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Abstract: Since the discovery of non-neuronal acetylcholine in the heart, this specific system has
drawn scientific interest from many research fields, including cardiology, immunology, and phar-
macology. This system, acquired by cardiomyocytes independent of the parasympathetic nervous
system of the autonomic nervous system, helps us to understand unsolved issues in cardiac phys-
iology and to realize that the system may be more pivotal for cardiac homeostasis than expected.
However, it has been shown that the effects of this system may not be restricted to the heart, but
rather extended to cover extra-cardiac organs. To this end, this system intriguingly influences brain
function, specifically potentiating blood brain barrier function. Although the results reported appear
to be unusual, this novel characteristic can provide us with another research interest and therapeutic
application mode for central nervous system diseases. In this review, we discuss our recent studies
and raise the possibility of application of this system as an adjunctive therapeutic modality.

Keywords: acetylcholine; heart; non-neuronal acetylcholine system; blood brain barrier; anti-
inflammation; the vagus nerve

1. What Is the Non-Neuronal ACh System in the Heart?

Acetylcholine (ACh) is one of neurotransmitters in the autonomic nervous system
(ANS), which is composed of the sympathetic and parasympathetic nervous systems (SNS
and PNS, respectively). In the SNS, the primary neurons release ACh to activate the
secondary neurons possessing nicotinic receptors for ACh and transduce the signals to
them. The activated secondary neurons then release noradrenaline or norepinephrine
from their terminal ends that binds to a specific receptor on the effectors to execute their
specific physiological actions. In contrast, the PNS releases ACh from the terminal ends.
For instance, the heart is innervated by the ANS, and the SNS exerts positive chronotropic
and inotropic actions, including upregulation of its contraction, heart rate, and conduction
velocity. In contrast, PNS decreases heart rate and conduction velocity. Therefore, ACh in
the heart plays a role as a counterpart in these functions.

The distribution mode of nerve ends of the PNS in the heart, that is, the vagus nerve
(VN), is completely distinct from that of the SNS. Compared to the SNS nerve ends, which
are distributed to the entire cardiac ventricles, the PNS nerve ends are predominantly
located at the sinus node and atrioventricular node, but are very sparsely distributed
in the cardiac ventricles [1–5]. This finding distinctively provides us a cue to consider
a novel system in the heart in terms of ACh synthesis independent of the PNS; that is,
a non-neuronal ACh (NNA) synthesis in the heart or non-neuronal cardiac cholinergic
system (NNCCS). In other words, ACh is synthesized by cardiomyocytes [6]. According
to previous studies, it is broadly confirmed that cardiomyocytes can synthesize ACh with
the machineries equipped with cardiomyocytes, including choline transporter (CHT1),
choline acetyltransferase (ChAT), a crucial enzyme for ACh synthesis, and vesicular ACh
transporter (VAChT), a storage vesicle including ACh responsible for exocytosis, whereas
it is rapidly degraded by acetylcholinesterase [7–11]. Furthermore, even rat primary
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cultured cardiomyocytes in vitro, which were cultured for one week, synthesized ACh with
sufficiently detectable levels by High Performance Liquid Chromatography (HPLC) [6].
Based on these pioneering studies independently conducted by other researchers, the
concept of the NNA system in the heart or NNCCS has been established [6–11].

Afterwards, significant functional evidence regarding this system has been further
accumulated to indicate that the system is not an accessory but indispensable for home-
ostasis of cardiac functions using ChAT gene knockout or knockdown method in vitro. For
example, the system decreases cellular energy metabolism by reducing oxygen consump-
tion not only in contracting cardiomyocytes but also in non-contracting cells [6,12]. Second,
as implicated with the first issue, this system preferentially uses glucose as an energy
substrate through the upregulation of a glucose transporter [13–15]. Third, it sustains
cell–cell interaction and maintains protein expression of connexin 43 and β-catenin up to a
necessary level [12]. Fourth, it sustains cellular resiliency against serum starvation, energy
starvation, hypoxic insults, and norepinephrine exposure [9–14,16]. Lastly, it modulates im-
mune responses in the injured heart by suppressing cytokine expression [17]. This cardiac
finding was partly shared with further findings about other cells, including microglia [18],
endothelial cells [19], macrophages [20] and immune cells [21–23], suggesting that NNA
generally possesses anti-inflammatory effects. Taken together with all these experimental
results, it should be concluded that the NNA in the heart or NNCCS represents a basic
cardiac machinery to play a self-defensive role against overshooting stress.

