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Backgrounds: Our previous work revealed that AMP-activated protein kinase (AMPK)

activation inhibits vascular smooth muscle cell migration in vitro by phosphorylating PDZ

and LIM domain 5 (Pdlim5). As metformin is an AMPK activator, we used a mouse

vascular smooth muscle cell (VSMC) line and a Myh11-cre-EGFP mice to investigate

whether metformin could inhibit the migration of VSMCs in vitro and in a wire-injury model

in vivo. It is recognized that VSMCs contribute to the major composition of atherosclerotic

plaques. In order to investigate whether the AMPK–Pdlim5 pathway is involved in the

protective function of metformin against atherosclerosis, we utilized ApoE−/− male mice

to investigate whether metformin could suppress diabetes-accelerated atherosclerosis

by inhibition of VSMC migration via the AMPK–Pdlim5 pathway.

Methods: The mouse VSMC cell line was exogenously transfected wild type,

phosphomimetic, or unphosphorylatable Pdlim5 mutant before metformin exposure.

Myh11-cre-EGFP mice were treated with saline solution or metformin after these were

subjected to wire injury in the carotid artery to study whether metformin could inhibit

the migration of medial VSMCs into the neo-intima. In order to investigate whether

the AMPK–Pdlim5 pathway is involved in the protective function of metformin against

atherosclerosis, ApoE−/− male mice were divided randomly into control, streptozocin

(STZ), and high-fat diet (HFD)-induced diabetes mellitus; STZ+HFD together with

metformin or Pdlim5 mutant carried the adenovirus treatment groups.

Results: It was found that metformin could induce the phosphorylation of Pdlim5

and inhibit cell migration as a result. The exogenous expression of phosphomimetic

S177D-Pdlim5 inhibits lamellipodia formation and migration in VSMCs. It was also

demonstrated that VSMCs contribute to the major composition of injury-induced
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neointimal lesions, while metformin could alleviate the occlusion of the carotid artery.

The data of ApoE−/− mice showed that increased plasma lipids and aggravated

vascular smooth muscle cell infiltration into the atherosclerotic lesion in diabetic

mice were observed Metformin alleviated diabetes-induced metabolic disorders and

atherosclerosis and also reduced VSMC infiltration in atherosclerotic plaques, while the

Pdlim5 phospho-abolished mutant that carried adenovirus S177A-Pdlim5 undermines

the protective function of metformin.

Conclusions: The activation of the AMPK–Pdlim5 pathway by metformin could

interrupt the migratory machine of VSMCs and inhibit cell migration in vitro and in

vivo. The maintenance of AMPK activity by metformin is beneficial for suppressing

diabetes-accelerated atherosclerosis.

Keywords: metformin, Pdlim5, AMPK, diabetes, vascular smooth cells

INTRODUCTION

Atherosclerosis is a chronic artery disease and responsible
for one in four deaths induced by cardiovascular diseases
(1, 2). Atherosclerosis is initiated with a regional endothelial
injury and followed by monocyte adhesion, infiltration, and
differentiation into macrophages, with the latter one taking up
oxidized LDL and becoming foam cell (3–6). However, the
major cell type in atherosclerotic plaques is vascular smooth
muscle cell (VSMC), which can also become a foam cell (7).
The VSMCs accumulated in the intima are thought to be
the major source of extracellular matrix (ECM) and foam
cells in fatty streaks (pre-atherosclerotic plaques) (3, 8). With
time, these early fatty streak lesions develop into advanced
lesions, some of which will eventually become unstable and
rupture, resulting in the adverse clinical events of cardiovascular
disease (CVD) (7, 9, 10). As described above, atherosclerotic
lesions are formed through the complex interactions of various
factors, and insulin resistance and hyperglycemia in diabetes
mellitus (DM) accelerate all these interactions, with greater
vascular inflammation, larger necrotic core, and more diffuse
atherosclerosis in the coronary arteries (3). The underlying
mechanism is still not very clear, probably due to the excessive
and prolonged production of reactive oxidative species (10).
Many clinical trials showed that intensive glucose therapy in
patients with type 2 diabetes mellitus (T2DM) reduces the risk
of a cardiovascular disease (11, 12). Even in individuals with
prediabetes, the risk of CVDwas increased (13). It was found that
metformin, a hypoglycemic agent, exhibits abilities to suppress
the progression of common carotid intima-media thickness in
T2DM patients and also reduces the incidence of myocardial
infarction (11, 12, 14, 15). However, it is paradoxical that several
recent clinical trials showed that the anti-atherogenic effect
of metformin seems independent of its hypoglycemic function

