutional 
LSTM network. Clinical information refers to the clinical measures of age, gender, 
and duration of illness with respect to time of diagnosis and time of appearance 
of symptoms

Feature set combinations

1 DaTscan + MDS-UPDRS-III + Clinical Information

2 DaTscan + MDS-UPDRS-III (No Clinical Information)

3 MDS-UPDRS-III + Clinical (No DaTscan Information)

4 DaTscan + Clinical (No MDS-UPDRS-III Information)



Page 5 of 14Leung et al. EJNMMI Res           (2021) 11:52 	

MDS-UPDRS-III scores on the test set (Table  3). The 
approach also yielded a Pearson’s correlation coefficient 
of 0.84 (P < 0.001) on the test set, indicating a strong 
positive correlation between the predicted and observed 
MDS-UPDRS-III scores. Figure  2a depicts a scatter 
plot of the predicted versus observed MDS-UPDRS-III 
scores. The regression line computed by ordinary least 
squares regression and the corresponding 95% confi-
dence and prediction intervals, shown by the dark and 
light gray shaded regions, respectively, were overlaid on 
the scatter plot in Fig.  2a. The R2 value for the regres-
sion line for the ensemble approach was 0.71, indicating 
a strong relationship between the predicted and observed 
MDS-UPDRS-III scores in Year 4.

Figure 2b depicts a Bland–Altman plot of the differ-
ences versus the means between the observed and pre-
dicted MDS-UPDRS-III scores. The ensemble approach 

had a mean difference of 0.93 (95% CI − 0.95, 2.81) 
shown by the solid horizontal line. The limits of agree-
ment were from − 10.59 (95% CI − 13.84, − 7.33) to 
12.45 (95% CI 9.19, 15.70) shown by the dashed hori-
zontal lines. The corresponding 95% confidence inter-
vals shown by the shaded regions were overlaid on the 
Bland–Altman plot (Fig. 2b). A one-sample t-test of the 
mean differences confirmed that there was no evidence 
of bias (P = 0.32) between the observed and predicted 
MDS-UPDRS-III scores in Year 4 by the ensemble 
approach.

There was only one case (age 73  years, gender man) 
from the test set (1/40) that had a MAPE of greater 
than two standard deviations above the mean (MAPE 
greater than 59.25%). For this case, the approach had a 
MAPE of 124.46%, MAE of 11.62, and MSE of 134.93. 

Table 3  Varying the input data

Data in parentheses are 95% confidence intervals

MAPE, mean absolute percentage error; MAE, mean absolute error; MSE, mean squared error; n.s., not significant; r, Pearson correlation coefficient; R2, coefficient of 
determination. Unless indicated, values for r were significant (P < 0.001)

Method MAPE MAE MSE r R2

Ensemble approach 18.36%
(11.74%, 24.98%)

4.70
(3.56, 5.84)

34.53
(18.81, 50.25)

0.84 0.71

DaTscan + MDS-UPDRS-III + Clinical Information 19.89%
(12.48%, 27.30%)

5.04
(3.78, 6.29)

40.41
(22.09, 58.74)

0.81 0.66

DaTscan + MDS-UPDRS-III (No Clinical Information) 19.89%
(13.63%, 26.15%)

5.22
(4.09, 6.35)

39.37
(24.48, 54.25)

0.81 0.66

MDS-UPDRS-III + Clinical (No DaTscan Information) 26.33%
(17.76%, 34.91%)

6.63
(5.11, 8.14)

65.85
(36.14, 95.57)

0.64 0.41

DaTscan + Clinical (No MDS-UPDRS-III Information) 35.48%
(22.50%, 48.46%)

9.15
(6.90, 11.39)

131.71
(73.60, 189.81)

0.04
(n.s.)

0.00

a b

Fig. 2  Performance of the ensemble approach on the test set. A scatter plot of the predicted versus observed outcome scores in Year 4 (a). A 
Bland–Altman plot of the differences versus the means of the observed and predicted outcome scores (b)
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The observed and predicted MDS-UPDRS-III scores 
for this patient were 9.33 and 20.95, respectively.