2. A Model Mouse Representing the Activated Non-Neuronal ACh System in the Heart
2.1. Cardiac Phenotypes of the Transgenic Mouse

To further investigate the physiological role of this system in the heart in vivo, we
developed transgenic mice with the heart-specific overexpressing ChAT gene, a critical
ACh synthesis enzyme gene, using the α-myosin heavy chain promoter, and labeled them
as ChAT tg mice [14] (Figure 1). Another study modality was also conducted with deletions
of the VAChT, a vesicle responsible for ACh storage and exocytosis, and ChAT genes, which
clearly demonstrated completely opposite phenotypes to ours, leading us to the same
conclusion regarding this system [16].

We consider that our ChAT tg mice represent a suitable model for the activation of
this system because the transgene ChAT was confirmed to be expressed exclusively in the
heart [14]. Although ChAT protein derived from the translated transgene was expected to
be expressed both in atriums and ventricles [24,25], compared with the expression pattern
of ChAT protein in wild-type (WT) mice, expression levels of the ChAT protein were
increased predominantly in the ventricles. In contrast, atrial ChAT protein expression
levels in ChAT tg were surprisingly not increased, as the ventricle ChAT expression did,
to levels almost comparable with those in WT mice (unpublished data). ChAT tg mice
showed comparable levels of blood pressure (both systolic and diastolic pressures, SBP and
DBP, respectively) and heart rate (HR) with WT mice; therefore, systemic hemodynamic
parameters in ChAT tg mice were not influenced by augmentation of this system [14,26].

Despite the comparable hemodynamic parameters between ChAT tg and WT mice,
ChAT tg mice showed intriguing and striking cardiac phenotypes [14] that were also
predicted by the in vitro phenotypes of the activated NNA system [12,13]. First, as the
specific signal transduction following activated NNA synthesis in the heart, hearts of
ChAT tg mice increased protein expression levels of HIF-1α, pAkt, and glut-4 as well as
cardiac ventricular ACh levels, compared with those of WT mice, suggesting that even
during normoxic conditions, ChAT tg mice upregulated the anti-hypoxic/anti-ischemic
self-defense machinery in the heart. Therefore, ChAT tg mice with myocardial infarction
(MI) survived more than WT mice in the chronic phase, with a survival rate of 92.3% (two
weeks after the onset of infarction). In contrast, WT mice with MI usually died with cardiac
rapture soon after MI, showing 41.7% survival rate [14].
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Figure 1. A murine model of the activated non-neuronal cardiac cholinergic system (NNCCS) with
characteristic phenotypes of the cardiac and non-cardiac organ, the central nervous system (CNS).

Even after MI, the ChAT tg hearts possessed more intact myocardium but less fibrotic
and necrotic changes. Furthermore, cardiac remodeling after MI was more suppressed in
the heart of ChAT tg mice than in WT mice. Moreover, the hearts isolated from ChAT tg
mice continued to beat for longer duration, even after perfusion-off in the Langendorff
apparatus, than those from WT mice; alternatively, the former restarted to beat faster than
the latter following reperfusion [14]. This observation clearly indicates that ChAT tg hearts
are resilient to ischemia and efficiently sustain cardiac function even during insults.

2.2. Extra-Cardiac Phenotypes of ChAT tg Mice

As previously mentioned, ChAT tg mice were established to express the transgene
restrictively in the heart. The heart-limited expression of ChAT was accurately verified by
western blot analysis and immunohistochemical analysis of ChAT protein in each organ of
ChAT tg mice. On the other hand, immunoreactive signals of ChAT in the ChAT tg mouse
brain were completely comparable with those in WT mouse brains, and no neuronal cells
with stronger signals of ChAT were detected in ChAT tg brains [26].

