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Abstract: We describe a preliminary investigation of the dissolution dynamics of zinc oxide nanopar-
ticles in the presence of cyclic esters (δ-gluconolactone and propanesultone) as slow acid generators.
The particles dissolution is monitored by means of turbidimetry and correlated with the evolu-
tion of pH over time. The results could be of interest for the design of chemically programmable
colloidal systems.
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1. Introduction

Investigating the dissolution of inorganic nanoparticles is a topic of great relevance,
both theoretical and practical, with applications ranging from advanced materials to envi-
ronmental science and medicine [1–4]. Cyclic esters are slow acid generators, useful for
controlling the evolution of pH in time due to the acids produced by their hydrolysis [5].
As such, they are important tools for the application of systems chemistry principles to
materials science [6,7]. In the context of our research on the chemical programming of
material systems, we became interested in applying the same principles to inorganic ma-
terials, in addition to supramolecular and polymeric ones [8–15]. We began by studying
the dissolution dynamics of inorganic nanoparticles in the presence of slow acid gener-
ators. For our preliminary investigation, we chose zinc oxide ZnO nanoparticles as a
model system for its great relevance [16–23] and commercial availability. As slow acid
generators, we chose a lactone, δ-gluconolactone (GL), and a sultone, 1,3-propanesultone
(PrS). The kinetics of hydrolysis of both are already known, and their reaction with water
(Equations (1) and (2)) give, respectively, gluconic acid (pKa 3.86, a typical carboxylic
acid) [5] and 1-hydroxypropanesulfonic acid (pKa 1.53, a typical sulfonic acid) [10], which
are both strong enough to dissolve zinc oxide, thus forming the corresponding soluble salts
(Equations (1) and (2)):
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We studied the dissolution of ZnO nanoparticles by measuring the evolution of pH and
turbidity over time, keeping constant the concentration of ZnO (5 mM) and varying that of
the slow acid generators (50, 100, or 200 mM). With a lower (1 mM) ZnO concentration, the
dissolution was too fast (especially with GL) to ensure proper turbidimetry measurements.

2. Materials and Methods

Zinc oxide dispersion (nanoparticles, <100 nm particle size (TEM), ≤40 nm avg. part.
Size (APS), 20 wt.% in H2O), δ-gluconolactone (GL, meets USP testing specifications), and
1,3-propanesultone (PrS, 98%) were purchased from Sigma-Aldrich, St. Louis, MO, USA.
Unless otherwise stated, all chemicals were of an analytical or reagent grade purity and
used as received. Water was purified by means of a MilliQ system (resistivity ≥ 18 MΩ).
All the experiments were performed at room temperature (23 ± 1 ◦C).

For pH measurements, a Hanna Instruments (Woonsocket, RI, USA) HI5222-02 bench-
top pH-meter was used together with a HI1330B glass body combination pH microelectrode
from the same company. The pH-meter was calibrated with standard buffer solutions (pH
values: 1.68, 4.01, 7.01, 10.01, and 12.45) before each set of analysis. The pH-electrode was
cleaned after each analysis by repeated immersion in water, the excess water gently was
removed with hairless paper and immediately immersed in the solution to be analyzed.
The pH-meter was interfaced with a computer through the software HI92000–5.0.38 (Hanna
Instruments, Woonsocket, RI, USA) to allow continuous recording of pH values with a time
interval of 2 s. The pH measurements were carried out on a 10-mL reaction mixture, in
15-mL glass vials with stirring of 500 rpm.

Turbidimetry measurements were performed with a PerkinElmer (PerkinElmer Life
and Analytical Sciences, 710 Bridgeport Avenue Shelton, CT 06484-4794 USA) LAMBDA
650 UV-visible spectrophotometer using a quartz cuvette with an optical path of 1 cm. The
content of the cuvette was stirred (500 rpm) with a suitable magnetic bar. The measure-
ments were performed at a fixed wavelength (600 nm) with a 30-s time interval. For the
experiments with PrS, 12 µL of the ZnO dispersion were diluted in a vial with 8 mL of
water. The PrS was dissolved in water (total volume 2 mL) by sonication, and added to the
ZnO dispersion. For the experiments with GL, 12 µL of the ZnO dispersion were diluted in
a vial with 9 mL of water. The GL was dissolved in 1 mL of water by sonication, and added
to the ZnO dispersion. In both cases, the mixture was then transferred to the cuvette under
stirring and the measurement started, in any case with a delay ≤ 60 s from the addition of
the slow acid generator (PrS or GL).

Transmission electron microscopy (TEM) was performed with a Jeol JEM 1400 in-
strument at 120 kV acceleration voltage. To prepare the sample, a drop of dilute particle
suspension was deposited on a carbon-coated 400-mesh sized copper grid and air dried.