Abbreviations: AMPK, AMP-activated protein kinase; CTL, control; CVD,

cardiovascular disease; DM, diabetic mellitus; ECM, extracellular matrix; KDR,

knockdown-rescue; LDL, low-density lipoprotein; STZ, streptozotocin; Met,

metformin; Pdlim5, PDZ and LIM domain 5; T2DM, type 2 diabetic mellitus;

VSMCs, vascular smooth muscle cells.

because other regular therapies, such as insulin and sulfonylurea,
possess less beneficial cardiovascular effects (16–19). A possible
target of metformin is AMP-activated protein kinase (AMPK),
a cellular energy sensor activated under metabolic stress (20). It
has been reported that the activation of AMPK by metformin
reduces endothelial mitochondrial fragmentation and suppresses
atherosclerotic plaques in diabetic mice (15). Our previous
findings found that AMPK phosphorylates PDZ and LIMdomain
5 (Pdlim5), a protein involved in cytoskeleton organization,
on Ser177 to inhibit vascular smooth muscle cell migration by
suppressing the Rac1-Arp2/3 signaling pathway (21). Recent
genetic lineage tracing studies showed that VSMCs get involved
in every stage of atherosclerosis development and are a major
cell type in an atherosclerotic plaque (8). The single-cell omics
also reveals the heterogeneity and plasticity of VSMCs in the
vessel wall during atherogenesis (22). The VSMCs not only
take part in ECM synthesis and fibrous cap formation but also
switch into macrophage-like cells/foam cells and even contribute
to calcification and necrotic core, which are crucial to plaque
instability (8, 23, 24). Considering the complexity of the roles
that VSMCs played in the development of atherosclerosis and
the importance of VSMCs in atherosclerotic plaques, we assume
that activation of the AMPK–Pdlim5 pathway by metformin may
be beneficial for suppressing diabetes-accelerated atherosclerosis
via the inhibition of VSMC migration. In this study, we
identified that metformin could induce the phosphorylation
of Pdlim5 at Ser177 site through AMPK and inhibit cell
migration in vitro. With vascular smooth muscle lineage
tracking mice, we found that VSMCs from media contribute
to neointima formation after artery injury, and metformin
reduces VSMC migration and the area of the neointima. Using
streptozotocin (STZ)-induced diabetic ApoE−/− mice, we found
that metformin reduces atherosclerotic plaques, while S177A-
Pdlim5, an unphosphorylatable mutant that carried adenovirus,
undermines metformin’s anti-atherosclerosis function. Taken
together, metformin reduces the motility of vascular smooth
muscle cells through the activation of the AMPK–Pdlim5
pathway, which contributes to the protective effects of metformin
against diabetes-accelerated atherosclerosis and is beneficial for
the therapy of metabolic syndrome.
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MATERIALS AND METHODS

Animal Experiments
Eight-week-old male ApoE−/− mice (body weight, 20–25 g) on
C57/BL6 background were purchased from Beijing Biocytogen
Co., Ltd. (Beijing, China) and kept with free access to water
and food in a specific pathogen-free room under 24◦C and
12-h light/dark cycle at the laboratory animal center of
Southern Medical University. ApoE−/− mice were injected
intraperitoneally with 50 mg/kg STZ for 5 days to induce
DM. At 2 weeks later, the diabetic mice were randomly
divided into eight groups (n = 10 per group): control group,
metformin hydrochloride (via gastric gavage, 300 mg/kg/day,
Sigma-Aldrich) group, wild-type Pdlim5 (Pdlim5 WT) that
carried adenovirus (Ad) group, Ad Pdlim5 WT and Met group,
Ad Pdlim5 S177A group, Ad Pdlim5 S177A and Met group, Ad
Pdlim5 S177D group, and Ad Pdlim5 S177D and Met group.
At 3 days after virus infection, the mice were fed with a high-
fat diet subsequently. At the end of the experiments, the mice
were euthanized with terminal anesthetic (isoflurane>4% in 95%
O2 and 5% CO2). All the animal experiments were approved
and performed according to the Institutional Animal Care and
Use Committee (IACUC) of Southern Medical University, which
conformed to the guidelines from Directive 2010/63/EU of the
European Parliament on the protection of animals used for
scientific purposes. The high-fat and high-cholesterol diets were
purchased from Guangdong Experimental Animal Center. The
2-kg pack of high-fat diet (HFD) contains 4.4 kcal/g of energy,
and the components per pack as listed by the manufacturer were
as follows: 17% lard, 1.2% cholesterol, 0.2% sodium cholate, 10%
casein, 0.6% calcium hydrogen carbonate, 0.4% stone powder,
0.4% premix, and 52.2% basic feed.

