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Abstract
Aims To determine if medium- and long-term blood glucose control as well as glycemic variability, which are known to be 
strong predictors of vascular complications, are associated with underlying cerebral small vessel disease (cSVD) in neuro-
logically asymptomatic individuals with type 1 diabetes.
Methods A total of 189 individuals (47.1% men; median age 40.0, IQR 33.0–45.2 years) with type 1 diabetes (median 
diabetes duration of 21.7, IQR 18.3–30.7 years) were enrolled in a cross-sectional retrospective study, as part of the Finnish 
Diabetic Nephropathy (FinnDiane) Study. Glycated hemoglobin  (HbA1c) values were collected over the course of ten years 
before the visit including a clinical examination, biochemical sampling, and brain magnetic resonance imaging. Markers of 
glycemic control, measured during the visit, included  HbA1c, fructosamine, and glycated albumin.
Results Signs of cSVD were present in 66 (34.9%) individuals. Medium- and long-term glucose control and glycemic vari-
ability did not differ in individuals with signs of cSVD compared to those without. Further, no difference in any of the blood 
glucose variables and cSVD stratified for cerebral microbleeds (CMBs) or white matter hyperintensities were detected. 
Neither were numbers of CMBs associated with the studied glucose variables. Additionally, after dividing the studied vari-
ables into quartiles, no association with cSVD was observed.
Conclusions We observed no association between glycemic control and cSVD in neurologically asymptomatic individuals 
with type 1 diabetes. This finding was unexpected considering the large number of signs of cerebrovascular pathology in these 
people after two decades of chronic hyperglycemia and warrants further studies searching for underlying factors of cSVD.

Keywords Cerebral small vessel disease · Magnetic resonance imaging · Fructosamine · Glycated albumin · Long-term 
glycemic fluctuations

Introduction

High blood glucose is a major risk factor for not only micro-
vascular complications, but also cardiovascular disease in 
type 1 diabetes [1, 2]. Cardiovascular complications cause 
significant premature mortality in individuals with type 1 
diabetes [3]. Despite the fact that type 1 diabetes increases 
the risk of stroke fourfold compared to non-diabetic indi-
viduals, this grim complication has been less studied than 

other cardiovascular consequences [4]. We observed recently 
that a third of neurologically asymptomatic individuals with 
type 1 diabetes showed signs of pathological cerebral small 
vessel disease (cSVD), however, virtually none among the 
healthy control subjects. Of the different manifestations, 
white matter hyperintensities (WMHs) were observed in 
17% and cerebral microbleeds (CMBs) in 24% in our cohort 
comprised of individuals with type 1 diabetes and a mean 
age of 40.0 [5]. Our findings resemble those of the Pitts-
burgh EDC study reporting 33% of individuals with a mean 
age of 49.5 years showing signs of white matter hyperinten-
sities (WMHs) in brain magnetic resonance imaging (MRI) 
[6]. As hemosiderin-sensitive sequences were not part of 
the MRI protocol in the Pittsburgh cohort CMBs could not 
be detected.
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Notably, only few of the traditional risk factors were 
different in type 1 diabetes individuals with and with-
out cSVDs. Blood pressure, a well-known risk factor for 
cSVD [7], was higher in both individuals with WMHs and 
CMBs compared to those without [5], and especially noc-
turnal hypertension was associated cSVD [8]. However, it is 
unlikely that the modestly higher blood pressure in individu-
als with cSVD compared to those with no cerebrovascular 
pathology would fully explain this finding [5]. Neither could 
we observe a difference in  HbA1c at the time of the imaging 
study. This warrants further analysis of glycemic control in 
relation to cSVD in this type 1 diabetes cohort with more 
than two decades of hyperglycemia.

The aim of this study was to retrospectively determine 
whether medium- or long-term blood glucose control meas-
ured by different markers were associated with cSVD in neu-
rologically asymptomatic individuals with type 1 diabetes. 
Additionally, we sought to investigate whether long-term 
glycemic fluctuations, known to predict vascular complica-
tions in this patient group, are predictive of cSVD.