X-ray powder diffraction (XRPD) was performed with a Panalytical X’Pert PRO MPD
using Cu Kα1 radiation in Bragg–Brentano geometry. The ZnO suspension was cen-
trifuged and air dried, then the powdered sample was placed on a zero-background sample
holder and measured from 5◦ to 80◦ 2θ with a step size of 0.0668◦ and a scan speed of
0.034◦ s−1 whilst continuously spinning at 15 min−1 and maintaining an X-ray footprint of
10 × 10 mm2. The crystallite size was estimated using Scherrer’s equation [24], assuming a
Scherrer formfactor of 1.

Dynamic light scattering (DLS) measurements were performed with a Malvern Zeta-
sizer Nano ZS, employing a non-invasive back scatter detection system at a 173◦ detection
angle. Prior to measurements, the ZnO dispersions were diluted by a factor of 20 to mitigate
further dissolution and adjust the count rate. The measurements consisted of 10 runs of
10 s each and were performed in disposable polystyrene cuvettes at 25 ◦C. The refractive
indices of sample and dispersant were set to 1.99 and 1.33, respectively. The viscosity of the
dispersant was set to 0.8872 cP.
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3. Results and Discussion

The commercial ZnO nanoparticle dispersion was characterized by means of transmis-
sion electron microscopy (TEM; Figures 1a and S1) and X-ray powder diffraction (XRPD,
Figure 1b). The results are in good agreement with the data given by the producer. TEM
shows relatively polydisperse spheroidal and plate-like particles, with an average crystallite
size around 13 ± 1 nm (estimated from X-ray diffraction data).

Figure 1. Representative (a) TEM image (scale bar 50 nm) and (b) XRPD pattern of the ZnO nanopar-
ticles used for the experiments.

The hydrolysis of GL is much faster than that of PrS. Nevertheless, in the range of
concentrations (50–200 mM) and over the timescales (<3 h) investigated here, the hydrolysis
of both GL and PrS occurs approximately at a constant rate [10]. In the absence of pH-
buffering effects, this results in a steady decrease of pH, as shown in Figure S2. On the other
hand, in presence of ZnO, the pH-time evolution of both GL and PrS is characterized by two
inflection points (Figure 2, solid lines), which are more evident the higher the concentration
of cyclic ester.

Figure 2. Evolution of pH and turbidity over time for a 5 mM ZnO suspension with different
concentrations of slow acid generators: (a) δ-gluconolactone and (b) 1,3-propanesultone.

From the associated turbidimetry plots (Figure 2, dotted lines) it is possible to relate the
observed pH changes with the ZnO dissolution. In the system ZnO-GL (Figure 2a), there
is a constant, almost linear decrease in turbidity, with inflection points which follow the
trend of those observed in the pH curves. In the system ZnO-PrS, by contrast, initially the
decrease in turbidity is very slow and is even followed by a transient increase, after which it
decreases very rapidly. In addition, in this case there is a good agreement with the temporal
evolution of pH, except for these transient increases in turbidity, whose maxima are all
in correspondence of a pH ≈ 7 for all three PrS concentrations. This increase in turbidity



Materials 2022, 15, 1166 4 of 5

could be due to the formation of particle aggregates. Dynamic light scattering (DLS) indeed
showed a dramatic increase in the hydrodynamic particle size, however with great delay,
which is after the transient increase in turbidity that was observed in the spectrophotometer
(Figure S3). This delay could have been due to the different experimental conditions
(sample more diluted and unstirred). The mechanism leading to a transient aggregate
formation is not yet clear, however it is plausible to hypothesize that the steady acid
generation would not only cause particle dissolution but also interfere with their surface
charge, thus reducing their electrostatic repulsion. Zeta potential titration has been used
to attempt to validate this hypothesis, however the results were not conclusive. Another
hypothesis would involve the preferential dissolution of certain crystal planes, facilitating
the oriented attachment of the particles.

Although preliminary, these observations allow one to conclude that the dissolution of
zinc oxide nanoparticles can be achieved using slow acid generators, and that the dynam-
ics of the process are strongly influenced not only by their concentrations but especially
by their nature. More accurate insight will be obtained by repeating these experiments
using particles of a controlled size and size distribution, shape, crystallinity, and chemical
composition. Measuring the concentration of zinc ions in solution as a function of time,
together with the evolution of pH, could help in further understanding the particle dis-
solution dynamics. Given the versatility of slow acid generators for the programming of
pH-controlled colloidal systems, their application to inorganic nanoparticles could provide
interesting opportunities.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma15031166/s1, Figure S1: Representative TEM images of the ZnO nanoparticles used for
the experiments. Figure S2: pH-Time curves for different concentrations of (a) δ-gluconolactone,
(b) propanesultone in pure water. Figure S3: DLS curves for the system ZnO-PrS.
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