Blood Glucose and Plasma Lipid
Measurements
Blood glucose level was determined 2 weeks later after STZ
induction with OneTouch Ultra2 Glucose Monitors (LifeScan,
Milpitas, CA, USA). Mice whose blood glucose level was
above 16.6 mmol/L were diagnosed as having DM. Plasma
total cholesterol, triglyceride, low-density lipoprotein cholesterol,
and high-density lipoprotein cholesterol were determined with
biochemical kits (Jiancheng Biotechnology, Nanjing, China).

Carotid Artery Injury
Twelve- to 15-week-old Myh11-cre-EGFP male mice, with
background in C57BL/6 WT, were purchased from Shanghai
Model Organisms Center, Inc. The carotid arterial intima of
the mice were mechanically damaged with a beaded guidewire
as described in the reference (25). The mice were anesthetized
by inhalation with a mixture of isoflurane (2%) and oxygen
(98%). The animal work was also approved and performed
according to the IACUC of Southern Medical University, which
conformed to the guidelines from Directive 2010/63/EU of the
European Parliament on the protection of animals used for
scientific purposes.

Tissue Collection, En face Analysis of the
Aortic Arch, and Immunohistochemical
Staining
The mice were perfused with phosphate-buffered saline (PBS),
followed by 4% paraformaldehyde, after euthanasia. The hearts,
together with a short segment of the aorta, were collected and
embedded or quickly frozen. Immunohistochemical staining was
performed as described previously (26). All immunofluorescence
micrographs and images of Oil Red O-stained areas of
the atherosclerotic lesion were acquired with an Olympus
FV1000 confocal laser scanning microscope (Olympus, Tokyo,
Japan), and morphometric analysis was performed using ImageJ
software (NIH).

Western Blotting
Western blotting was performed according to the description in
the reference (21).

Cell Culture
The mouse aortic smooth muscle cells and 293T cells were
purchased from the American Type Culture Collection. The cells
were cultured in DMEM supplemented with 10% serum (Gibco)
under a humidified environment at 37◦C in 5% CO2 and 95% air.
The cells were sub-cultured when grown to 80–90% confluence.
Cells within 10 generations were used for the experiments. The
AMPK-α1 knock-out knockdown-rescue (KDR)/EGFP-Pdlim5
VSMC was a gift generously provided by Professor Takashima
(Osaka University).

Adenoviral Infection
All adenoviruses, a replication-defective adenoviral vector
expressing wild-type Pdlim5 or Pdlim5 mutant fused with flag
or EGFP tag, were gifts from the Takashima group (Osaka
University). The Pdlim5 S177A or S177D adenoviral vector
expressed amutant of Pdlim5 in which serine 177 was substituted
with alanine (S77A) or aspartate (S77D), respectively. For
the animal experiments, the diabetic mice were infected with
adenovirus in an open-chest myocardium injection after having
been anesthetized with a mixture of isoflurane (2%) and oxygen
(98%). For the cellular model work, VSMCs were infected
with Ad-Pdlim5 WT, Ad-Pdlim5-S177A, or Ad-Pdlim5-S177D
overnight in a medium supplemented with 2% fetal calf serum.
The cells were then washed and incubated in fresh VSMC
growth medium without fetal calf serum for an additional 12 h
prior to experimentation. These conditions typically produced
an infection efficiency of at least 80% as determined by EGFP or
flag expression.

Scratch Assay
The mouse aortic smooth muscle cells were seeded on 35-mm
glass dishes at an initial density of 5 × 105 cm2. A scratch was
made with a P-200 pipette tip 8 h after seeding. Then, 1mM
of metformin hydrochloride (Sigma-Aldrich) was added after
changing the medium, with PBS as the control. The lesions
were observed with a Zeiss inverted microscope, measured with
the ImageJ software (NIH) once per hour, and totally observed
for 8 h.
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FIGURE 1 | Metformin inhibits vascular smooth muscle cell (VSMC) migration through the AMPK–Pdlim5 pathway. (A) EGFP-Pdlim5 VSMCs and AMPK

α1-null/EGFP -Pdlim5 VSMCs were stimulated with metformin (1mM) for 8 h in a scratch assay. (B) Bar graph showing the gap width 8 h after scratching [from (A)].