Methods

This study was performed as part of the Finnish Diabetic 
Nephropathy (FinnDiane) Study, a nationwide multicenter 
study aiming to identify genetic, environmental, and clinical 
risk factors for micro- and macrovascular complications in 
type 1 diabetes [5]. A total of 191 individuals with type 1 
diabetes were enrolled to the study. Two individuals were 
excluded due to missing clinical data. Thus, a total of 189 
individuals with type 1 diabetes were included in the pre-
sent study. Age span ranged between 18 and 50 years and 
the onset of diabetes was < 40 years. Individuals with renal 
replacement therapy, any clinical signs of cerebrovascular 
disease, or contraindications for MRI were excluded from 
this substudy. The study was carried out in accordance with 
the Declaration of Helsinki and approved by the Ethics 
Committee of the Helsinki and Uusimaa Hospital District. 
Each participant signed a written informed consent [5].

All individuals were studied at the FinnDiane Research 
Center (Biomedicum) and the Medical Imaging Center at 
Helsinki University Hospital, both in Helsinki, Finland. 
Clinical visits included brain MRI scans, biochemical sam-
pling, and a thorough clinical examination. The study visits 
and methods have been presented in greater detail before 
[5]. Briefly, brain MRI was performed with a 3.0 T scanner 
(Achieva; Philips, Best, the Netherlands). The images were 
assessed by an experienced neuroradiologist (JM) who was 
blinded to all clinical data. Markers of cSVD were rated per 
the standardized STRIVE criteria, including the assessment 
of WMHs (Fazekas scale used, with category ≥ 1 considered 
a significant burden), CMBs, and lacunar infarcts [9].

Measures of blood glucose control

To characterize medium-term glucose control, fructosa-
mine (FA), and glycated albumin (GA), reflecting blood 
glucose during a time span of two to three weeks, were 
measured [10, 11]. Blood glycated hemoglobin  (HbA1c), 
reflecting blood glucose control during a time span of one 
to two months, was measured using standardized assays 
in a central laboratory (Medix Laboratories, Espoo Fin-
land) [12]. Three or more  HbA1c values over the course of 
ten years before the visit (median count 16, IQR 10–23) 
were obtained in order to calculate overall mean  HbA1c 
 (HbA1c-meanoverall) for each individual to better deline-
ate long-term glucose control. These values were col-
lected from local laboratories using standardized methods 
(HPLC) with a normal range of 4–6%. Measurements of 
 HbA1c visit-to-visit variability reflects long-term blood 
glucose fluctuations in a wider timespan of months to 
years [13]. To assess long-term blood glucose fluctuations 
 HbA1c standard deviation  (HbA1c-SD),  HbA1c coefficient 
of variation  (HbA1c-CV), and  HbA1c average real variabil-
ity  (HbA1c-ARV) were calculated for each individual. To 
minimize any effect of a varying number of  HbA1c values 
on long-term glucose variability, adjusted  HbA1c standard 
deviation  (HbA1c-adjSD) were defined for each individual. 
Of the individuals with type 1 diabetes, 44 had less than 
three  HbA1c values available ten years before the visit, 
three had missing data on FA or GA and were excluded 
from the respective analyses.

Determination of glycated albumin (GA)

GA concentration was determined according to manu-
facturers' instructions using a competitive ELISA kit 
(Human glycated albumin ELISA Kit, CSB-E09599h, 
Cusabio, Wuhan, Hubei Province, China) [14]. Samples 
were diluted to 1:250 with the sample diluent buffer pro-
vided with the kit to achieve sample absorbance within the 
range of a standard curve. The absorbance was measured 
at 450 nm using a Synergy H1 hybrid multi-mode micro-
plate reader (Biotek, Winooski, VT, USA). The amount of 
GA was determined by comparing with the known stand-
ard provided with the kit and expressed as nM/ml of GA 
present in human serum samples.

Determination of fructosamine (FA)

Serum FA levels were measured by colorimetric technique 
based on the ability of FA to reduce nitroblue tetrazo-
lium (NBT) to tetrazinolyl radical NBT + , which further 
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yields formation of colored formazan under alkaline con-
dition [15]. The developed color intensity was measured 
at 540 nm and FA content was calculated using standard 
1-deoxy-1 morpholino-D-fructose (0–3.2 mM/L).