Despite the heart-limited transgenic mice overexpressing the ChAT gene, ChAT tg mice
seemed more docile and quieter, and less aggressive than WT mice [26]. This characteristic
phenotype was specifically observed when the mice were grasped. The presence of extra-
cardiac phenotypes prompted us to further investigate whether ChAT tg mice possess
other central phenotypes related to ChAT tg temperaments as follows [26].

(1) The total walking distance of ChAT tg mice was comparable with that of WT mice
at daytime in a light-on phase; however, the nocturnal activity in the light-off phase was
significantly decreased in ChAT tg mice compared with that in WT mice, specifically during
the initial several hours following light-off. In general, this means that mice accelerate their
activity in the light-off phase because they are nocturnal [27–29]. When they are transferred
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into a cage, they vigorously walk around to check whether the circumstance is safe or if
they are under dangerous conditions. Therefore, decreasing nocturnal activity suggests
that ChAT tg mice feel less anxious. Together with neither motor deficits nor muscular
weakness in ChAT tg mice, these findings suggest that ChAT tg mice suffer from some
influence on CNS function due to the augmented NNCCS [26].

(2) When subjected to a light and dark transition test, WT mice stayed longer in the
dark field and they did not get out into a light field because they preferred dark conditions.
However, ChAT tg mice tend to spend more time in the light field. These findings suggest
that ChAT tg mice are less anxious. This may be compatible with decreased nocturnal
activity [26].

(3) A representative test to evaluate a depressive-like phenotype includes the tail
suspension test (TST) and forced swimming test (FST) [30]. In both tests, immobility time
was measured during a part of the test because more prolonged immobility by giving
up escaping or swimming indicates a more depressive-like phenotype in mice. When
ChAT tg mice were subjected to both TST and FST, their immobility time was significantly
decreased compared with that of WT mice. They continuously tried to escape from the
suspension and to swim until the end of the tests. Furthermore, in elevated plus maze test,
the total time spent by the ChAT tg mice in the open arms [31] was significantly longer
than that of the WT mice; however, in the closed arms they stayed comparably with WT
mice. Therefore, the decreased immobility time and increased time spent in the open space
strongly suggest that ChAT tg mice were less under depressive-like conditions than WT
mice [26].

(4) When WT mice were subjected to restraint stress with a silver metal net, they
usually increased blood corticosterone concentration within 60 min because the stress
activated the hypothalamus-pituitary-adrenal gland axis [32]. In contrast, when subjected
to the same stress, ChAT tg mice increased up to only 50% of the peak blood corticosterone
concentration in WT mice, suggesting that ChAT tg mice are resistant to stress and less
stressed than WT mice [26].

(5) Finally, mice were stimulated with two convulsants, pilocarpine and pentylenete-
trazole, which are well known to induce convulsions in animals [33,34]. We evaluated the
susceptibility of convulsion by measuring duration, incidence, and survival rate from status
epilepticus as well as by brain neuronal activity imaging using transcranial flavoprotein
fluorescence imaging [35,36]. As predicted, when subjected to those convulsants, WT mice
experienced convulsions with a higher incidence and longer duration, more often resulting
in death due to status epilepticus. In contrast, ChAT tg mice less frequently experienced
convulsions with a lower incidence and shorter duration. Significantly, more ChAT tg mice
survived status epileptics than WT mice because neuronal activity of the ChAT tg mice
brain evaluated by brain imaging was also significantly attenuated even in treatment with
convulsants, compared with the WT mice brains [26].

3. The Mechanisms by Which Activation of the Non-Neuronal Cardiac Cholinergic
System Influences the Brain Function

As mentioned above, ChAT tg mice are a representative useful model of activated
NNCCS alone [14]; however, how does this heart-limited activated system influence the
brain or CNS? The heart and CNS are connected via the VN, part of the PNS. As an effector
organ, the VN is known to innervate the abdominal and intrathoracic organs in order
to sense signals from other effector organs and execute orders from the CNS. The VN is
composed of afferent and efferent fibers, the ratio of which is about 80% and 20% of the
VN, respectively [37]. Consequently, the VN plays a role in the heart, mainly as an afferent
fiber, in the transduction of various signals from the heart to the CNS. Based on these, we
speculated that ChAT tg mice hearts transduce more signals from the heart to the CNS via
the VN.