Varying the input data
The performances of the networks trained with different 
subsets of input features (Table  2) were evaluated and 
compared to the ensemble approach that was trained 
with all of the available input features. Performance met-
rics for each network are summarized in Table 3. Scatter 
plots of the predicted versus observed MDS-UPDRS-III 
scores in Year 4 as predicted by the networks trained with 
different subsets of input features are shown for each 
case in Fig. 3. The performance of the ensemble approach 
was compared to each case by overlaying the scatter 
plot of the predicted versus observed MDS-UPDRS-III 
scores. Regression lines and the corresponding 95% con-
fidence and prediction intervals computed by ordinary 
least squares regression are also shown. Bland–Altman 
plots with the mean differences and limits of agreement 
are shown for each case in Fig. 3. There was no evidence 
of significant bias in each case by a one-sample t-test of 
mean differences (P > 0.05).

The ensemble approach significantly outperformed 
the individual network trained on all available inputs 
(Fig.  3a), on the basis of MSE (P < 0.05). The ensemble 
approach significantly outperformed the network trained 
on inputs that excluded clinical measures of age, gender, 
and duration of illness (Fig.  3b), on the basis of MAE 
(P < 0.05). The ensemble approach also significantly out-
performed the network trained on inputs that excluded 
DaTscan imaging information (Fig.  3c) and the network 
trained on inputs that excluded MDS-UPDRS-III infor-
mation (Fig. 3d), on the basis of MAPE, MAE, and MSE 
(P < 0.05). The ensemble approach had the highest Pear-
son’s correlation coefficient (0.84) and R2 value (0.71) 
when compared to the other networks that were given 
varying input feature sets (Table  3), indicating a more 
accurate prediction.

The performances of the networks that were not given 
DaTscan imaging and MDS-UPDRS-III information as 
inputs were significantly reduced (P < 0.05) when com-
pared to the performance of the network that received 
all the training inputs, on the basis of MAPE, MAE, 
and MSE (Table  3). The performance of the network 
that was only trained on DaTscan imaging and MDS-
UPDRS-III information (inputs excluded clinical meas-
ures of age, gender, duration of illness) also significantly 
outperformed the networks that were not given DaTs-
can imaging or MDS-UPDRS-III information as inputs, 
respectively, on the basis of MAPE, MAE, and MSE 
(Table  3). The two networks that were given at mini-
mum both DaTscan and MDS-UPDRS-III information 
as inputs (Fig. 3a, b) both yielded a Pearson’s correlation 

coefficient greater than 0.80 and an R2 value of 0.66, indi-
cating relatively high performance on the outcome pre-
diction task.

The network that was not given MDS-UPDRS-III 
information as inputs had the largest mean difference of 
2.23 (95% CI − 1.42, 5.88) and the widest limits of agree-
ment from − 20.12 to 24.58 by Bland–Altman analysis 
(Fig. 3d). The network that was not given DaTscan inputs 
had the second-largest mean difference of 1.99 (95% 
CI − 0.56, 4.54) and the second widest limits of agree-
ment from − 13.63 to 17.61 (Fig.  3c). In comparison, 
the network that was given all the inputs (Fig.  3a) and 
the network that was given at both DaTscan and MDS-
UPDRS-III inputs (Fig. 3b) had smaller mean differences 
(0.86 (95% CI − 1.18, 2.90) and 1.42 (95% CI − 0.55, 3.40), 
respectively) and tighter limits of agreement (− 11.64 to 
13.36 and − 10.70 to 13.55, respectively).

For the network not given MDS-UPDRS-III inputs, 
there is a positive correlation between the differences 
and the means of the observed and predicted outcome 
scores by visual inspection of the Bland–Altman plot 
(Fig. 3d). This suggests that the network in this case tends 
to overestimate outcome scores for subjects with lower 
observed scores and underestimate those with higher 
scores. A similar trend can be seen for the network not 
given DaTscan inputs to a lesser extent (Fig.  3c). This 
effect is greatly reduced in the cases of the two networks 
that were given at least both DaTscan and MDS-UPDRS-
III inputs (Fig. 3a, b).

Figure 4a shows the performance measured by the dif-
ference in squared errors of the networks trained with 
different subsets of input features as compared to the 
ensemble approach. The network that was trained with all 
available inputs had a difference in squared errors of 5.89 
(95% CI 1.51, 10.27) and significantly outperformed the 
networks that were not given baseline DaTscan imaging 
and MDS-UPDRS-III information as inputs, respectively, 
on the basis of difference in squared errors (P < 0.05) 
(Fig. 4a). The network that was trained with only DaTs-
can and MDS-UPDRS-III information (inputs excluded 
other clinical measures) significantly outperformed the 
networks that were not given DaTscan imaging or MDS-
UPDRS-III information as inputs, respectively, on the 
basis of difference in squared errors (P < 0.05) (Fig. 4a).