Statistics

Statistical analyses were performed using IBM SPSS 
Statistics 26.0 (IBM, Armonk, NY). T-tests were used 
for parametric data and presented as means (± SD), and 
Mann–Whitney-U or Kruskal–Wallis tests for the nonpara-
metric data presented as medians (interquartile range). The 
X2 test or Fisher’s exact tests were performed for categorical 
variables.  HbA1c-adjSD was calculated according to the for-
mula: SD∕

√

[n∕(n − 1)] [16, 17].  HbA1c-CV was calculated 
as the  HbA1c (%) SD divided by the mean and multiplied 
by 100, result presented as a percentage and  HbA1c-ARV 
as the average of the absolute differences between consecu-
tive  HbA1c (%) measurements [18]. The study individuals 
were divided into three groups based on the number of 
CMBs (zero, one to two, more than two) and into quartiles 
based on the  HbA1c, FA, GA,  HbA1c-meanoverall,  HbA1c-SD, 
 HbA1c-adjSD,  HbA1c-CV, and  HbA1c-ARV values. Bivariate 
(Pearson) correlation analysis was used to study correlations 
between  HbA1c, FA, GA, and  HbA1c-meanoverall. The thresh-
old for statistical significance was set at p < 0.05.

Results

Clinical characteristics

One hundred and eighty-nine individuals with type 1 
diabetes were enrolled for this study, with demograph-
ics previously presented in greater detail [5]. Briefly, the 
median age of the individuals with type 1 diabetes was 
40.0 (33.0–45.2) years, 47.1% were male and median dia-
betes duration was 21.7 (18.3–30.7) years. One individual 
had a history of an acute myocardial infarction, no other 
cardiovascular events were recorded. Mean systolic blood 
pressure was 130 ± 14 mmHg. Among cases, 31 (16.9%) 
had albuminuria, 20 (10.9%) microalbuminuria, and 11 
(6.0%) macroalbuminuria. Sixty-six (34.9%) showed signs 
of cSVD, 45 (23.8%) had CMBs, 32 (16.9%) WMHs, 
and 4 (2.1%) lacunar infarcts. The overlap between 
these changes was eleven (5.8%) for CMBs and WMHs 
and two (1.1%) for both CMBs or WMHs and lacunar 
infarct. Examples of these MRI findings are presented 
in Fig. 1. Fifty-five (29.1%) of the individuals were on 
insulin pump treatment. Insulin pump treatment did not 
correlate with the presence of cSVD (data not shown). 
Median  HbA1c, GA, and FA values during the visits were 
8.1% (7.4–8.9%), (65.0  mmol/mol [57.0–73.0  mmol/
mol]), 91.6 nM/ml (74.3–116.4 nM/ml), and 2.6 mM/l 
(2.4–3.0 mM/l), respectively.  HbA1c-meanoverall, collected 
over the course of ten years before the visit (median count 
16, IQR 10–23), were 8.1 ± 0.9% (65.4 ± 10.3  mmol/
mol) (Table 1). Bivariate correlations between  HbA1c, 
FA, GA, and  HbA1c-meanoverall are presented in Supple-
mentary Table 1. An association was observed between 

Fig. 1  MRI findings of cerebral 
small vessel disease. Fluid 
attenuated inversion recovery 
image (FLAIR) with white mat-
ter hyperintensity (arrow) (a). 
Susceptibility weighted image 
(SWI) with cerebral micro-
bleeds (arrows) (b)
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 HbA1c vs. FA (p = 0.018) and  HbA1c vs.  HbA1c-meanoverall 
(p < 0.001). To overcome the possibility of bias by the 
number of  HbA1c measurements we divided the study indi-
viduals into two groups, above and below median  HbA1c 
count. The presence of cSVD were not different between 
the groups (24 [30.8%] vs. 29 [43.3%], p = 0.119).

Individuals with CMBs or WMHs had higher sys-
tolic blood pressure compared to those without CMBs or 
WMHs (135 ± 17 mmHg vs. 129 ± 13 mmHg, p = 0.011 
for CMBs and 137 ± 15  mmHg vs. 129 ± 14  mmHg, 
p = 0.005 for WMHs). The presence of WMHs correlated 
also with age (45.0 [40.4–47.6] years vs. 38.6 [32.5–44.2] 
years, p < 0.001) and the presence of CMBs with albumi-
nuria (13 [30.2%] vs. 18 [12.9%], p = 0.008). The other 
demographic variables were not associated with CMBs 
or WMHs.