(1) To assess this, the solitary tract nucleus of the brain stem was examined by im-
munohistochemistry using an anti-c-Fos antibody. The VN from the peripheral organs in
the whole body terminates at the nucleus of the solitary tract (NTS), which is known as
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the center of the PNS and located at the dorsal part of the brain stem [38]. Different from
directly measuring neuronal activity of the NTS, immunohistochemical analysis of c-Fos in
the NTS is another tool to evaluate neuronal activation, with increased c-Fos immunore-
activity signals indicating activation of these cells [39]. With this c-Fos analysis, ChAT tg
brain stem showed that the number of c-Fos positive neuronal cells around the NTS was
significantly increased in ChAT tg mice compared with that in WT mice, indicating that
the ChAT tg mice brain stem received more afferent signals of the VN, probably due to the
activated NNCCS. In other words, the VN in ChAT tg mice may be activated to transduce
afferent fibers triggered by the heart with activated NNCCS [26].

(2) To directly evaluate VN neuronal activity, the left ChAT tg mice VN was dissected
and fitted with silver bipolar electrodes under anesthetic conditions. The frequency of neu-
ronal firing signals was significantly higher in ChAT tg mice than in WT mice. This result
indicated that ChAT tg mice VN hyperfunctioned with its elevated frequency, although it
was not possible to conclusively state that the increased VN activity was derived mainly
from afferent or efferent fibers [26].

(3) To examine whether the VN of ChAT tg mice was critical for representing the
specific central phenotypes, ChAT tg mice were subjected to lateral (left) vagotomy because
bilateral vagotomy usually caused death. Surprisingly, lateral vagotomy almost reversed
the specific CNS phenotypes of ChAT tg mice; vagotomy reversed the anti-stress, anti-
depressive-like, and anti-convulsion phenotypes of ChAT tg mice. These results clearly
indicate that ChAT tg mouse CNS phenotypes are influenced by the afferent VN [26]. Taken
together with the results thus far, the ChAT tg VN plays a crucial role in transducing the
heart-derived signals to the CNS to induce significantly specific CNS phenotypes, that is,
an anti-stress phenotype (Figure 2).

Figure 2. The speculated mechanisms involving the NNCCS which influences the CNS function.

VN stimulation (VNS), a modality for influencing the VN function, has been known
first as a method to treat drug-refractory uncontrolled epilepsy. This is accepted by the
FDA as an adjunctive therapeutic tool for these patients [40,41]. Thereafter, VNS has been
accepted to be used for patients with drug-refractory depression [42]. Moreover, it has
been also applied to patients with chronic heart failure with sometimes beneficial effects,
although the conclusion regarding VNS outcomes on chronic heart failure is contentious
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depending on clinical studies [43,44]. Then, we checked whether VNS-treated WT mice
showed the same beneficial phenotypes as those in ChAT tg mice, that is, anti-stress, anti-
depressive-like, and anti-convulsion phenotypes [45–50]. Finally, we confirmed that the
VNS phenotypes of WT mice are all included in ChAT tg mice phenotypes. Therefore,
these results prompted us to consider that ChAT tg mice may be subjected to so-called self
VNS; however, the afferent fibers of ChAT tg mice should be predominantly activated in
this specific case.

Which factor should be involved in triggering the activation of the VN afferent fibers
in ChAT tg mice? ChAT tg mice hearts synthesized much more ACh by cardiomyocytes.
Secreted ACh should bind to muscarinic receptors on cardiomyocytes, activating signal
transduction, one of which is nitric oxide (NO) in response to ACh [51]. As also reported
in our previous study, cardiomyocytes released NO soon after ACh treatment, which was
blocked by atropine, a muscarinic receptor antagonist [52]. ChAT tg mice hearts produced
significantly more NO than WT hearts [26]. Furthermore, NO has been reported to play a
role as a neurotransmitter [53,54], however, via a non-receptor mediated fashion because
NO is a gas-like substance.