Data are representative of means ± SEM from four independent experiments. The significance of differences between series of results was assessed using one-way

analysis of variance, followed by a post-hoc comparison with Dunnett’s method for multiple comparisons. ***P < 0.001, n = 4. (C) GFP images of AMPK

α1-null/KDR/EGFP-WT-Pdlim5 cells before and after metformin stimulation (1mM). The magnified images below show the cells labeled by the number. Scale bar,

10mm. (D) Time-lapse images of GFP signal in EGFP-WT-Pdlim5 cells with or without metformin stimulation (1mM). Yellow arrowheads indicate the growth of dorsal

stress fibers from the opposite side in EGFP-WT-Pdlim5 cells after metformin stimulation. Scale bar, 10mm. (E) Western blot of vascular smooth muscle cell (VSMC)

contractile markers SMA, transcriptional regulator KLF4, and phosphorylated AMPK in control, PDGF-BB-treated, metformin combined with PDGF-BB and IL-1β

combined with PDGF-BB-treated VSMCs.

Time-Lapse Imaging of VSMC Cells
EGFP-Pdlim5-WT cells or EGFP-Pdlim5/AMPK-α1 KO cells
were plated on 35-mm glass dishes coated with collagen at an
initial density of 4 × 104 cm2. At 5 h after plating, the cells were
treated with metformin (1mM). The fluorescence images were
recorded as described before (21).

Statistical Analyses
The data in the graphs are presented as means ± SEM.
Two-tailed Student’s t-test was utilized to compare the two
groups. Differences among multiple experimental groups were
analyzed by one-way analysis of variance, followed by a post-hoc

comparison with Dunnett’s method utilizing SPSS 16 (IBM). P
< 0.05 was considered statistically significant (∗P < 0.05, ∗∗P <

0.01; ∗∗∗P < 0.001).

RESULTS

Metformin Inhibits VSMC Migration
Through the AMPK–Pdlim5 Pathway and
Independent of VSMC Phenotype
Transition
To investigate the role of the AMPK–Pdlim5 pathway in
cell migration, we established the KDR system in wild-type
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FIGURE 2 | Metformin inhibits lamellipodia formation and enforces focal adhesions in vascular smooth muscle cells (VSMCs) through the AMPK–Pdlim5 pathway. (A)

Flag-WT-Pdlim5 VSMCs and AMPK α1-null/EGFP-WT-Pdlim5 VSMCs were stimulated with metformin before detecting the phosphorylation level of AMPK and Pdlim5

with immunoblotting. (B) Metformin activates the AMPK–Pdlim5 signaling pathway. VSMCs were transfected with CTL siRNA or Pdlim5 siRNA. Pdlim5

siRNA-resistant flag-Pdlim5 (WT, S177A, or S177D) was added back by adenoviral-mediated gene delivery. The phosphorylation levels of AMPK and Pdlim5 were

detected with western blotting. (C) GFP signal and immunostaining of actin and paxillin in KDR/EGFP-Pdlim5 cells (WT, S177A, and S177D). Actin and paxillin were

stained with phalloidin and anti-paxillin antibody to display actin microfilaments and focal adhesions, respectively. The right panels are the magnified images of the

region outlined by white boxes. Scale bar, 10mm. (D) The focal adhesion area of EGFP-Pdlim5 cells (WT, S177A, and S177D) were measured according to the

paxillin-positive region in (B) and compared using one-way analysis of variance, followed by a post-hoc comparison with Dunnett’s method for multiple comparisons.

****P < 0.0001, n = 100. (E) Scratch assay of metformin-stimulated EGFP-Pdlim5 cells. Phase-contrast images of EGFP-Pdlim5 cells (WT, S177A, and S177D) 8 h

after scratching with or without metformin. Scale bar, 0.5mm. (F) Bar graph showing the gap width 8 h after scratching [from (E)]. Data are representative of means ±

SEM from four independent experiments. The significance of the results was assessed using one-way analysis of variance, followed by a post-hoc comparison with

Dunnett’s method for multiple comparisons. ***P < 0.001, n = 4.