Medium‑ and long‑term blood glucose control 
and cSVD

HbA1c at the study visit did not correlate with the presence of 
cSVD (8.2% [7.6–8.9%], 66.0 mmol/mol [59.8–73.3 mmol/
mol] vs. 8.0% [7.3–8.8%], 64.0 mmol/mol [56.0–73.0 mmol/
mol], p = 0.259), CMBs, or WMHs in individuals with 
type 1 diabetes. GA and FA did not correlate with cSVD 
(97.2 [73.9–117.8] nM/ml vs. 89.6 [76.3–115.9] nM/ml, 
p = 0.704 for GA and 2.6 [2.4–2.9] mM/l vs. 2.5 [2.3–3.0] 
mM/l p = 0.587 for FA), CMBs, or WMHs in brain MRIs 
(Table 2). Furthermore, individuals with type 1 diabetes 
divided into quartiles based on their  HbA1c, GA, and FA 
values showed no correlations with the presence on cSVD 
markers (Table 3). Neither did we observe associations 
between  HbA1c, GA, and FA and the number of CMBs 
(Table 4).

Differences in  HbA1c-meanoverall value, collected within 
ten years prior to the study visit, were not observed between 
those type 1 diabetes individuals with any signs of cSVD 
in their brain MRIs compared to those without (8.3 ± 1.0% 
[67.4 ± 11.2 mmol/mol] vs. 8.0 ± 0.9% [64.2 ± 9.5 mmol/
mol], p = 0.141) (Table 2). This was also true when analyz-
ing separately the cerebral changes CMBs and WMHs. We 
observed no associations between cumulative blood glucose 
values and cSVDs or the number of CMBs after dividing 
individuals with type 1 diabetes into quartiles based on the 
 HbA1c-meanoverall (Tables 3 and 4).

Glycemic variability and cSVD

Long-term  HbA1c variability, measured as  HbA1c-SD 
(0.57% [0.42–0.78%] vs. 0.61% [0.44–0.81%], p = 0.655, 
 HbA1c-adjSD (0.55% [0.40–0.73%] vs. 0.58% [0.43–0.78%], 
p = 0.771,  HbA1c-CV (6.7% [5.5–8.7%] vs. 7.6% [5.7–9.9%], 
p = 0.245), and  HbA1c-ARV (0.5 [0.4–0.6] vs. 0.5 [0.3–0.7], 
p = 0.953), did not correlate with the presence of cSVD. 
Similarly, no correlation was observed between glycemic 
variability and WMHs, CMBs, or the number of CMBs 
(Tables 2 and 4). After dividing the population into quar-
tiles of  HbA1c variability, no correlation was observed with 
the presence of cSVD, CMBs or WMHs observed in brain 
MRI (Table 3).

Discussion

The main finding of our study was that medium- and long-
term blood glucose control and glycemic variability showed 
no association with cSVD in neurologically asymptomatic 
individuals with type 1 diabetes after two decades of chronic 

Table 1  Clinical characteristics of the study population

Data are n (%), median (interquartile range) or mean ± SD unless oth-
erwise indicated

Individuals with 
type 1 diabetes 
n = 189

Age, years 40.0 (33.0–45.2)
Male sex 89 (47.1)
Diabetes duration, years 21.7 (18.3–30.7)
Cerebral small vessel disease 66 (34.9)
Cerebral microbleeds 45 (23.8)
White matter hyperintensities 32 (16.9)
Lacunae 4 (2.1)
Systolic blood pressure, mmHg 130 ± 14
Total cholesterol, mmol/L, median 4.4 (4.0–4.9)
High-density lipoprotein, mmol/L, median 1.4 (1.2–1.7)
Low-density lipoprotein, mmol/L, median 2.4 (2.1–3.0)
Triglycerides, mmol/L, median 0.9 (0.7–1.4)
Albuminuria 31 (16.9)
Microalbuminuria 20 (10.9)
Macroalbuminuria 11 (6.0)
Estimated glomerular filtration rate, ml/min/1.73 

 m2
108.2 (96.4–115.8)