Comparison of DaTscan feature extraction methods
The performance of the ensemble approach was com-
pared to 11 networks each trained with different subsets 
of input imaging features (Table 1) in addition to baseline 
MDS-UPDRS-III information and other clinical meas-
ures. The performances of those networks were evalu-
ated on the basis of standard evaluation metrics and are 
summarized in Table 4. The ensemble approach had the 
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b

Fig. 3  Scatter plots of the predicted versus observed MDS-UPDRS-III scores, comparisons with the ensemble approach, and Bland–Altman plots on 
the test set by the networks trained with different input feature combinations are shown in each column from left to right, respectively
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lowest MAPE, MAE, and MSE compared to networks 
trained with different subsets of input imaging features. 
The ensemble approach also had the highest Pearson’s 
correlation coefficient and R2 value when compared to 
other cases, indicating higher accuracy in the prediction 
task. Scatter plots of the predicted versus observed MDS-
UPDRS-III scores and the corresponding regression lines 
for each case were created (Fig. 5). Bland–Altman plots 
with the corresponding mean differences and limits of 
agreement were also created for each case (Fig. 6).

The performances of those networks were compared 
to the ensemble approach by computing the differ-
ence in squared errors (Fig. 4b). The network that was 
trained with all available imaging features derived from 
DaTscan imaging, semi-quantitative imaging measures, 

and All ImageNet imaging features had the best rela-
tive performance and yielded the lowest difference in 
squared errors of 0.95 (95% CI − 6.89, 8.80). The net-
work trained on all available imaging features also sig-
nificantly outperformed the networks that were trained 
with only VGG16 features and semi-quantitative imag-
ing features (P < 0.05), respectively, on the basis of the 
difference in squared errors (Fig. 4b).

There was no evidence of significant bias for all net-
works trained with different input imaging features 
(P > 0.05) by Bland–Altman analysis, with the excep-
tion of the network that was given only semi-quantita-
tive imaging features as inputs which had a significant 
bias (P < 0.05) with a mean difference of 2.48 (95% CI 
0.30, 4.65) (Fig. 6). All networks trained with different 
imaging features, except for the network trained only 
with semi-quantitative imaging features, significantly 

a

b

Fig. 4  Comparison of the ensemble approach to the individual networks that were given different subsets of inputs (a) and different subsets of 
imaging features (b). *P < 0.05; **P < 0.005; and ***P < 0.0005
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outperformed the network that was not given any DaTs-
can imaging features as inputs on the basis of MAE, 
MSE, and the difference in squared errors (P < 0.05).

Discussion
A three-stage, deep learning, ensemble approach was 
developed for longitudinal outcome prediction of 
patients with PD. The approach took DaTscan imaging, 
MDS-UPDRS-III information, and other clinical meas-
ures, including age, gender, and duration of illness, from 
Years 0 and 1 as inputs and trained multiple neural net-
works to extract relevant features to accurately predict 
outcomes in Year 4. The ensemble approach outper-
formed networks that were not given DaTscan imaging or 
MDS-UPDRS-III information demonstrating the impor-
tance of combining imaging and clinical measures for the 
outcome prediction task. The approach provided multi-
ple methods for extracting features from DaTscan images 
and showed improved performance when all sources of 
extracted imaging features were used as inputs to the 
network.

The approach was studied in the context of varying the 
training inputs to the network. The networks that were 
not given MDS-UPDRS-III or DaTscan information as 

inputs had the largest and second-largest reduction in 
performance across all evaluation metrics, respectively, 
when compared to the network that received all of the 
training inputs (Fig.  4a). That emphasizes the relative 
importance of DaTscan imaging and MDS-UPDRS-III 
information for the outcome prediction task. While this 
suggests that MDS-UPDRS-III information from Years 0 
and 1 was most important for the prediction task, DaTs-
can imaging features also contributed significantly to the 
performance of the approach.