To further investigate whether NO is critical for influencing VN activity, ChAT tg
mice were treated with L-NAME, a NO synthase (NOS) inhibitor. As predicted, the NOS
inhibitor significantly decreased VN activity frequency rapidly, indicating that intact NOS
activity and production of adequate NO are indispensable for sustaining the VN activity.
Our recent study supported the finding that NO derived from n (neuronal) NOS or NOS1
in the heart is critical for cardiac function and VN activity [55]. Based on these results,
ChAT tg mouse heart-derived NO can trigger VN activation.

To further consolidate our speculation that NO derived from ACh synthesized by
the activated system would be a trigger for VN activation, ChAT tg mice were treated
with L-NAME and the CNS phenotypes were assessed. Intriguingly, the beneficial pheno-
types were completely cancelled and reversed to those of WT mice. L-NAME completely
suppressed such phenotypes as anti-stress, anti-depressive-like, and anti-convulsion pheno-
types to levels comparable to those in WT mice [26]. These results clearly demonstrate that
at least NO is one of the stimulators of VN nerve endings in the heart, causing activation
of the VN afferent fibers. Furthermore, our recent study using heart-specific ChAT knock-
down mice, which possessed a depressed NO content in the heart and downregulated
VN activity, were susceptible to depressive-like phenotypes and more subjected to stress
load [55].

4. Another Evidence of Potentiating the Non-Neuronal Cardiac Cholinergic System
Involving Consolidation of Blood Brain Barrier

Thus far, we know that ChAT tg mice possess specific CNS phenotypes that are
influenced by increased cardiac NO production and VN afferent activity. However, other
than the anti-inflammatory effects of the cholinergic system, that are often reported and
represented partly by the representative effects of VNS [56], it remains to be elucidated
the mechanisms by which the CNS phenotypes of ChAT tg are influenced. We speculate
that blood brain barrier (BBB) function may be more consolidated in ChAT tg because
consolidation of the BBB, which is composed of tight junction components [57,58], can
interfere with the extravasation of pro-inflammatory substances into the blood, resulting
in anti-inflammatory responses in the brain. We further investigated CNS phenotypes of
ChAT tg mice especially focusing on their BBB function [59].

(1) Initially, we performed Western blot analysis of the brain to evaluate the protein
expression of claudin-5, one of the components of BBB [60–63]. Intriguingly, the ChAT tg
brain expressed more claudin-5 protein than WT mice brains. This striking result prompted
us to further examine the BBB function. As mentioned in our previous study, the beneficial
CNS phenotypes are mediated by the VN afferent fibers of ChAT tg mice [13,26]; therefore,
we checked the effects of lateral vagotomy on claudin-5 protein expression in the brain.
Surprisingly, vagotomy caused downregulation of claudin-5 protein levels within 5 d
following the vagotomy [59]. This also suggests the novel fact that the expression of
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claudin-5 in the brain is regulated by the VN, specifically the afferent fiber activation. In
other words, here there is evidence of a tight link between the BBB and the VN [59].

The in vitro experiments also followed the in vivo features of BBB [62,64,65]. Murine
brain endothelial cells from ChAT tg mice sustained enhancement of claudin-5 protein
expression compared with those from WT mice. Furthermore, an in vitro reconstruction
study of BBB using brain endothelial cells, astrocytes, and pericytes demonstrated that
ChAT tg mice-derived reconstructed BBB was more resistant to Evans blue dye leakage
than WT mice-derived reconstructed BBB [66]. These results clearly indicate that BBB
function is more consolidated in ChAT tg mice than in WT mice via increased claudin-5
protein expression [59], although the precise mechanisms are still unknown. However,
a recent study demonstrated that α7 nicotinic receptor stimulation increased claudin-5
expression in rat brain endothelial cells, and therefore, this may be considered one of the
mechanisms [60,61].

(2) ChAT tg mice were subjected to brain cold injury, which is a BBB disrupting
model [67–69]. The brain cold injury was developed using a cold metal cylinder with a
diameter of 3–4 mm, which was attached to the surface of the right parietal bone strictly
for 5 s. The effect of cold injury on BBB transient disruption peaked 24 h after injury,
which was shown by the systemically distributed Evans blue dye. The area subjected
to cold injury was restricted to blue color, indicating that the dye was extravasated into
the brain parenchyma. With brain cold injury, WT mice brains showed remarkable blue
staining in the surface of the injured brain; however, ChAT tg mice brains significantly
attenuated Evans blue leakage, suggesting that the BBB function of ChAT tg mice was more
strengthened and resistant to the injury [59].