HbA1c, % 8.1 (7.4–8.9)
HbA1c, mmol/mol 65.0 (57.0–73.0)
Glycated albumin, nM/ml 91.6 (74.3–116.4)
Fructosamine, mM/l 2.6 (2.4–3.0)
HbA1c count, n 16 (10–23)
HbA1c-meanoverall, % 8.1 ± 0.9
HbA1c-meanoverall, mmol/mol 65.4 ± 10.3
HbA1c standard deviation, % 0.59 (0.44–0.81)
HbA1c adjusted standard deviation, % 0.56 (0.43–0.76)
HbA1c coefficient of variation, % 7.2 (5.6–9.6)
HbA1c average real variability 0.5 (0.4–0.6)
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hyperglycemia. Our study results suggest that factors other 
than blood glucose control are central in the development of 
cSVD in type 1 diabetes.

Risk factors for cSVD, especially for CMBs, are scarcely 
studied in type 1 diabetes. The Pittsburgh EDC study 

reported no association between WMHs and chronic hyper-
glycemia measured as  HbA1c [6]. Similar findings were 
reported in another cohort consisting of 114 individuals with 
type 1 diabetes [19]. Our findings are in concordance with 
these previous studies, further extending their observations 

Table 2  HbA1c, glycated albumin, fructosamine, and long-term glycemic variability stratified by small vessel disease findings in brain MRI in 
individuals with type 1 diabetes

Data are median (interquartile range) or mean ± SD unless otherwise indicated. GA = glycated albumin, FA = fructosamine, SD = standard devia-
tion, adjSD = adjusted standard deviation, CV = coefficient of variation, ARV = average real variability

Cerebral small vessel disease Cerebral microbleeds White matter hyperintensities

Presence 
(n = 66)

Absence 
(n = 123)

p Presence 
(n = 45)

Absence 
(n = 144)

p Presence 
(n = 32)

Absence 
(n = 157)

p

HbA1c, %, 
(mmol/mol)

8.2 (7.6–8.9), 
(66.0 
[59.8–73.3])

8.0 (7.3–8.8), 
(64.0 
[56.0–73.0])

0.259 8.2 (7.6–8.9), 
(66.0 
[60.0–73.0])

8.1 (7.4–8.8), 
(65.0 
[57.0–73.0])

0.419 8.2 (7.4–8.7), 
(65.5 
[58.3–72.0])

8.1 (7.4–8.9), 
(65.0 
[57.0–73.0])

0.838

GA, nM/ml 97.2 (73.9–
117.8)

89.6 (76.3–
115.9)

0.704 102.9 (73.9–
125.3)

90.3 (76.3–
115.2)

0.580 98.0 (82.6–
113.7)

89.8 (74.0–
117.8)

0.492

FA, mM/l 2.6 (2.4–2.9) 2.5 (2.3–3.0) 0.587 2.6 (2.4–2.9) 2.5 (2.3–3.0) 0.439 2.6 (2.4–3.0) 2.6 (2.4–3.0) 0.429
HbA1c-mean-

overall, %, 
(mmol/mol)

8.3 ± 1.0, 
(67.4 ± 11.2)

8.0 ± 0.9, 
(64.2 ± 9.5)

0.141 8.3 ± 0.9, 
(67.2 ± 10.3)

8.1 ± 0.9, 
(64.7 ± 10.2)

0.280 8.2 ± 1.1, 
(66.4 ± 12.0)

8.1 ± 0.9, 
(65.1 ± 9.9)

0.787

HbA1c-SD, % 0.57 (0.42–
0.78)

0.61 (0.44–
0.81)

0.655 0.56 (0.42–
0.76)

0.61 (0.44–
0.82)

0.514 0.52 (0.39–
0.97)

0.61 (0.46–
0.81)

0.445

HbA1c-adjSD, 
%

0.55 (0.40–
0.73)

0.58 (0.43–
0.78)

0.771 0.53 (0.40–
0.72)

0.58 (0.43–
0.79)

0.577 0.51 (0.39–
0.93)

0.57 (0.44–
0.75)