VSMCs or AMPKα1 null VSMCs as described before (21), in
which endogenous Pdlim5 was replaced with EGFP or flag-
fused Pdlim5, Pdlim5 S177A (an unphosphorylatable mutant),
or Pdlim5-S177D (a phosphomimetic mutant), respectively
(Figures 1, 2).

In the scratch assay, it was observed that metformin inhibits
the wounding healing ability of WT-Pdlim5 VSMCs. However,
metformin failed to inhibit wound healing in the AMPKα1

absentWT-Pdlim5 VSMCs (Figures 1A,B). Enhanced stress fiber
and reduced VSMC migration were also observed with time-
lapse imaging (Figure 1C). It was shown that metformin reduced
lamellipodia formation and promoted the enhancement of the
EGFP signals from the side opposite to the lamellae, a pattern
similar to the growth of dorsal stress fibers (Figure 1C).

It has been reported that the migration of VSMCs is related
to phenotype transition, which means the loss of contractile
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proteins and the expression of specific transcriptional factors.
To investigate whether metformin inhibit VSMC migration by
influencing phenotype switching, wild-type VSMCs were treated
with PDGF-BB, a phenotype transition inducer, or PDGF-BB
combined with metformin or inflammatory cytokine IL-1 as a
control for 8 days. It was shown that PDGF-BB increased the
expression of phenotype switching regulator KLF4 from day 6,
reducing the expression of contractile protein SMA from day
8. However, metformin activated AMPK effectively and reduced
the KLF4 expression but had no significant influence upon SMA
expression (Figure 1E). These results suggest that metformin
inhibits VSMC migration through AMPK activation but not via
the phenotype transition pathway.

Metformin Inhibits VSMC Migration
Through the Enforcement of Focal
Adhesions and Reducing Lamellipodia
Formation
To investigate whether metformin could induce the
phosphorylation of Pdlim5 through AMPK, EGFP or flag-fused
WT-Pdlim5 Pdlim5, Pdlim5 S177A (an unphosphorylatable
mutant), or Pdlim5-S177D (a phosphomimetic mutant) were
overexpressed in wild-type VSMCs or AMPKα1 null VSMCs
before metformin exposure. In Figure 2A, it was shown that
metformin could induce the phosphorylation of AMPK and
Pdlim5 in wild-type VSMCs but not in WT-Pdlim5/AMPKα1
null VSMCs. The phosphorylation of Pdlim5 was not observed
in Pdlim5-S177A VSMCs, while Pdlim5-S177D was recognized
by the Ab-pS177 antibody even without Met stimulation
(Figure 2B). In Figure 2C, both WT- and Pdlim5-S177A cells
possessed smooth lamellipodia-like edges, whereas Pdlim5-
S177D cells displayed decreased lamellipodia formation and
jagged edges with excessive filopodia-like protrusions and ventral
stress fibers. In addition, it was found that both WT- and S177A-
Pdlim5 cells had tiny and scattered spots of focal adhesions at the
junction between the lamellipodia and lamella; by contrast, in
S177D-Pdlim5 cells, focal adhesions were displaced to the edge
of the cell and significantly enlarged in size (Figure 2C).

Next, a scratch assay was performed to observe whether
decreased lamellipodia and enhanced stress fiber would inhibit
cell migration (Figure 2E). It was shown that the wound healing
ability of S177D cells is lower than that of WT- and Pdlim5-
S177A cells, while Met inhibited the migration of both WT- and
Pdlim5-S177D cells only, except S177A cells (Figure 2E).

Metformin Attenuates Intimal Hyperplasia
After Artery Injury in
Myh11-Cre/Rosa26-EGFP Mice
As metformin could inhibit VSMC migration in vitro, a wire
injury-induced vascular remodeling model was utilized to verify
this function of Met in vivo (Figure 3). To accomplish this
experiment, 6- to 8-week-old Myh11-Cre/Rosa26-EGFP mice,
which express EGFP in mature VSMCs, were subjected to
ligation of the left carotid artery. An accumulation of VSMC-
derived cells in the intimal hyperplasia of the left carotid

artery was observed by confocal microscopy with arterial cross-
sections. It was found that many Myh11-expressing VSMC-
derived EGFP-positive cells contributed to the neo-intima lesions
and constituted a significant proportion of the total cell number
within lesions. Interestingly, metformin treatment reduced the
intima hyperplasia (Figure 3A) and patch size (Figure 3B) than
the saline treatment significantly.