The performance of the approach was also evaluated 
in the context of training 11 networks each with a differ-
ent subset of the extracted input imaging features (Stage 
1). The ensemble approach had higher performance than 
that of the 11 individual networks across several standard 
evaluation metrics, highlighting the utility of the ensem-
ble learning approach. The network that received infor-
mation from all available imaging measures, including 
the DaTscan images, semi-quantitative imaging meas-
ures, and imaging features extracted from the CNNs 
pre-trained on ImageNet, had the highest relative per-
formance on the basis of the difference of squared errors 
when compared to the ensemble approach.

Table 4  Comparison of DaTscan image feature extraction methods

Data in parentheses are 95% confidence intervals

All values for r were significant (P < 0.001)

MAPE, mean absolute percentage error; MAE, mean absolute error; MSE, mean squared error; r, Pearson correlation coefficient; R2, coefficient of determination

Method MAPE MAE MSE r R2

Ensemble approach 18.36%
(11.74%, 24.98%)

4.70
(3.56, 5.84)

34.53
(18.81, 50.25)

0.84 0.71

DaTscan + Semi-quantitative + All ImageNet 19.64%
(12.09%, 27.18%)

4.79
(3.65, 5.94)

35.48
(20.11, 50.85)

0.82 0.67

DaTscan + Semi-quantitative 18.82%
(11.32%, 26.31%)

4.74
(3.36, 6.12)

40.60
(14.59, 66.60)

0.79 0.62

DaTscan + All ImageNet 20.64%
(11.50%, 29.79%)

4.81 
(3.45, 6.18)

40.95
(19.94, 61.96)

0.79 0.63

Semi-quantitative + All ImageNet 18.82%
(12.75%, 24.89%)

4.83
(3.69, 5.96)

35.57
(20.41, 50.73)

0.82 0.67

DaTscan 19.89%
(12.48%, 27.30%)

5.04
(3.78, 6.29)

40.41
(22.09, 58.74)

0.81 0.66

Semi-quantitative 21.43%
(13.76%, 29.09%)

5.58
(4.13, 7.03)

51.29
(27.25, 75.33)

0.76 0.57

All ImageNet 20.18%
(13.76%, 26.59%)

5.15
(3.90, 6.40)

41.44
(20.15, 62.72)

0.78 0.62

VGG16 21.67%
(13.99%, 29.35%)

5.54
(4.14, 6.94)

49.31
(26.95, 71.67)

0.75 0.56

ResNet50 19.70%
(13.82%, 25.58%)

5.32
(4.03, 6.61)

44.14
(25.64, 62.65)

0.79 0.62

DenseNet121 20.24%
(13.04%, 27.45%)

5.23
(3.90, 6.56)

44.12
(23.23, 65.01)

0.79 0.63

InceptionV3 21.89%
(14.30%, 29.48%)

5.47
(4.17, 6.76)

45.89
(25.32, 66.46)

0.76 0.58
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Fig. 5  Scatter plots with regression lines of the predicted versus observed outcome scores in Year 4 on the test set by the networks trained with 
different input imaging feature combinations given in Table 1
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Fig. 6  Bland–Altman plots of the differences versus the means between the predicted and observed outcome scores in Year 4 on the test set by 
the networks trained with different input imaging feature combinations given in Table 1
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Networks that received two or more sources of DaTs-
can imaging input features tended to perform better than 
those that received only one source of extracted imaging 
features. Four of the top five performers, on the basis of 
difference in squared errors, were given some combina-
tion of the DaTscan images, semi-quantitative imaging 
measures, or features extracted from CNNs pre-trained 
on ImageNet as inputs (Fig. 4b). This suggests that com-
plementary information relevant for the prediction task 
was extracted from the different sources of DaTscan 
imaging information. The networks that received at least 
one source of DaTscan imaging input features, except for 
the network trained only on semi-quantitative imaging 
features, significantly outperformed the network that was 
not given any DaTscan information (P < 0.05), emphasiz-
ing the importance of DaTscan imaging for the predic-
tion task.