0.480

HbA1c-CV, % 6.7 (5.5–8.7) 7.6 (5.7–9.9) 0.245 6.7 (5.5–8.5) 7.4 (5.7–10.1) 0.219 6.0 (5.0–11.5) 7.5 (5.8–9.5) 0.293
HbA1c-ARV 0.5 (0.4–0.6) 0.5 (0.3–0.7) 0.953 0.5 (0.4–0.6) 0.5 (0.4–0.6) 0.578 0.4 (0.4–0.6) 0.5 (0.4–0.7) 0.410

Table 3  HbA1c, glycated albumin, fructosamine, and long-term glycemic variability lowest and highest quartile crosstabs by small vessel disease 
findings in brain MRI in individuals with type 1 diabetes

Data are n (%). GA = glycated albumin, FA = fructosamine, SD = standard deviation, adjSD = adjusted standard deviation, CV = coefficient of 
variation, ARV = average real variability

Cerebral small vessel disease Cerebral microbleeds White matter hyperintensities

Presence Absence p Presence Absence p Presence Absence p

HbA1c, highest quartile 18 (54.4) 29 (56.7) 0.289 12 (57.1) 35 (44.3) 0.295 7 (46.7) 40 (47.1) 0.978
HbA1c, lowest quartile 15 (45.5) 38 (56.7) 9 (42.9) 44 (55.7) 8 (53.3) 45 (52.9)
GA, highest quartile 17 (50) 29 (50) 1.000 14 (53.8) 32 (48.5) 0.643 6 (54.5) 40 (49.4) 0.748
GA, lowest quartile 17 (50) 29 (50) 12 (46.2) 34 (51.5) 5 (45.5) 41 (50.6)
FA, highest quartile 14 (53.8) 33 (50.8) 0.791 10 (58.8) 37 (50) 0.512 10 (62.5) 37 (49.3) 0.339
FA, lowest quartile 12 (46.2) 32 (49.2) 7 (41.2) 37 (50) 6 (37.5) 38 (50.7)
HbA1c-meanoverall, highest quartile 16 (57.1) 20 (45.5) 0.334 11 (57.9) 25 (47.2) 0.422 7 (50) 29 (50) 1.000
HbA1c-meanoverall, lowest quartile 12 (42.9) 24 (54.5) 8 (42.1) 28 (52.8) 7 (50) 29 (50)
HbA1c-SD, highest quartile 12 (48.0) 24 (52.2) 0.737 7 (43.8) 29 (52.7) 0.527 7 (46.7) 29 (51.8) 0.725
HbA1c-SD, lowest quartile 13 (52.0) 22 (47.8) 9 (56.3) 26 (47.3) 8 (53.3) 27 (48.2)
HbA1c-adjSD, highest quartile 12 (44.4) 24 (51.1) 0.583 7 (38.9) 29 (51.8) 0.341 7 (41.2) 29 (50.9) 0.482
HbA1c-adjSD, lowest quartile 15 (55.6) 23 (48.9) 11 (61.1) 27 (48.2) 10 (58.8) 28 (49.1)
HbA1c-CV, highest quartile 12 (44.4) 24 (53.3) 0.465 7 (41.2) 29 (52.7) 0.405 7 (41.2) 29 (52.7) 0.405
HbA1c-CV, lowest quartile 15 (55.6) 21 (46.7) 10 (58.8) 26 (47.3) 10 (58.8) 26 (47.3)
HbA1c-ARV, highest quartile 11 (54.2) 25 (48.1) 0.739 9 (56.3) 27 (47.4) 0.530 4 (44.4) 32 (50) 0.518
HbA1c-ARV, lowest quartile 10 (47.6) 27 (51.9) 7 (43.8) 30 (52.6) 5 (55.6) 32 (50)
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by carefully characterizing blood glucose control as well 
as deepening the cerebrovascular phenotype. We measured 
cumulative blood glucose and glycemic variability after 
collecting  HbA1c values over a course of ten years before 
the study visit. Furthermore, medium-term glucose control 
was estimated by adding two established glycemic markers, 
namely FA and GA, into the analyses. Lastly, in contrast to 
prior studies, CMBs being strongly associated with future 
strokes and mortality [20, 21] were identified from brain 
MRI scans in our study in contrast to only WMHs and lacu-
nes in previous studies.