Metformin Alleviates Atherosclerotic
Lesions in Diabetic ApoE–/– Mice
To study whether metformin could be used to prevent diabetes-
accelerated atherosclerosis, DM and atherosclerosis were induced
in ApoE−/− mice with streptozocin and HFD. The diabetic
mice were treated with metformin as described in “Materials
and Methods.” It was found that the diabetic ApoE−/− mice
possessed obvious en face lesions in the aortic arch and thoracic
and abdominal aorta and greater atherosclerotic lesions in the
aortic root (Figures 3C–E). Metformin intervention significantly
reduced the lesion areas in the aortic root and the aortic arch
in diabetic ApoE−/− mice. The SMA-positive deposition in the
aortic root was also smaller in metformin-treated mice than in
diabetic mice, which suggests that metformin inhibited VSMC
accumulation in atherosclerotic plaques (Figures 3F,G).

The Activation of the AMPK–Pdlim5
Pathway Is Involved in the Protective
Function of Metformin Against
Diabetes-Accelerated Atherosclerosis in
ApoE–/– Mice
To study the role of AMPK–Pdlim5 pathway in the development
of atherosclerosis, ApoE−/− animals were divided randomly
into streptozocin-induced diabetes mellitus together with or
withoutmetformin, Pdlim5 phosphomimeticmutant that carried
adenovirus (Pdlim5 S177D) or Pdlim5 unphosphorylatable
mutant that carried adenovirus (Pdlim5 S177A). It is shown
in Figure 4 that metformin reduced hyperglycemia significantly
(Figure 4B), while it did not exhibit an obvious influence
upon dyslipidemia induced by STZ and HFD (Figures 4C–F).
However, the manipulation of Pdlim5 phosphorylation with
adenovirus has no significant influence on metabolic disorders
in DM mice (Figures 4B–F). The diabetic ApoE−/− mice
developed significantly larger en face lesions in the aortic arches
(Figures 4G–J) and larger SMA- and phosphorylated Pdlim5-
positive lesions in the aortic roots compared with those in
the metformin treatment group (Figures 5A–C). The Pdlim5-
negative mutant adenovirus (S177A) alleviated the protective
function of metformin as mentioned above and increased
the plaque area significantly (Figures 4G–J, 5A–C). However,
Pdlim5 constitutively active adenovirus (S177D) suppressed
atherosclerosis obviously even under the absence of metformin
(Figures 4G–J, 5A–C).

DISCUSSION

The blood vessels mainly contain two cell types: endothelial cells
(EC) and vascular smoothmuscle cells. Injury of the endothelium
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FIGURE 3 | Metformin inhibits medial vascular smooth muscle cell (VSMC) migration in vivo and reduces VSMC infiltration in atherosclerotic plaques in ApoE−/− mice.

(A) Myh11cre-eGFP mice were treated with saline or metformin for a week after left carotid wire injury (n = 5 per group). Representative images of the immunostaining

of SMA- and EGFP-positive cells in an artery cross-section. (B) Quantitative analysis of the percentage of lesion area compared to the cross-sectional area of the

artery. Data are representative of means ± SEM from five independent experiments. The significance of differences between the series of results was assessed using

one-way analysis of variance, followed by a post-hoc comparison with Dunnett’s method for multiple comparisons. *P < 0.05, n = 5. (C) ApoE−/− mice were injected

with streptozotocin for 5 days to induce diabetes and then fed with high-fat diet and metformin intervention (Met) or control (CTL) for 8 weeks. The atherosclerotic

lesions in the aorta were stained with Oil Red O. (D) Quantification of the en face lesion area in the aorta. The significance of differences was assessed using one-way

analysis of variance, followed by a post-hoc comparison with Dunnett’s method for multiple comparisons. ****P < 0.0001, n = 6. (E) Oil Red O staining of

atherosclerotic lesions at the aortic root. (F) Quantification of the lesion size in the aortic root. The significance of differences was analyzed using one-way analysis of

variance, followed by a post-hoc comparison with Dunnett’s method for multiple comparisons. ****P < 0.0001, n = 6. (G) Immunochemistry staining of α-SMA in the

aortic root. (H) Quantitative analysis of α-SMA-positive area in the aortic root. The significance of differences between series of results was assessed using one-way

analysis of variance, followed by a post-hoc comparison with Dunnett’s method for multiple comparisons. ***P < 0.001, n = 5.