Furthermore, the Parkinson’s disease model induced by 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), which is another model influencing BBB [70,71], was also
applied to ChAT tg mice. Likewise, the brains of WT mice 3 d after injection of MPTP
showed increased extravasation of sodium fluorescein into the brain parenchyma. In
contrast, the ChAT tg mice brains significantly decreased the fluorescein levels in the brain.
Although it was not fully studied regarding the mechanisms by which BBB consolidation
leads to neuroprotective effects, ChAT tg brain was significantly resistant to neurodegener-
ation by MPTP, showing that more neuronal cells as well as neuron fibers were left intact
in the substantia nigra, which is a main target of this model. These data clearly indicate
that ChAT tg mice BBB was resistant to two different types of BBB disruption models [19].

Compatible with the more consolidated characteristics of ChAT tg BBB associated
with increased immunoreactivity of claudin-5, the appearance of astrocytes in the ChAT
tg brain was less hypertrophic and immunoreactive with glial fibrillary acidic protein
(GFAP) staining [72], suggesting that less extravasating substances from the blood into
the parenchyma attenuated reactive astrocyte transformation. This phenomenon was also
evidenced by Western blot analysis of GFAP expression levels. The right brain of WT mice
increased GFAP protein expression in response to the right injury compared with the left
brain without injury; however, in the brains of ChAT tg mice, the laterality of the right
to left brain GFAP expression was significantly decreased compared with that of the WT
mice brains [59]. This is a novel and specific finding in ChAT tg mice brains caused by
strengthened BBB function.

5. Anti-Inflammatory Reactions of ChAT tg Mice against Systemic Injection of LPS
and Cold Brain Injury

As mentioned earlier regarding ChAT tg mice, their hearts produced more ACh.
However, when LPS (10 mg/kg/dose i.p.) was systemically administered [73,74], ChAT tg
mice survived more than WT mice within 48 h after injection, and their blood concentrations
of TNF-α and IL-6 were significantly attenuated compared to those of WT mice. Moreover,
Kupffer cells and the liver in ChAT tg mice also downregulated cytokines gene expression
more than that in WT mice [59].
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Likewise, in cold brain injury, the right injured parietal brain of ChAT tg mice ex-
pressed less cytokine gene expression than that of WT mice [59]. These results all support
our concept that ChAT tg mice possess systemic anti-inflammatory response potency.

6. Speculated Underlying Mechanisms Responsible for Anti-Inflammatory Potency

Recent studies have reported that VNS, which was initially used as an anti-convulsion
but later anti-heart failure or anti-depression treatment, plays a role in inhibiting inflam-
mation. Since then, many research papers have come out to reveal that VNS attenuates
inflammation, although the precise mechanisms remain to be fully investigated [43,75–77].
Initially, peripheral inflammation was the main target for VNS, including sepsis [56,78,79];
however, VNS later suppresses central brain inflammation [80,81], although the mech-
anisms may be complicated as the ascending root of the VN is not directly targeted to
inflammatory lesions using the terminal ends. Rather, it is first terminated to the NTS
followed by the second innervation to the whole brain, including the locus coeruleus (LC),
thalamus, and hypothalamus [82]. The LC is an intermediate nucleus, which again projects
third neurons into the whole brain as a noradrenergic neuron. In contrast, LC is also
connected with the cholinergic pathway, which includes the prefrontal cortex [82].

ACh from the terminal ends of the VN exerts anti-inflammatory actions. Among
receptors of ACh, including nicotinic and muscarinic receptors, the α7 nicotinic receptor
has been well known to execute anti-inflammatory effects [83–85]. The α7 nicotinic receptor
is unique with its homoheptamer structure, which is different from the other heterodimer
nicotinic receptors [86]. The anti-inflammatory effects of the receptor may contribute to
its signal transduction; however, compared with other nicotinic receptors, the α7 nicotinic
receptor does not seem to utilize specific signal transduction modes that have already been
reported [86]. However, the following characteristics of the receptor are speculated to be
responsible for its anti-inflammatory function: the homomeric α7 nicotinic receptor desen-
sitizes very rapidly, compared with other heteromeric receptors, with its agonists [79,86].
Furthermore, the α7 nicotinic receptor activates the JAK2/STAT3 pathway [87,88] as well
as the Akt pathway [89,90], the former suppressing NF-κB translocation into the nucleus
and the latter activating the Nrf2 pathway [90], which upregulates antioxidative factor
HO-1 [91]. Based on these, its short opening time, rapid desensitization, activation of cellu-
lar protecting signals, or suppression of NF-κB nuclear translocation may be responsible
for anti-inflammatory effects [86].