A third of the individuals in our population of neuro-
logically asymptomatic individuals with type 1 diabetes 
showed signs of pathological cSVD. However, hardly any 
cerebrovascular changes were observed in the normogly-
cemic healthy control subjects. Only a few established 
clinical risk factors were different in individuals with and 
without cSVDs. Notably, differences in these risk factors, 
namely blood pressure and albuminuria, were only modestly 
explaining the cerebral findings [5]. It is, thus, surprising 
that variables reflecting blood glucose control at the time of 
the brain MRI study, cumulative blood glucose levels prior 
to the study, or blood glucose variability showed no associa-
tions with vascular pathology detected in brain MRI.

Individuals with type 1 diabetes have a markedly 
increased risk for cardiovascular morbidity and mortality 
compared to the healthy population [22]. We have previously 
shown that  HbA1c is an independent risk factor for ischemic 
but not for hemorrhagic stroke [23]. Similarly, intensive 
diabetes therapy reduced a pooled cardiovascular disease 
(CVD) end-point consisting of nonfatal myocardial infarc-
tion, stroke and death by 57 percent in the Diabetes Control 
and Complications Trial (DCCT) and the Epidemiology of 
Diabetes Interventions and Complications (EDIC) Study 
[2]. It may well be that CVD outcomes in these longitudi-
nal studies were partly secondary to diabetic kidney disease 

(DKD), a strong risk factor for cerebrovascular disease, 
whereas 83.1% of the participants in our study, showed no 
signs of DKD. This raises the question whether the detri-
mental effect of hyperglycemia on the cerebrovascular bed 
is mediated via diabetic microvascular complications, and 
kidney disease in particular.

Glycemic variability has been suggested to cause cellular 
damage in different organs, particularly via oxidative stress 
[24]. We have shown long-term glucose variability, meas-
ured as SD of longitudinal  HbA1c values, to predict inci-
dent of microalbuminuria, progression of renal disease, and 
cardiovascular disease events in type 1 diabetes [13]. Simi-
lar findings were reported in another study, where  HbA1c 
variability predicted retinopathy, nephropathy, and cardiac 
autonomic neuropathy in adolescents with type 1 diabetes 
[25]. The DCCT Study reported  HbA1c variability to con-
tribute to the development of retinopathy and nephropathy, 
whereas short-term glucose variability did not predict the 
development of these complications [16, 26, 27]. Previous 
reports showed no strong association of FA with severity of 
hemiparesis and predicted stroke outcome in general popu-
lation with brain infarction of the carotid territory [28] and 
in individuals with cerebral hemorrhage at an early stage 
of their illness [29]. Also, GA has shown different impact 
on stroke outcomes being associated with only large artery 
atherosclerosis but not with small vessel occlusion and car-
dioembolism in diabetic individuals with acute ischemic 
stroke [30]. However, other study reported association of GA 
with early neurological deterioration in prediabetic individu-
als with acute ischemic stroke [31]. Reflecting short-term 
glycemia, FA and GA levels can be affected by acute blood 
glucose change, albumin turnover or metabolism [32] and 
therefore reflects its variability in a disease specific man-
ner. These observations and present findings suggest that 
an abnormal level of glycemic biomarkers reflect metabolic 
illness but does not exacerbate an acute manifestation of 

Table 4  HbA1c, glycated albumin, fructosamine and long-term glycemic variability by number of cerebral microbleeds in individuals with type 
1 diabetes

Data are median (interquartile range) or mean ± SD unless otherwise indicated. GA = glycated albumin, FA = fructosamine, SD = standard devia-
tion, adjSD = adjusted standard deviation, CV = coefficient of variation, ARV = average real variability