leads to the initiation of atherosclerosis, while the abnormal
proliferation and migration of vascular smooth muscle cells
result to the development of atherosclerotic plaques (27). An
aberrant EC–VSMC interaction could promote atherogenesis
(27). It is widely accepted that the effects of endothelial
dysfunction on VSMCs are reduction of NO bioavailability
and/or augmentation of vasoactive constrictors released from the
endothelium (28). The injured EC can also recruit inflammatory
cells and release cytokines that induce a phenotype change

of VSMCs from the “contractile” phenotype to the “synthetic”
state that can migrate and proliferate from the media to the
intima (29). An accumulation of VSMC in the vascular intima
is a hallmark of atherosclerosis, but their exact origins are still
in controversy (8, 22). In humans, both pre-existing intimal
and medial VSMCs can contribute to plaque VSMCs (30).
In mice, the VSMCs in the fibrous cap are unambiguously
derived from media, which suggests the importance of cell
migration in the pathogenesis of atherosclerosis (31). This is
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FIGURE 4 | Phosphorylation of Pdlim5 is involved in the anti-atherosclerosis function of metformin in diabetic ApoE−/− mice. The ApoE−/− mice had induced diabetic

atherosclerosis and intervened with metformin as described in “Materials and Methods” for 8 weeks (n = 10 per group). At the same time, the mice were randomly

(Continued)
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FIGURE 4 | separated into four groups: vehicle group, adenovirus WT Pdlim5 group, Ad S177A Pdlim5 group, and Ad S177D Pdlim5 group. (A–H) Blood glucose,

plasma HDL, LDL, cholesterol, triglyceride, blood pressure, and heart rate were determined with a commercial kit. The data are representative of means ± SEM from

10 independent experiments. The significance of differences between the series of results was assessed using one-way analysis of variance, followed by a post-hoc

comparison with Dunnett’s method for multiple comparisons. ****P < 0.0001, n = 10. (I) Oil Red O staining of atherosclerotic lesions at the aorta. (J) Quantification of

the en face atherosclerotic lesion area in the aorta. Data are representative of means ± SEM from six independent experiments. The significance of differences was

assessed using one-way analysis of variance, followed by a post-hoc comparison with Dunnett’s method for multiple comparisons. ****P < 0.0001, n = 6. (K) Oil Red

O staining of atherosclerotic lesions at the aortic root. (L) Quantification of the atherosclerotic lesion size in the aortic root. Data are representative of means ± SEM

from six independent experiments. The significance of differences of the results was assessed using one-way analysis of variance, followed by a post-hoc comparison

with Dunnett’s method for multiple comparisons. ****P < 0.0001, n = 6.

FIGURE 5 | The phosphorylation of Pdlim5 induced by AMP-activated protein kinase was related to metformin’s anti-atherosclerosis function. (A) Representative

images of H&E staining and immunostaining of α-SMA and phosphorylated Pdlim5 at the aortic root of diabetic ApoE−/− mice. Scale bar = 200µm. (B) Quantification

of α-SMA-positive area in the aortic root. Data are representative of means ± SEM from five independent experiments. The significance of differences between the

series of results was assessed using one-way analysis of variance, followed by a post-hoc comparison with Dunnett’s method for multiple comparisons. ***P < 0.001,

n = 5. (C) Quantification of phosphorylated Pdlim5-positive area in the aortic root. Data are representative of means ± SEM from five independent experiments. The

significance of differences was assessed using one-way analysis of variance, followed by a post-hoc comparison with Dunnett’s method for multiple comparisons. **P

< 0.01, ***P < 0.001, n = 5.

consistent with our finding that inhibiting VSMC migration
through the activation of AMPK reduces neointima formation
induced by artery injury and STZ/HFD-induced atherosclerosis.
The mechanics of VSMC migration in atherosclerotic lesions
involves the formation of plasma membrane-leading lamellae
(leading edge) and the disengagement of focal adhesions that
are in contact with the ECM (32). We found that metformin
could inhibit cell migration through the enforcement of focal