In a previous study, the performance of four motor per-
formance measures, including functional reach, timed 
hall walk, timed block sort task, and timed dotting, was 
evaluated for predicting outcomes in PD [6]. Correlation 
values ranging from 0.29 to 0.49 were observed between 
those motor performance measures and MDS-UPDRS-
III motor scores in patients with PD [6]. In contrast, the 
ensemble approach achieved a Pearson’s correlation of 
0.84 on the test set, outperforming those motor perfor-
mance measures on the prognosis task. Previous stud-
ies predicted disease progression only up to 2 years after 
follow-up [6, 13], whereas our approach performed prog-
nosis of patients with PD 4 years after the initial baseline 
scan, highlighting the utility of the approach. Addition-
ally, the approach extracted information from DaTscan 
images directly without the need for performing co-reg-
istration, segmentation, or defining regions of interest on 
the corresponding magnetic resonance images as done in 
other studies [5, 18, 35].

The ensemble approach proved promising for the pre-
diction of outcomes in patients with PD. The approach 
may be incorporated into a prognostic tool to character-
ize patients with PD into different groups based on dis-
ease progression. Such a prognostic tool may facilitate 
therapy—palliative or disease-modifying, when avail-
able—tailored to an individual patient’s needs. It can also 
be used to educate the patient and his/her family regard-
ing likely outcomes.

The clinical dataset used in this study for training, vali-
dation, and testing consisted of 198 patients from the 
PPMI database. However, deep learning methods usu-
ally require very large training data sizes, on the order 
of thousands, to adequately train deep neural networks 
[9]. To address the issue of a limited clinical dataset, we 
extracted features from DaTscan images with four com-
monly used CNN architectures that were pre-trained on 

the ImageNet dataset, consisting of millions of natural 
images across 1000 different class label categories. This 
was done to extract generalized spatial features from 
DaTscan images. Indeed, the two networks with the high-
est performance, on the basis of difference in squared 
errors, were given imaging features extracted from CNNs 
pre-trained on ImageNet as inputs (Fig. 4b). An alterna-
tive approach to combat the limited amount of clinical 
data would be to generate a large amount of simulated 
training data to train the approach. For example, a phys-
ics-guided simulation-based framework was developed 
to improve the performance of a deep learning model on 
segmenting lung cancer lesions [36]. Generative adver-
sarial networks could also be used to generate a large 
amount of simulated data to train the approach [37]. 
Incorporating such simulation-based training strategies 
could further improve the performance of the ensemble 
approach.

External validation of the approach using clinical data 
from different sites and scanners outside of the PPMI 
database is also important to evaluate the performance of 
the approach in clinical scenarios. Such external valida-
tion would require the collection of longitudinal clinical 
data from patients with Parkinson’s disease in a prospec-
tive study. While this is outside the scope of the pre-
sent study, this is an important area of further research. 
Validation of the approach using DaTscan imaging data 
generated with different reconstruction algorithms is 
also an important issue to assess the clinical applicabil-
ity of the approach. For instance, quantitative recon-
struction methods can improve the accuracy of striatal 
binding potential estimates by providing DaTscan images 
with improved contrast and resolution [38]. Training the 
approach on data reconstructed with such quantitative 
reconstruction methods could improve the performance 
of the approach.

The approach can be trained in a bootstrap aggregat-
ing fashion where each network comprising the ensemble 
is trained in parallel [11]. However, larger computational 
resources are required compared to training a single 
model, which may limit the utility of the approach in a 
clinical setting where such resources may not be avail-
able. The single network that was trained on all of the 
available imaging features also had a relatively high per-
formance on the prognostic task and may be acceptable 
for use in such cases. We focused on baseline DaTscan 
imaging and MDS-UPDRS-III subscores that reflect 
motor symptoms as inputs for the prediction task. 
Extending the approach to incorporate additional neu-
roimaging genetic information as well as clinical meas-
ures that reflect non-motor symptoms, such as mood or 
cognitive function, as inputs may further improve per-
formance [13, 35, 39]. The approach employed ensemble 
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averaging where all model outputs were averaged to yield 
the final prediction and showed improved performance 
over individual models. Notably, Xiao et  al. developed 
a meta-learner method for cancer detection based on 
stacked generalization where the outputs of machine 
learning classifiers were used as inputs into another neu-
ral network that performed the final classification [40]. 
Integrating the approach in such a meta-learner scheme 
could further improve performance.

Conclusion
A three-stage, deep learning, ensemble approach was 
developed and provided accurate prediction of motor 
outcome in Year 4 using baseline data. The approach 
provided several methods for extracting relevant spati-
otemporal imaging features from DaTscan images and 
demonstrated the capacity of synergy between imaging 
and non-imaging information for refining prediction.
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