Likewise, the speculated mechanisms underlying upregulation of BBB claudin-5
remain to be studied in detail because there are few studies that have revealed a direct
interaction between cholinergic nerve ends and brain endothelial cells composing the BBB.
However, one in vitro study reported that the α7 nicotinic receptor agonist or glycogen
synthase kinase inhibition upregulated tight junction proteins, including claudin-5 and
occludin [61,92]. However, another study reported that the α7 nicotinic receptor was
involved in attenuating the expression of BBB components [93,94]. The reason these results
were contradictory remains to be elucidated. In contrast to the involvement of cholinergic
agonists in regulating tight junctions, adrenergic receptors, instead of cholinergic receptors,
were also reported to be responsible for sustaining BBB functions [27,95].

However, our transgenic mice overexpressing the ChAT gene restrictively in the heart
provide a novel significant clue; that is, the link between the activation of NNA in the heart
and BBB consolidation as well as anti-inflammation, as comprehensively expressed in a
schema (Figure 3). However, it remains to be determined whether these distinctive findings
of upregulation of BBB function and anti-inflammatory response may contribute to only
one or several factors. Therefore, further studies are needed to investigate and address
these issues.

Despite the limitations of transgenic mice, the finding that the heart equipped with
NNCCS influences higher levels of brain functions (e.g., mood and BBB) through the VN
afferent pathway, may provide a novel concept to modulate the brain by the heart, not the
brain–heart connection but heart–brain connection.
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Figure 3. This schema represents the speculated link between augmented NNCCS and other organs.

When the heart-derived non-neuronal ACh synthesis is activated, increased release of
NO from cardiomyocytes stimulates the afferent pathway of the vagus nerve, leading to
stimulation of the cholinergic and noradrenergic pathway in the brain through the NTS.
The activated cholinergic system plays a role in increasing claudin-5 expression in brain
endothelial cells, leading to the consolidation of BBB integrity. The efferent pathway of
the vagus nerve, in turn, is activated to influence target organs including Kupffer cells in
the liver as well as macrophages and T cells in the spleen. Those cells are regulated by the
vagus nerve efferent pathway to attenuate inflammatory responses.

7. Concluding Remarks

Even though evidence of NNCCS or NNA in the heart has accumulated, there is no di-
rect evidence of this system involving human diseases. Additionally, no answers have been
found as to whether this system can be used as a therapeutic modality [10,96,97]. However,
there are several studies to remind us of the possibility of addressing this system in human
diseases. Donepezil, an Alzheimer’s disease drug known as an acetylcholinesterase in-
hibitor, can decrease the incidence and mortality of cardiovascular diseases in patients with
Alzheimer’s disease [98–100]. Our study has already reported that donepezil upregulates
NNCCS as an inducer of this system [4]. These results strengthen the speculation that
the brain and heart are profoundly cross-talked through influencing each other, and the
possibility of intervention in this system for both targets. Further studies focusing on this
issue are anticipated.
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Abbreviations

ACh Acetylcholine
ANS Autonomic nervous system
SNS Sympathetic nervous system
PNS parasympathetic nervous system
NNA a non-neuronal ACh
NNCCS non-neuronal cardiac cholinergic system
CHT1 choline transporter
ChAT choline acetyltransferase
VAChT vesicular ACh transporter
TST tail suspension test
FST Forced swimming test
NTS The nucleus of the solitary tract
NO Nitric oxide
NOS NO synthase
VN vagus nerve
WT wild type
VNS Vagus nerve stimulation
BBB blood brain barrier
LC locus coeruleus
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