adhesions and reducing lamellipodia formation in vitro. The
underlying mechanism has been elucidated by our publication
and those of others, such that phosphorylation of Pdlim5 by
AMPK disrupts the binding between Pdlim5 with Arhgef6
at the cell periphery (21). The dissociation suppresses Rac1
activity and dislocates the Arp2/3 complex from the leading
edge of cells which impairs lamellipodia formation and cell
migration (21, 32, 33).
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VSMC migration in atherosclerosis has also been related to
phenotype switching—a synthetic, de-differentiated state (34).
The phenotype-switched VSMCs exhibit a reduced production
of contractile proteins but with a higher expression of ECM-
related products and increased levels of secretory organelles and
pro-inflammatory cytokines (35). At the molecular level, the
VSMC phenotype transition is governed by transcription factors
myocardin serum response factor 58 and Krüppel-like factor
4 (KLF4) (23, 36). Diabetes mellitus-associated pathological
factors exacerbate the synthetic phenotype of VSMCs through
the up-regulation of KLF4 (37). Although our work has shown
that metformin-induced AMPK activation has an insignificant
influence on the expression of KLF4 and “contractile proteins”
(Figure 2E), the relationship between VSMC migration and
phenotype switching in atherosclerotic plaques still needs
further investigation.

AMPK is a vital enzyme for regulating cellular energy
homeostasis (38). The activation of AMPK depends on
phosphorylation at its T172 site and binding with AMP
and/or ADP (39). Compelling evidence has indicated an inverse
correlation between diabetes and AMPK activity (38). Therefore,
AMPK-activating agents have the potential to be utilized
as precaution or therapies against diabetes and DM-related
complications. Indeed metformin, an indirect AMPK activator
and well-known T2DM drug, could reduce atherosclerosis
in patients with diabetes (19, 39). However, the underlying
mechanism is not clear yet. Recent work found that AMPK also
plays an important role in the regulation of cell polarity and
motility (21), which throws a light on the research of metformin’s
anti-atherosclerosis function. There are two different α isoforms
(α1 and α2) that are differentially expressed in different tissues.
Several references found that AMPKα2 plays an important
role in the aberrant migration of vascular smooth muscle cells
in atherosclerosis. However, our previous work found that
AMPKα1 is more important for themigration of vascular smooth
muscle cells in vitro (21), and the phosphorylation of Pdlim5
by AMPKα1, but not AMPKα2, plays an important role in the
anchoring of vascular smooth muscle cells (21). In this study,
we found that metformin activates AMPK, which phosphorylates
Pdlim5 at Ser177, resulting in the attenuation of lamellipodia
formation and the inhibition of vascular smooth muscle cell
migration from the medial to intima. We also demonstrated
that metformin reduces VSMC accumulation in atherosclerotic
plaques via an AMPK–Pdlim5-dependent manner in STZ- and
HFD-induced diabetic ApoE−/− mice. It is consistent with the
existing concept that metformin has multiple beneficial effects on
vascular cells (endothelial cells, vascular smoothmuscle cells, and
macrophages), many of which are AMPK-mediated (15, 40–43).

Our previous work found that AMPK has many substrates—
CLIP170, VASP, and Pdlim5, for instance (21, 44, 45), but
their inductions need a different activated level of AMPK.
Basically, AMPK has three activated levels which are low activity,
physiological activity, and augmented activity (21). Different
activated AMPK situations induce different substrates, but
only physiologically activated AMPK stimulates cell migration,
while others both inhibit migration (21). Less activated AMPK
inhibits migration through CLIP170, which is a component of a

microtube (21), while augmented activated AMPK inhibits cell
migration through the phosphorylation of Pdlim5, which is a
component of actin (21). Metformin, as a well-accepted oral
drug for type 2 diabetes patients, could induce the augmented
activation of AMPK in vitro and in vivo efficiently (46), so
our work first found that Pdlim5, a component of muscle
cytoskeleton that is related to many cardiovascular diseases
(47), as a substrate of AMPK could be phosphorylated only
by augmented activated AMPK, which induces the abolishment
of the migratory machine in VSMCs in vitro and in vivo.
This work partially explains the beneficial effects of metformin
toward diabetes-accelerated atherosclerosis. This work suggests
that Pdlim5 has the potential to be a drug target to suppress
the development of atherosclerosis. Moreover, we also found
that Pdlim5 plays an important role in the pathology of
some cardiovascular diseases through other post-translational
modifications instead of phosphorylation. Hence, there are still
lots of work to be accomplished to translate the knowledge of
atherogenesis in the clinic.

CONCLUSION

Nevertheless, our research revealed that augmentation of AMPK
activity could inhibit VSMC migration from the media to the
atherosclerotic plaques through the phosphorylation of Pdlim5.
It may be useful to develop novel therapies toward atherosclerosis
and other complications in diabetes.
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