Number of cerebral microbleeds

0 (n = 144) 1–2 (n = 33) 3 or more (n = 12) p

HbA1c, %, (mmol/mol) 8.1 (7.4–8.8), (65.0 [57.0–73.0]) 8.2 (7.6–8.8), (66.0 [59.5–72.0]) 8.3 (7.7–9.4), (66.5 [61.3–79.0]) 0.470
GA, mM/l 90.3 (76.3–115.2) 98.4 (72.4–121.9) 106.9 (81.8–133.0) 0.677
FA, mM/l 2.5 (2.3–3.0) 2.5 (2.4–2.9) 2.8 (2.8–3.1) 0.066
HbA1c-meanoverall, %, (mmol/mol) 8.1 ± 0.9, (64.7 ± 10.2) 8.2 ± 0.8, (66.2 ± 8.8) 8.6 ± 1.2, (70.1 ± 13.6) 0.403
HbA1c-SD, % 0.61 (0.44–0.82) 0.57 (0.39–0.83) 0.55 (0.48–0.68) 0.702
HbA1c-adjSD, % 0.58 (0.42–0.79) 0.56 (0.36–0.76) 0.52 (0.45–0.66) 0.735
HbA1c-CV, % 7.4 (5.7–10.1) 6.8 (5.4–9.8) 6.6 (5.5–7.9) 0.334
HbA1c-ARV 0.5 (0.4–0.6) 0.5 (0.4–0.6) 0.6 (0.4–0.7) 0.718
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cerebrovascular changes. Future studies are needed to inves-
tigate whether short-term glucose control and variability 
contribute to the risk of cSVD, especially CMBs in type 1 
diabetes.

High blood glucose is the main driver of diabetic retin-
opathy, another form of cerebrovascular disease, in type 1 
diabetes [33]. It is thus of interest that the number of CMBs 
has earlier been shown to be higher in individuals with type 
1 diabetes and severe diabetic retinopathy [34]. Similarly, 
the prevalence of WMHs and/or lacunes has been shown to 
correlate with diabetic retinopathy in type 2 diabetes [35]. 
We did also observe an association between CMBs and dia-
betic retinal disease [36]. This association was, however, 
independent of  HbA1c reflecting the strong relationship 
between blood glucose and diabetic retinal disease. The 
findings that the blood glucose levels were associated with 
diabetic retinopathy albeit not cSVD raises the question, 
whether the mechanisms of the adverse effects of hypergly-
cemia on the central nervous system could be different from 
those in the retina. It may well be that changes in multiple 
metabolic factors induced by diabetes contribute differently 
to the abnormalities in the cerebral and the retinal vascula-
ture. Further studies on potential metabolic changes in our 
cohort are now ongoing to address this question.

It is of note that the glucose levels on both sides of the 
blood brain barrier, namely blood and cerebrospinal fluid, 
may not be identical. Important regulators are involved in 
this delicate balance such as glucose transporters (GLUTs) 
to maintain the continuous high glucose and energy demands 
of the brain [37, 38]. Mechanistic studies are warranted to 
give an answer whether GLUTs could explain these findings. 
Interestingly, poorly controlled diabetes mellitus can cause 
a variety of adverse effects on brain function and metabo-
lism via both low and high blood glucose levels [37]. These 
blood glucose alterations in diabetes mellitus can affect cer-
ebral neurotransmitter metabolism, cerebral blood flow, and 
blood–brain barrier [37, 39]. Particularly dysfunction of the 
blood–brain barrier has been suggested to relate to intracer-
ebral hemorrhage and the presence of CMBs [40]. Whether a 
damaged blood–brain barrier explains the number of CMBs 
in our cohort is not known. Neither if such changes could be 
caused by a poor glycemic control.

Our study does not go without limitations. We had 
serial A1c values from ten years enabling us to assess both 
cumulative blood glucose control and blood glucose varia-
bility. The cross-sectional retrospective nature of the study 
should, however, be taken into account. Our study had no 
data regarding short-term glucose control such as time 
in range (TIR) or variability measured from continuous 
glucose monitoring systems (CGMS), leaving this interest-
ing topic open for future studies. The number of partici-
pants and  HbA1c measurements, reflecting long-term blood 

glucose levels and fluctuations, is limited and this may 
have an effect on the statistical power to detect differences 
between the groups. A larger cohort would have enabled 
greater statistical power. It is, however, improbable that 
this would markedly have changed the results considering 
the consistence of the observations. The strengths of this 
study are the standardized imaging and clinical assess-
ment, as well as the strong phenotypic data.

Conclusion

We observed no association between medium- and long-
term blood glucose control and long-term glycemic vari-
ability and cSVD in neurologically asymptomatic indi-
viduals with type 1 diabetes. This finding was unexpected 
considering the large number of signs of cerebrovascular 
pathology in these people after two decades of chronic 
hyperglycemia and warrants further studies searching for 
underlying factors of cSVD.
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